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Abstract

We continue in this paper the investigations on the notion of semilinear-
ity for formal power series (in commuting variables), recently introduced in
Petre, 1999. We prove several results connected to the difference operation
on semilinear power series, as well as results on possible decompositions of
semilinear series into finite sums of linear series with disjoint supports.

Résumé

Nous poursuivons dans cet article les investigations sur la notion de semi-
linéarité des séries formelles (en variables commutatives), récemment introduit
par Petre, 1999. Nous prouvons plusieurs résultats concernant la différence
de deux séries semilinéaires, ainsi que d’autres résultats portant sur de possi-
bles décompositions de séries semilinéaires en sommes finies de séries linéaires
ayant supports disjoints.

1 Introduction

The semilinearity is a central notion in the theory of formal languages, which has
been considered only recently for formal power series. The family of semilinear
formal power series has been introduced in [8] as a natural generalization of the
notion of semilinear subsets of a commutative monoid (see [3]). As noticed already
in [8], the semilinear power series (in commuting variables) have in general similar
behavior as the semilinear languages over a commutative monoid: they are closed
under rational operations (and thus coincide with the family of rational power series)
if the coefficients are taken in an idempotent, commutative semiring, are closed
under morphisms, and the well known Parikh’s Theorem holds for an idempotent,
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commutative, ω-continuous semiring of coefficients (see [5]). There are however
cases when the semilinear power series behave differently than the semilinear sets:
the N-semilinear power series over Σ⊕ (see Section 2 for notations) are not closed
under rational operations and Hadamard product, and moreover, Parikh’s Theorem
does not hold in this case (we refer to [8] for more details).

It is proved in [3] that the family of semilinear subsets of a commutative monoid
is closed under difference. Moreover, it is proved in [4] that the family of semilinear
sets of vectors with nonnegative integers as components, is closed under difference,
and the result is effectively computable. The problem seems to be more difficult
for formal power series. To our knowledge, no result is known for the difference of
two rational power series, in either commuting, or noncommuting variables. In [2],
one considers on N-rational series an operation of quasi-difference r−̇s defined as
(r−̇s, x) = max(0, (r, x) − (s, x)). In the same paper it is proved that if r and s
are rational series and s has bounded multiplicities, then the quasi-difference r−̇s
is also rational. We prove in this paper a result of the same type: if r and s are
semilinear power series (in commuting variables), s has bounded coefficients, and
r ≥ s, then r− s is a rational series (of an “almost semilinear” form). However, the
commutativity makes the problem completely different, and we prove our result by
combinatorial means, avoiding the use of a deeply algebraic tool as the cross-section
theorem in [2].

As it is well known (see, e.g., [4]), the semilinear sets of vectors with nonnegative
integers as components can be written as finite unions of linear sets with linearly
independent periods, are closed under intersection, and are closed under difference.
While these properties are proved or believed to be false in general for semilinear
power series, we prove that they hold for semilinear power series with bounded coef-
ficients. These series can be decomposed in finite sums of linear series with disjoint
supports, are closed under Hadamard product, and are closed under difference.

The paper is organized as follows. In Section 2, we fix the notations and recall
the notions of semilinear sets, semilinear formal power series, and some of their basic
properties. In Section 3, we consider the difference operation on semilinear power
series. In Section 4, we prove the strong closure properties of the semilinear power
series with bounded coefficients.

This paper extends the results in [9] and fills the gap in one of its proofs.

2 Preliminaries

For an alphabet Σ, we denote by Σ⊕ the free commutative monoid generated by Σ.
If Σ = {a1, . . . , am}, then Σ⊕ is the direct product a∗1 × . . .× a∗m. In the sequel, we
will call word any element of Σ⊕. We will denote the empty word by 1.

We recall that given a semiring K and a monoid M , the set of all formal power
series over M , with coefficients in K, is denoted by K〈〈M〉〉. For a series r and a
word u we denote by (r, u) the coefficient of u in r. A series r is called proper if
(r, 1) = 0. The set {u ∈ Σ⊕ | (r, u) 6= 0} is called the support of r. The subset
of K〈〈M〉〉 consisting of all series with finite support is denoted by K〈M〉 and its
elements are referred to as polynomials. A polynomial having a singleton as its
support is called monomial.
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For further definitions and results in the theory of formal power series, we refer
to [6], [7], and [10].

We denote the set of nonnegative integers by N.
For a formal power series r ∈ N〈〈Σ⊕〉〉, we say that r has bounded coefficients if

there is K ∈ N such that for all u ∈ Σ⊕, (r, u) < K. For two formal power series
r, s ∈ N〈〈Σ⊕〉〉, we say that r is smaller than s, and write r ≤ s, if for all u ∈ Σ⊕,
(r, u) ≤ (s, u).

In [3], Eilenberg and Schützenberger introduced the notion of semilinearity in a
commutative monoid (M, ·) as follows. A subset X of M ,

X = aB∗,

with a ∈M and B a finite subset of M , is called a linear set. One can easily notice
that if B = {b1, . . . , br}, then

X = {abn1
1 . . . bnrr | n1, . . . , nr ∈ N}.

A finite union of linear sets is called a semilinear set.
The semilinear formal power series are defined in a similar way in [8]. Let

(M, ·) be a commutative monoid and (K,+, ·) a semiring. A formal power series
r ∈ K〈〈M〉〉 is called a linear series if

r = pq∗,

with p a monomial in K〈M〉, and q a proper polynomial in K〈M〉. A finite sum of
linear series is called a semilinear series.

Note that if we consider series with coefficients in the boolean semiring B, and
we identify the subsets of M with their characteristic series, we obtain the old notion
of a semilinear set.

Throughout this paper, we will always consider series over Σ⊕, for an arbitrary
alphabet Σ, with coefficients in N. We denote the family of such formal power series
by N〈〈Σ⊕〉〉.

The main emphasis in this paper will be on the semilinear power series with
bounded coefficients and on their properties. We describe in the next theorem their
general form.

Theorem 1. Let s be a semilinear series. If s has bounded coefficients, then s =
m1u

∗
1 + . . .+mku

∗
k, for some monomials m1, . . . , mk and some words u1, . . . , uk.

Proof. If s is a semilinear series, then it is of the form

s = m1p
∗
1 + . . .+mkp

∗
k,

for some monomials m1, . . . , mk, and some polynomials p1, . . . , pk. Consider the
polynomial p1 = α1u1+. . .+αiui, with α1, . . . , αi ∈ N\{0}, and u1, . . . , ui ∈ Σ⊕. All
the coefficients α1, . . . , αi must be equal to 1 since otherwise s does not have bounded
coefficients. Moreover, if p1 is not a monomial, i.e. i ≥ 2, then (p1, u

j1
1 u

j2
2 ) ≥

(
j1+j2
j1

)
,

and this is not bounded for j1, j2 ≥ 0. Consequently, p1 = u1, for some u1 ∈ Σ⊕.
Similarly, one can prove that pi = ui, for some ui ∈ Σ⊕, for all 2 ≤ i ≤ k. �
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One important tool used often throughout the paper is provided by the following
decomposition result.

Lemma 2. Let r = pq∗ be a linear series, for a monomial p and a proper polynomial
q. For any v ∈ Σ⊕, if (r, v) > 0, then r = vq∗ + p′q∗ + p′′, for some polynomials p′

and p′′.

Proof. If (r, v) > 0, then v = v1v2, with (p, v1) > 0, and (q∗, v2) > 0, i.e., (qm, v2) >
0, for some m ∈ N. Then

r = p(1 + q + . . . + qm−1 + qmq∗) =

= p(1 + q + . . . + qm−1) + vq∗ + (pqm − v)q∗.

�

In computing the difference between a semilinear series and a semilinear series
with bounded coefficients, we will be typically interested in knowing how the words
of the form vun, n ∈ N, are generated by a linear series, for some u, v ∈ Σ⊕. To
this aim, we define the notion of base of a linear series, and we prove the following
result.

Let r = pq∗ be a linear series, with p a monomial, and q a proper polynomial,
p = α0u0, q = α1u1 + . . .+αmum, for some αi ∈ N \ {0}, ui ∈ Σ⊕, for all 0 ≤ i ≤ m.
Let us collect in the vector ω all the words appearing as monomials in q:

ω = (u1, . . . , um).

We call the vector ω the base of the series r.
To any word v ∈ Σ⊕, we can associate with respect to ω (or r) a finite set of

vectors from Nm in the following way: if

v = u0u
n1
1 . . . unmm ,

then the vector t = (n1, . . . , nm) is associated to v. We denote v = u0ω
t and say

that t is a representation of v with respect to the series r. We denote by Rr(v) the
set of representations of v with respect to r.

Note that in general, a word v can have multiple representations with respect to
a given linear series r, and that Rr(v) 6= ∅ if and only if (r, v) > 0.

Example 1. For r = (a + a2)∗, its base is ω = (a, a2). Moreover,

Rr(a
4) = {(4, 0), (2, 1), (0, 2)} and Rr(a

mbn) = ∅, for all m ≥ 0 and n ≥ 1

Lemma 3. Let r = pq∗ be a linear series, for a monomial p and a proper polynomial
q, and let u, v ∈ Σ⊕ such that (r, vun) > 0 for some n ≥ 0. Then

r = (vun1 + . . .+ vunk)q∗ + p′q∗ + p′′,

for some polynomials p′, p′′ and some n1, . . . , nk ∈ N, such that for all n ∈ N,
(r, vun) > 0 if and only if (vuniq∗, vun) > 0, for some 1 ≤ i ≤ k.
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Proof. If q = α1u1 + . . .+ αmum, with αi ∈ N \ {0}, ui ∈ Σ⊕, then the base of r is
the vector ω = (u1, . . . , um).

Let R =
⋃
n≥0Rr(vu

n). By König’s Lemma (see e.g. [4]), there is only a finite set
of minimal vectors in R. Let {t1, . . . , tk} be this set, ti = (ti1, . . . , tim), and let vuni

be the unique word such that ti ∈ Rr(vu
ni), for all 1 ≤ i ≤ k. Let ti0 = ti1 + . . .+ tik

for all 1 ≤ i ≤ k, and let us assume that ti0 ≤ tj0, for i ≤ j. Then (pqt10, vun1) > 0
and

r = p(1 + q + . . . + qt10−1 + qt10q∗) = p′ + vun1q∗ + p′′q∗,

where p′ = p(1 + q + . . .+ qt10−1) and p′′ = qt10 − vun1.
Note now that for all 2 ≤ i ≤ k, (p′′, vuni) > 0. Indeed, if this were not true,

then for all τi ∈ Rω(vu
ni), we would have t1 ≤ τi, which is impossible since t1 and ti

are incomparable for all 2 ≤ i ≤ k. We continue in the same way for all 2 ≤ i ≤ k,
with p′′q∗ instead of pq∗, to obtain the claim. �

Using Lemma 3, we can prove now that for any semilinear series r and any word
u, the set of powers of u included in the support of r is semilinear. We recall first a
well known number theoretical result.

Lemma 4. Let n1, . . . , nk be positive integers, and let d be their greatest common
divisor. For any large enough integer n, n can be written as a linear combinations
of n1 . . . , nk if and only if n is a multiple of d.

Theorem 5. For any semilinear series r and u ∈ Σ⊕, the set Pr,u = {n ∈ N |
(r, un) > 0} is a semilinear set of nonnegative integers.

Proof. Clearly, Pr1+r2,u = Pr1,u ∪ Pr2,u and so, it is enough to prove the claim for a
linear series. Assume thus that r = pq∗, for a monomial p and a proper polynomial
q. By Lemma 3, r = (un1 + . . . + unk)q∗ + p′q∗ + p′′, for some n1, . . . , nk ∈ N and
some polynomials p′, p′′ such that (r, un) > 0 iff (uniq∗, un) > 0 for some 1 ≤ i ≤ k.
Thus, it is enough to prove the claim of the theorem for the series q∗.

Let us assume now that r = q∗. By Lemma 3, r = (un1 + . . . + unk)q∗ + p′q∗ +
p′′, for some n1, . . . , nk ∈ N and some polynomials p′, p′′ such that (r, un) > 0 iff
(uniq∗, un) > 0 for some 1 ≤ i ≤ k. In other words, for any n ∈ N, we have
(r, un) > 0 iff n is a linear combination of n1, . . . , nk. The claim follows now by
Lemma 4. �

3 The difference operation on semilinear series

A basic property of the semilinear subsets of N is that they are closed under differ-
ence:

Lemma 6. The family of semilinear sets of nonnegative integers is closed under
difference.

There are very few known similar results for formal power series. One of them,
for power series in noncommuting variables, is Eilenberg’s Theorem ([2]): if r and
s are N-rational series in noncommuting variables, and s has bounded coefficients,
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then their quasi-difference r−̇s is an N-rational series. Nothing seems to be known
on the difference of rational formal power series in commuting variables.

For semilinear N-power series, it is an open and apparently difficult problem
whether or not they are closed under difference. The smaller family of N-linear
series is not closed under this operations, as it can be proved by considering the
difference (2a)∗ − a∗. Note however, that this is a rational series of star height 1,
namely aa∗(2a)∗ (as one can compute using the techniques developed in this section,
see also [1]).

We prove in this section that for two N-semilinear formal power series r and s,
such that s has bounded coefficients and r ≥ s, the difference r− s is an N-rational
power series. Moreover, we will describe the precise form of such a difference, proving
that in fact, it is very closed to a semilinear form. We will first solve the problem
in several simpler instances, to which we will then reduce the general problem.

Lemma 7. Let r = pq∗ be a semilinear series for a polynomial p and a proper
polynomial q, and let s = vu∗, for some u, v ∈ Σ⊕. If r ≥ s, then r− s is a rational
series. Moreover, r−s is of the form p1+p2q

∗+p3(u
d)∗+p4q

∗(ud)∗, with p1, p2, p3, p4

polynomials and d ∈ N, such that q∗ ≥ (ud)∗.

Proof. By Lemma 3, we can assume without loss of generality that v = 1 and
p = ul1 + . . . + ulk, for some nonnegative integers k, l1, . . . , lk. Thus, it is enough to
prove the claim for r = (ul1 + . . . + ulk)q∗ and s = u∗.

Clearly, there must be an integer n > 0 such that (q∗, un) > 0 and let d be
the minimal such integer. If r ≥ s, then (r, ui) > 0, for all 0 ≤ i < d and thus,
we must have {0, 1, . . . , d − 1} ⊆ {l1, . . . , lk}. Since

∑d−1
i=0 u

iq∗ ≥ u∗, it is enough
to assume that r = (1 + u + . . . + ud−1)q∗ and notice that q∗ ≥ (ud)∗. Since
u∗ = (1 + u + . . . + ud−1)(ud)∗, r − s =

∑d−1
i=0 u

i(q∗ − (ud)∗). It is enough to prove
now that q∗ − (ud)∗ is a rational series.

By Lemma 2, if q∗ ≥ (ud)∗, then q∗ = 1 +udq∗+ p1q
∗+ p2, for some polynomials

p1 and p2. Consequently,

q∗ − (ud)∗ = (1 + udq∗ + p1q
∗ + p2)− (1 + ud(ud)∗) =

= ud(q∗ − (ud)∗) + p1q
∗ + p2 = p1q

∗(ud)∗ + p2(u
d)∗,

which is a rational series of the form specified in the lemma. �

Lemma 8. Let r = pq∗u∗ be a rational series, for a polynomial p, a proper polyno-
mial q, and a word u ∈ Σ⊕, such that q∗ ≥ u∗, and let v ∈ Σ⊕. If (r, v) > 0, then
also (pq∗, v) > 0.

Proof. If (r, v) > 0, then v = u1 · u2 · ul, for some l ∈ N, u1, u2 ∈ Σ⊕, such that
(p, u1) > 0 and (q∗, u2) > 0. But q∗ ≥ u∗, i.e. (q∗, ul) > 0. Thus, by Lemma 2,
q∗ = ulq∗ + p1q

∗+ p2, for some polynomials p1, p2. Consequently, (q∗, ulu2) > 0 and
so, (pq∗, v) > 0. �

Lemma 9. Let r be a semilinear series and s = vu∗ for some u, v ∈ Σ⊕. If r ≥ s,
then r − s is a rational series.
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Proof. Similarly as in the proof of Lemma 7, one can reduce the problem to the case
when v = 1: r − s = v(r′ − u∗) + r′′, where r′, r′′ are semilinear series and r′ ≥ u∗.
Assume thus that v = 1, and let r = p1q

∗
1 + . . .+ pmq

∗
m, for some polynomials pi and

qi, for all 1 ≤ i ≤ m.

By Theorem 5, the set Pi = {n ∈ N | (piq∗i , un) > 0} is semilinear. But then, by
Lemma 6, the sets

P ′i = Pi −
i−1⋃
j=1

Pj

are also semilinear sets of nonnegative integers, for all 1 ≤ i ≤ m, and ∪mi=1P
′
i =

∪mi=1Pi = N. The difference r − s can thus be written as

r − s =
m∑
i=1

(piq
∗
i −

∑
n∈P ′i

un).

Note that
∑
n∈P ′i u

n is a semilinear series, as P ′i is a semilinear set of nonnegative

integers, i.e.
∑
n∈P ′i u

n = uli1(udi1)∗+ . . .+ uliki (udiki )∗ + p, for some lij, dij ∈ N, and
any polynomial p. It is enough to prove the result for p = 0: in general, one can
decrease the polynomial p at the end, using the decomposition given by Lemma 2.

Observe now that piq
∗
i ≥

∑
n∈P ′i u

n since P ′i ⊆ {n ∈ N | (piq∗i , un) > 0}. Thus,
we reduced the problem to computing a difference of the form

pq∗ − (ul1(ud1)∗ + . . .+ ulk(udk)∗).

Let ri = pq∗ − (ul1(ud1)∗ + . . .+ uli(udi)∗), for all 1 ≤ i ≤ k.
By Lemma 7, pq∗ − ul1(ud1)∗ = p1 + p2q

∗ + p3q
∗(ut1)∗, for some polynomials

p1, p2, p3 and a nonnegative integer t1, such that q∗ ≥ (ut1)∗.
Since r1 ≥ (ul2(ud2)∗+ . . .+ulk(udk)∗), we have by Lemma 8 that also p1 +p2q

∗+
p3q
∗ ≥ (ul2(ud2)∗ + . . . + ulk(udk)∗). Moreover,

r1 = p1 + (p2 + p3)q
∗ + p3u

t1q∗(ut1)∗,

and

r2 = r1 − ul2(ud2)∗ = (p1 + (p2 + p3)q
∗ − ul2(ud2)∗) + p3u

t1q∗(ut1)∗.

Continuing in the same way, we obtain that indeed r − s is a rational series of the
form

r − s = p′0 +
m∑
i=1

p′i(q
′
i)
∗ +

m+n∑
i=m+1

p′i(q
′
i)
∗(udi)∗,

for some m,n, dm+1, . . . , dm+n ∈ N and for some polynomials p′0, p
′
i, q
′
i, 1 ≤ i ≤ m+n,

such that q′i
∗ ≥ (udi)∗, for all m+ 1 ≤ i ≤ m+ n. �

Using the above partial results, we can solve now the general problem.

Theorem 10. Let r and s be semilinear series. If s has bounded coefficients and
r ≥ s, then r − s is a rational series.
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Proof. If s has bounded coefficients, then by Theorem 1, s is of the form

s = v1u
∗
1 + . . .+ vnu

∗
n,

where ui, vi ∈ Σ⊕, for all 1 ≤ i ≤ m. We prove the claim by induction on n.
If n = 1, then r−s is rational by Lemma 9. Assume now that the theorem holds

for series s with up to n − 1 linear components, for some n > 1, and let us prove it
for n. By Lemma 9, r1 = r − v1u

∗
1 is of the form

r1 = p0 +
m∑
i=1

pi(qi)
∗ +

m+n∑
i=m+1

pi(qi)
∗(udi)∗,

for some m,n, dm+1, . . . , dm+n ∈ N and some polynomials p0, pi, qi, 1 ≤ i ≤ m + n,
such that q∗i ≥ (udi)∗, for allm+1 ≤ i ≤ m+n. But then, as r1 ≥ v2u

∗
2+. . .+vnu

∗
n, we

obtain by Lemma 8 that for r′1 = p0 +
∑m+n
i=1 piq

∗
i , we also have r′1 ≥ v2u

∗
2+ . . .+vnu

∗
n.

By the induction hypothesis, r′1 − (v2u
∗
2 + . . . + vnu

∗
n) is a rational series and thus,

r − s = r1 − (v2u
∗
2 + . . .+ vnu

∗
n) =

= r′1 − (v2u
∗
2 + . . .+ vnu

∗
n) +

m+n∑
i=m+1

piu
di
1 q
∗
i (u

di
1 )∗

is itself rational, proving the claim of the theorem.
�

Example 2. Let r = (a+ b)∗ and s = a∗+ bb∗. Observe that both r and s are semi-
linear series, s has bounded coefficients, and r ≥ s. Then, according to Theorem 10,
the difference r − s is computed as follows.

Let s1 = a∗. We first compute r − s1:

r − s1 = (a + b)∗ − a∗ = 1 + a(a+ b)∗ + b(a+ b)∗ − 1− aa∗ =

= a ((a+ b)∗ − a∗) + b(a+ b)∗ = b(a+ b)∗a∗.

The difference r − s is then computed as follows:

r − s = b ((a + b)∗a∗ − b∗) = b (((a + b)∗ − b∗) + a(a+ b)∗a∗) =

= b (a(a+ b)∗b∗ + a(a+ b)∗a∗) = ab(a+ b)∗b∗ + ab(a+ b)∗a∗.

4 Decomposition of semilinear series

In this section, we take a closer look at the family of semilinear power series with
bounded coefficients. We prove that this family has very strong closure properties,
similar to the family of semilinear subsets of Nn. We thus prove that bounded
multiplicities do not affect essentially the closure properties of the semilinear sets.

As it well known (see, e.g., [4]), any semilinear subset of Nn can be written
as a finite union of linear sets, each of which has linearly independent periods.
Furthermore, they are closed under the operation of complementation, intersection,
and difference.

We prove in this section that any N-semilinear power series with bounded coeffi-
cients can be written as a sum of linear series with disjoint supports. Using similar
arguments, one can also prove their closure under Hadamard product and under
difference.
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Theorem 11. Any semilinear series with bounded coefficients can be written as a
sum of linear series with disjoint supports.

Proof. Let r and r′ be two semilinear series of the form r = pw∗, r′ = p′w′∗, with
w,w′ ∈ Σ⊕ and p, p′ polynomials, such that for any two monomials µ1, µ2 of p, µ1w

∗

and µ2w
∗ have disjoint supports, and for any two monomials µ′1 and µ′2 of p′, µ′1w

′∗

and µ′2w
′∗ have disjoint supports.

If the intersection of the supports of r and r′ is finite (or empty), then it is not
difficult by Lemma 2 to decompose r and r′ as r = r1 + p, r′ = r′1 + p′, for some
polynomials p, p′ and some semilinear series r1, r

′
1 with disjoint supports, of the same

form as r and r′.
Assume now that the intersection of the supports of r and r′ is an infinite set of

words. For the sake of simplicity, we will assume that we have a two letter alphabet
Σ = {a, b}. The general case can be treated in a similar way.

If r and r′ have bounded coefficients, then by Theorem 1,

r = (ul11 + . . . + ulkk )w∗ and r′ = (v
l′1
1 + . . .+ v

l′
k′
k′ )w

′∗,

for some words u1, . . . , uk, w, v1, . . . , vk′, w
′ ∈ Σ⊕, and some nonnegative integers

k, k′,l1, . . . , lk, l
′
1, . . . , l

′
k′. For any 1 ≤ i ≤ k, there are ti1, ti2 ∈ N, such that

ui = ati1bti2, and for any 1 ≤ j ≤ k′, there are t′j1, t
′
j2 ∈ N, such that vj = at

′
j1bt

′
j2.

Also, w = as1bs2, w′ = as
′
1bs
′
2, for some s1, s2, s

′
1, s
′
2 ∈ N. To compute the intersection

of the supports of r and r′, one has to compute the solution of the following linear
system of equations in the nonnegative integers m and n:ti1 +m · s1 = t′j1 + n · s′1

ti2 +m · s2 = t′j2 + n · s′2,

for 1 ≤ i ≤ k and 1 ≤ j ≤ k′. As it is well known, the solution of this system is
either the empty set, or it is a linear set of pairs of nonnegative integers {(l(0)

ij +

l
(1)
ij p, l

(3)
ij + l

(4)
ij p) | p ∈ N}. It is straightforward to see that in fact l

(1)
ij and l

(3)
ij depend

only on s1, s2, s
′
1 and s′2, and not on i and j: l

(1)
ij = l1, l

(3)
ij = l3. Using the fact that

for any t ∈ Σ⊕ and any k ∈ N,

t∗ = (1 + t+ . . .+ tk−1)(tk)∗,

one can thus derive that

r = (ul11 + . . .+ ulkk )(1 + w + . . .+ wl1−1)(wl1)∗ = p1(w
l1)∗ + p2(w

l1)∗,

and

r′ = (v
l′1
1 + . . .+ v

l′
k′
k′ )(1 + w′ + . . .+ w′

l′1−1
)(w′

l′1)∗ = p3(w
′l′1)∗ + p4(w

′l′1)∗,

for some polynomials p1, p2, p3, p4, where p2(w
l1)∗ = p4(w

′l′1)∗, and p1(w
l1)∗, p2(w

l1)∗,

p3(w
′l′1)∗ have disjoint supports. Thus,

r + r′ = (p1 + 2p2)(w
l1)∗ + p3(w

′l′1)∗.
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Let r be now an arbitrary semilinear series with bounded coefficients, r = p1w
∗
1 +

p2w
∗
2 + . . .+ pnw

∗
n, where pi is polynomial and wi ∈ Σ⊕, for all 1 ≤ i ≤ n. Assuming

that we have decomposed ri = p1w
∗
1 + . . .+piw

∗
i , i ≥ 2 in a sum of linear series with

disjoint supports,

ri = q1u
∗
1 + . . . + qkiu

∗
ki

+ q0,

for some polynomials q0, . . . , qki and some words u1, . . . , uki, we continue as follows.
We first compute the intersection of the supports of pi+1w

∗
i+1 and obtain as above

two series with disjoint supports, of which, one is added to q1u
∗
1 and the other,

say si+1,1 has disjoint support with q1u
∗
1. Then we compute the intersection of the

supports of si+1,1 and q2u
∗
2, etc. �

Example 3. Let r1 = a(a2)∗, r2 = a3(a4)∗, and r3 = a2(a5)∗, The semilinear series
r = r1 + r2 + r3 can be written as a sum of linear series with disjoint supports as
follows. We first solve the following equation in the nonnegative integers m and n:

2m+ 1 = 4n + 3.

Its solution is {(2p+ 1, p) | p ∈ N}. Thus,

r1 + r2 = a(1 + a2)(a4)∗ + a3(a4)∗ = a(a4)∗ + 2a3(a4)∗.

Then, we solve the following two equations in the nonnegative integers m and n:

4m+ 1 = 5n+ 2 and 4m+ 3 = 5n+ 2.

Their solutions are the sets {(5p+4, 4p+3) | p ∈ N} and {(5p+1, 4p+1) | p ∈ N},
respectively. Thus,

r = (a + 2a3)(a4)∗ + a2(a5)∗ =
= (a + 2a3)(1 + a4 + a8 + a12 + a16)(a20)∗+

+a2(1 + a5 + a10 + a15)(a20)∗ =
= (a + a2 + 2a3 + a5 + 3a7 + a9 + 2a11 + a12 + a13 + 2a15 + 2a17)(a20)∗.

In the proof of the theorem 11, we have proved essentially that for two linear
power series with bounded coefficients, the intersection of their supports is semilin-
ear. Using this argument, one can derive now the closure under Hadamard product.

Theorem 12. The family of N-semilinear power series with bounded coefficients is
closed under Hadamard product.

Furthermore, it is easy to prove the closure under difference using the techniques
in the proof of Theorem 10. The main argument here is that if r = u∗1, s = u∗2, for
some u1, u2 ∈ Σ⊕, and r ≥ s, then r − s is semilinear. Indeed, if r ≥ s, then there
must be k ∈ N such that u2 = uk1, and thus, r− s = (1+u1 + . . .+uk−1

1 )(uk1)
∗−u∗2 =

(u1 + . . .+ uk−1
1 )(uk1)

∗, a semilinear series (with bounded coefficients). We omit the
details here, as they are very similar to the details of Theorem 10.
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