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Résumé

Nous considérons deux classes de mots finis, nommées semipériodiques et
periodic-like, qui étendent d’une façon naturelle la classe des mots périodiques
finis, car ils gardent des propriétés importantes de cette classe. La classe des
mots périodiques est strictement incluse dans la classe des mots semipériodiques
et cette dernière est strictement incluse dans la classe des mots periodic-like.
Nous faisons une comparaison entre ces classes et présentons des théorèmes
de base dans le cadre d’une nouvelle approche de l’analyse combinatoire des
mots, récemment introduite par les auteurs, qui repose sur les notions de fac-
teur spécial et étendable. On montre quelques applications à la périodicité
des mots. En particulier, nous donnons une formulation plus générale du
théorème de Fine et Wilf qui prend en compte la ‘structure’ d’un mot. En
outre, on présente un nouveau théorème concernant une décomposition con-
venable d’un mot en sous-mots periodic-like.

Abstract

We consider two classes of finite words, called semiperiodic and periodic-
like, which extend in a natural way the class of finite periodic words since
they share some important properties of this latter class. The class of periodic
words is properly included in the class of semiperiodic words and this latter is
properly included in the class of periodic-like words. A comparison between
these classes is made and some basic theorems are presented in the frame of
a new approach to the combinatorial analysis of words, recently introduced
by the authors, based on the notions of special and extendable factors. Some
applications to periodicity of words are shown. In particular, one can give a
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more general formulation of the theorem of Fine and Wilf which takes into
account the ‘structure’ of a word. Moreover, a new periodicity theorem, based
on a suitable decomposition of a word in periodic-like subwords, is presented.

1 Introduction

Periodic sequences of symbols over a finite set are of fundamental importance in
many different fields such as Physics, Mathematics, Computer Science, and, more
recently, Biology. A recent survey paper on periodic sequence is in [14, Chap. 8].

In Computer Science the symbols are usually called letters, the set of symbols
alphabet and the sequences of letters words.

Infinite periodic words satisfy the following important property (harmonic prop-
erty): any period is a multiple of the minimal period of the word. This property is
no longer true in the case of a finite word. In fact, a finite word can have periods
which are not multiple of the minimal period.

A finite word w is called periodic if its length satisfies the inequality

|w| ≥ 2πw,

where πw denotes the minimal period of w. In such a case one has that for any
period p of w either p is a multiple of πw or p > |w| − πw + 1 > |w|/2. Thus a
finite periodic word maintains the harmonic property at least for periods which are
sufficiently small with respect to the length of the word (at least when they are less
than half of the length of the word).

The class of finite periodic words is, however, too ‘narrow’ when one analyzes
periodicities in very long sequences such as DNA, RNA, or proteins. In such cases
only rarely one encounters periodic words. In fact, the periods of these words are
usually larger, or also much larger, than half of the length of the word. Hence, it is
important to enlarge the class of finite periodic words by considering suitable gen-
eralizations of this concept which preserve some basic properties of periodic words.

In this paper we survey and compare two important extensions of the notion of
finite periodic word which have been, recently, introduced by the authors [5, 6, 7].
These extensions have been called semiperiodic and periodic-like words. The class
of periodic words is properly included in the class of semiperiodic words and this
latter is properly included in the class of periodic-like words.

Some other extensions of the notion of finite periodic word, such as quasi-periodic
words have been recently proposed (see [1, 12, 15] and references therein). However,
we stress that, differently from our approach, these generalizations are based on a
notion of period different from the classical one.

The notions of semiperiodic and periodic-like word are very natural in the frame-
work of a new approach to the combinatorics of finite words which has been intro-
duced by the authors [2, 3, 4, 9]. In this approach a basic role is played by the two
notions of extendable and special factor of a word.

A factor u of a word w is called right extendable if there exists a letter a such
that ua is a factor of w. In a similar way one can define left extendable factors of w.
The shortest unrepeated prefix (resp. suffix) of w will be denoted by hw (resp. kw).
Observe that hw (resp. kw) is the shortest factor of w which is not left (resp. right)
extendable in w. In the following we shall set Hw = |hw| and Kw = |kw|.
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A factor u of a word w is called right special if there exist at least two distinct
letters a and b such that ua and ub are factors of w. In a similar way one can define
left special factors of w. We shall denote by Rw (resp. Lw) the minimal natural
number such that there are no right (resp. left) special factors of w of length Rw

(resp. Lw).

A factor is bispecial if it is a right and left special factor of w. A proper box of
w is any factor of w of the form

asb

with a and b letters and s a bispecial factors of w. A proper box of w is called
maximal if it is not a factor of another proper box.

For instance, consider the word w = abccbabcab. One has that hw = abcc and
kw = cab, so that Hw = 4 and Kw = 3. The right special factors are ε, b, c, bc, and
abc; the left special factors are ε, a, b, c, and ab. Thus one has that Rw = 4 and
Lw = 3. The bispecial factors are ε, b, and c and the maximal proper boxes are abc,
bca, bcc, cba, and ccb.

The prefix hw and the suffix kw of a word w are respectively called the initial
and the terminal box of w. A basic theorem proved in [3] shows that any word
is uniquely determined by the initial box, the terminal box, and the set of maximal
proper boxes.

The parameters Kw, Hw, Rw, and Lw give much information on the structure
of a word w. For instance, the maximal length of a repeated factor of a non-empty
word w is equal to max{Rw, Kw}−1 and the minimal period of w is not smaller than
|w|−min{Hw, Kw}+ 1. As we shall see these parameters are related to the periodic
structure of a word (cf. Propositions 1 and 6). Moreover, as proved in [3], a word w
is uniquely determined by the set of its factors up to length 1 + max{Rw, Kw}.

In the study of semiperiodic and periodic-like words, an essential role will be
played by an equivalence relation called root-conjugacy. The fractional root, or
simply root, of a word is the prefix of the word having a length equal to its minimal
period. Two words are said to be root-conjugate if their roots are conjugate.

In Sect. 3 we introduce the class of semiperiodic words [5]. These words may
be defined in several equivalent ways. In particular, a word is semiperiodic if its
minimal period is less than or equal to |w|−Rw. Any periodic word is semiperiodic,
whereas the converse is not generally true.

In the analysis of the structure of semiperiodic words we introduce the equiva-
lence relation ≈ defined as follows: let w be a word and set n = 1 + min{Lw, Rw}.
A word v is in the relation ≈ with w, i.e., v ≈ w, if the set of factors of v of length
n is equal to the set of factors of w of length n.

A first result is that a word is semiperiodic if and only if in its equivalence class
(mod ≈) there is a periodic word (cf. Proposition 3). A second result (cf. Theorem
1) is that the equivalence class (mod ≈) of a semiperiodic word w coincides with
the intersection of its class of root-conjugacy and the class of semiperiodic words,
i.e., for a semiperiodic word w, a word v is equivalent to w (mod ≈) if and only if
v is semiperiodic and root-conjugate to w.

A further result (cf. Proposition 4) is that the intersection of the equivalence
class (mod ≈) of a word w which is not semiperiodic and the set of all words having
the same length as w is a singleton, i.e., it contains only w.



260 A. Carpi – A. de Luca

In Sect. 4 we introduce the class of periodic-like words [6, 7]. Similarly to
semiperiodic words, periodic-like words can be defined in several equivalent ways.
In particular, a word w is periodic-like if its minimal period is less than or equal
to |w| − R′w, where R′w is the minimal natural number such that any prefix of w of
length ≥ R′w is not right special. Since R′w ≤ Rw one has that a semiperiodic word
is periodic-like, whereas the converse is not generally true.

In the analysis of the structure of periodic-like words we introduce the equivalence
relation ≡ defined as follows: two words are equivalent (mod ≡) if they have the
same set of maximal proper boxes and at least one common letter.

One can prove that the equivalence relation ≡ is coarser than ≈, i.e., ≈ ⊆ ≡.
Similarly to the case of semiperiodic words one can prove (cf. Proposition 9)

that a word is periodic-like if and only if in its equivalence class (mod ≡) there is
a periodic word. Moreover, the equivalence class (mod ≡) of a periodic-like word w
coincides with the intersection of its class of root-conjugacy and the class of periodic-
like words, i.e., for a periodic-like word w, a word v is equivalent to w (mod ≡) if
and only if v is periodic-like and root-conjugate to w (cf. Theorem 2).

In Sect. 5 we show the importance of the notions of semiperiodic and periodic-
like word in the study of periodicity of words. In particular, the following result
holds: if a word w has two periods p, q ≤ |w| − R′w, then gcd(p, q) is also a period
of w (cf. Proposition 13).

By the previous proposition, one can easily derive the theorem of Fine and Wilf
[11] (cf. Theorem 3) which states that if a word w has two distinct periods p and
q and length |w| ≥ p + q − gcd(p, q), then also d = gcd(p, q) is a period of w. It
is possible to verify that, under the hypotheses of the theorem of Fine and Wilf,
w is periodic and, moreover, with the only exception of a trivial case, one has
p, q < |w| − Rw (cf. Proposition 14).

We consider a suitable canonical decomposition of a word in periodic-like sub-
words and give a new periodicity theorem, showing that the minimal period of a word
is equal to the sum of the minimal periods of the periodic-like subwords occurring
in the canonical decomposition.

2 Preliminaries

Let A be a finite set, or alphabet, and A∗ the set of all finite sequences of elements
of A, including the empty sequence, denoted by ε. The elements of A are usually
called letters and those of A∗ words. The word ε is called empty word. We set
A+ = A∗ \ {ε}.

A word w ∈ A+ can be written uniquely as a sequence of letters as

w = a1a2 · · · an,

with ai ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length of w and denoted
|w|. By definition, the length of ε is equal to 0.

Let w ∈ A∗. The word u ∈ A∗ is a factor (or subword) of w if there exist words
λ, µ such that w = λuµ. A factor u of w is called proper if u 6= w. If w = uµ,
for some word µ (resp. w = λu, for some word λ), then u is called a prefix (resp. a
suffix) of w. For any word w, we denote respectively by F (w), Pref(w), and Suff(w)
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the sets of its factors, prefixes, and suffixes. Moreover, we shall denote by alph(w)
the set F (w) ∩A.

Let u ∈ F (w). Any pair (λ, µ) ∈ A∗ × A∗ such that w = λuµ is called an
occurrence of u in w. If λ 6= ε and µ 6= ε, then the occurrence of u is called internal.
A factor u of w is repeated if it has at least two distinct occurrences in w, otherwise
it is called unrepeated.

Let w = a1a2 · · · an be a word, ai ∈ A, i = 1, . . . , n. A positive integer p ≤ n is
called a period of w if, for all i, j ∈ [1, n] such that i ≡ j (mod p) one has ai = aj.
This is also equivalent to the condition that w can be factorized as

w = sks′, with |s| = p, s′ ∈ Pref(s) \ {s}, and k ≥ 1.

For any word w, we denote by πw its minimal period. We can always write w as

w = rkr′,

where |r| = πw, k ≥ 1, and r′ ∈ Pref(r) \ {r}. We observe that the preceding
factorization is unique. The word w is also called a fractional power of r of exponent
γ = |w|/|r|. For this reason, we shall call r also the fractional root or, simply, root
of w. For any word w we denote by rw the root of w. A word w is called periodic if
|w| ≥ 2πw.

The notion of period is also related to the notion of border of a word. A word
u is called a border of w if it is both a proper prefix and a proper suffix of w. The
longest border of the word w will be called the maximal border of w. If u is a border
of w, one can write w = su = ut with s, t ∈ A+ so that one has (cf. [13])

u = sk−1s′ and w = sks′

for suitable s′ ∈ Pref(s) \ {s} and k ≥ 1. Hence, p is a period of w if and only if w
has a border of length |w| − p. This implies that a word w has the minimal period
πw if and only if its maximal border has length |w| − πw.

In the study of the periods of a non-empty word w, as will appear clear in the
sequel, an important role is played by the longest prefix h′w and the longest suffix
k′w of w which are repeated factors of w. Since hw and kw are unrepeated factors of
w, one has that

hw = h′wa and kw = bk′w

for suitable letters a and b. Thus, |h′w| = Hw − 1 and |k′w| = Kw − 1.
The following important lemma holds [3]. We report the proof for the sake of

completeness.

Lemma 1. Let w be a non-empty word. If h′w (resp. k′w) is not a right (resp. left)
special factor of w, then h′w = k′w, h′w has no internal occurrences in w, and

πw = |w| −Hw + 1 = |w| −Kw + 1.

Proof. Let hw = h′wa, with a ∈ A and suppose that h′w is not a right special factor of
w. If h′w has an internal occurrence in w, then, since hw is unrepeated, there exists
a letter b 6= a such that h′wb is a factor of w. Thus, h′w will be a right special factor,
which is a contradiction.
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Since h′w is repeated and it has no internal occurrence in w, h′w has to be also a
suffix of w. Thus, h′w is a suffix of k′w. If h′w is a proper suffix of k′w, then h′w would
have an internal occurrence in w, which has been excluded. Therefore, h′w = k′w so
that h′w is the maximal border of w. Hence, πw = |w| − |h′w|. �

Two words w, v ∈ A∗ are said to be conjugate if there exist λ, µ ∈ A∗ such that
w = λµ and v = µλ. As is well known, conjugacy is an equivalence relation in A∗

[13].
Two words w and v of A∗ are root-conjugate if their roots rw and rv are conjugate.

One easily verifies that root-conjugacy is an equivalence relation.
For instance, the words w = abbababb and v = bbababbabab are root-conjugate.

Indeed, their roots rw = abbab and rv = bbaba are conjugate. The words w = abbab
and v = bbabb are root-conjugate since rw = abb and rv = bba are conjugate. We
observe that w and v are not conjugate. The last example shows that two words,
even of the same length, can be root-conjugate and not conjugate. On the contrary,
two words can be conjugate and not root-conjugate, as, for instance, w = abbab and
v = babab.

In conclusion of this section, we recall some basic relations concerning the pa-
rameters Rw, Lw, Hw, Kw, the length |w|, and the minimal period πw of a given
word w [5, 9].

Lemma 2. Let w be a word. Then, one has

max{Rw, Kw} = max{Lw, Hw}, (1)

Rw ≥ min{Lw, Hw} and Lw ≥ min{Rw, Kw}, (2)

πw ≥ |w| −min{Kw, Hw}+ 1 ≥ max{Rw, Lw}+ 1. (3)

3 Semiperiodic words

In this section, we introduce the important notion of semiperiodic word. Several
equivalent characterizations of this concept will be given in Proposition 1 (see [5]).
Roughly speaking, a semiperiodic word w is a word having a sufficiently ‘small’
minimal period, namely not larger than |w|−Rw. Any periodic word is semiperiodic,
whereas the converse is not generally true.

Proposition 1. Let w be a word. The following conditions are equivalent:

1. Rw < Hw,

2. w has a period p ≤ |w| − Rw,

3. Lw < Kw,

4. w has a period p ≤ |w| − Lw,

5. Rw = Lw < Hw = Kw.



Some generalizations of periodic words 263

Proof. We shall prove only the equivalence of Conditions 1, 2, and 5. Indeed, the
equivalence of Conditions 3, 4, and 5 can be proved symmetrically.

1. ⇒ 2. Since Rw < Hw and |h′w| = Hw − 1 ≥ Rw, one has that h′w is not a right
special factor of w, so that by Lemma 1 one has

πw = |w| −Hw + 1.

By the hypothesis Rw < Hw, it follows that πw ≤ |w| − Rw.
2. ⇒ 5. The word w has a border of length ≥ Rw. Since a border is a repeated

prefix and a repeated suffix as well, one has Hw > Rw and Kw > Rw. Let us
prove now that Rw = Lw. By Eq. (2), one has Lw ≥ min{Rw, Kw} = Rw and
Rw ≥ min{Lw, Hw}. Since Rw < Hw, one derives Rw = Lw. By Eq. (1) it follows
that Hw = max{Lw, Hw} = max{Rw, Kw} = Kw.

5. ⇒ 1. Trivial. �

A word satisfying any of the Conditions 1–5 of the previous lemma will be called
semiperiodic.

For a semiperiodic word w, since Rw < Hw, one has that h′w is not a right special
factor of w, so that, by Lemma 1, the minimal period of w is πw = |w| −Hw + 1 =
|w| −Kw + 1.

Any periodic word w is semiperiodic. Indeed, if w is periodic, then |w| ≥ 2πw.
Since, by Eq. (3), πw > Rw it follows that |w| > πw +Rw, so that w is semiperiodic.
The converse, in general, is not true, as shown by the following example. Let
w = abaab. One has Hw = 3, Rw = 2, |w| = 5, and the minimal period of w is 3.

An important class of semiperiodic words is the class PER of all words having
two periods p and q which are coprimes and such that |w| = p + q − 2 [10]. It
has been proved [9] that if w ∈ PER, then Rw < Kw. Since any w ∈ PER is a
palindrome, one has Kw = Hw so that w is semiperiodic. The class PER contains
words which are not periodic such as, for instance, aaaabaaaa which has length 9,
periods 5 and 6, with 5 equal to the minimal period.

Let us introduce in A∗ the relation ≈ defined as follows. For any w, v ∈ A∗,

w ≈ v if F (w) ∩An = F (v) ∩An, with n = 1 + min{Rw, Lw}.

The relation ≈ is an equivalence. Indeed, this is a straightforward consequence of
the following lemma.

Lemma 3. For all w, v ∈ A∗, if w ≈ v, then min{Lw, Rw} = min{Lv, Rv}.

Proof. Let n = 1 + min{Rw, Lw} and m = 1 + min{Rv, Lv}. Either all the factors
of w of length n− 1 are not right special or all the factors of w of length n − 1 are
not left special. Since F (w) ∩ An = F (v) ∩ An, it follows that the same property
holds for the factors of v of length n − 1, so that either Rv ≤ n − 1 or Lv ≤ n − 1
and, therefore, min{Lv, Rv} ≤ n− 1 = min{Lw, Rw}. Hence, m ≤ n. Consequently,
F (w) ∩ Am = F (v) ∩ Am, i.e., v ≈ w. Thus, by using the preceding argument, it
follows n ≤ m. Therefore, min{Lw, Rw} = min{Lv, Rv}. �

The following proposition shows that the equivalence ≈ saturates the class of
semiperiodic words.
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Proposition 2. For all w, v ∈ A∗, if w is semiperiodic and w ≈ v, then v is
semiperiodic.

Proof. Let n = 1 + min{Lw, Rw}. Since w is semiperiodic one has, from Condition
5 of Proposition 1, Rw = Lw < Hw = Kw. From this, it follows that all the factors
of w of length n− 1 = Rw are right and left extendable in w. Since w ≈ v, the same
property holds for the factors of v of length n − 1. Thus, in view of Lemma 3, one
has

Hv, Kv ≥ n = 1 +Rw = 1 + min{Lv, Rv}.
From this one derives that either Rv < Hv or Lv < Kv. In both cases, from
Proposition 1 it follows that v is semiperiodic. �

Proposition 3. Let w be a word. The following conditions are equivalent:

1. w is semiperiodic,

2. there exists a periodic word v, with the same root of w, such that v ≈ w,

3. there exists a periodic word v such that v ≈ w.

Proof. 1. ⇒ 2. Let w be a semiperiodic word and set n = 1 + min{Rw, Lw}. By
Proposition 1, Rw = Lw = n − 1. Let α be the border of w of maximal length. We
can write

w = αs = tα,

where |w| − |α| = |s| = |t| = πw. Since w is semiperiodic, one has πw ≤ |w| − Rw,
that implies |α| ≥ Rw = n − 1. Let us set

v = tαs.

The word v has the border w, so that it has a period |v| − |w| = |s| = πw. Thus,
πv ≤ πw. Since w is a factor of v, we have πw ≤ πv which implies πv = πw. Thus, the
root of v is equal to t which is also the root of w. The word v is periodic. Indeed,

|v| ≥ |ts| = 2πw = 2πv.

Finally, any factor of w of length n is trivially a factor of v. Conversely, since
|α| ≥ n− 1, any factor of v of length n has to occur either in the prefix tα or in the
suffix αs of v, so that it is a factor of w. This proves that v ≈ w.

2. ⇒ 3. Trivial.
3. ⇒ 1. By Proposition 2. �

We observe that, from the preceding proposition, semiperiodic words can be
characterized as the words w which can be ‘prolonged’ (i.e., are factors of) in periodic
words, without adding new factors of length 1 + min{Rw, Lw}. For instance, the
word abaab can be prolonged in the periodic word abaaba and abaab ≈ abaaba, so
that abaab is semiperiodic.

Theorem 1. Let w be a semiperiodic word. One has w ≈ v if and only if v is
semiperiodic and root-conjugate to w.
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Proof. Let us suppose that w is semiperiodic and let v be a word such that w ≈ v.
By Proposition 2 one has that v is semiperiodic, too. As we shall see in the next
section, a semiperiodic word is periodic-like so that, by Proposition 8 and Theorem 2,
one derives that v is root-conjugate to w.

Conversely, let v be a semiperiodic word which is a root-conjugate of a semiperi-
odic word w. In order to prove that w ≈ v, in view of Proposition 3, we may suppose
that v and w are periodic. As v and w are root-conjugate, πw = |rw| = |rv| = πv.
Set m = πv = πw. Since v and w are periodic, the sets F (v) ∩ Am and F (w) ∩ Am

are equal to the conjugacy classes of rw and rv, respectively. Since v and w are
root-conjugate, F (v)∩ Am = F (w) ∩Am. By Eq. (3), m = πw ≥ 1 + min{Rw, Lw}.
Thus, setting n = 1+min{Rw, Lw}, one has F (v)∩An = F (w)∩An, that is w ≈ v.�

Example 1. Let w = abccdab and v = bccdabccd. These words are semiperiodic,
Rw = Lw = 2, and w and v have the same set of factors of length 3, i.e., w ≈ v.
Thus, w and v are root-conjugate. In fact, rw = abccd and rv = bccda.

The preceding theorem gives a complete description of the equivalence classes
(mod ≈) of semiperiodic words. Such classes are the intersections of the root-
conjugacy classes with the set of semiperiodic words. The following proposition,
proved in [5], gives information on the structure of the equivalence classes (mod ≈)
of the words which are not semiperiodic.

Proposition 4. Let w be a word which is not semiperiodic. If v is a word such that
w ≈ v and |w| = |v|, then w = v.

By Proposition 2, no word in the equivalence class (mod ≈) of a non-semiperiodic
word w is semiperiodic. Moreover, by the preceding proposition, the lengths of any
pair of words in such a class are distinct.

A straightforward consequence of Theorem 1 and Proposition 4 is the follow-
ing proposition showing that the root-conjugacy class of any word w is uniquely
determined by the length of w and the set of factors of w of length 1+min{Rw, Lw}.

Proposition 5. Let w and v be two words having the same length. If w ≈ v, then
w is root-conjugate to v.

4 Periodic-like words

In the previous section, we have given several characterizations of the class of
semiperiodic words in terms of the parameters Rw, Lw, Hw, Kw, and πw. Now
we introduce two new parameters R′w and L′w by means of which one can define a
larger class of words which are called periodic-like [6, 7]. As we shall see, the param-
eters R′w and L′w will play, in the case of periodic-like words, a role corresponding
to that of Rw and Lw in the case of semiperiodic words.

Let w be a word. We denote by R′w the minimal natural number such that no
prefix of w of length ≥ R′w is a right special factor of w. In a similar way, we denote
by L′w the minimal natural number such that no suffix of w of length ≥ L′w is a left
special factor of w. Notice that

R′w ≤ min{Hw, Rw} and L′w ≤ min{Kw, Lw}. (4)



266 A. Carpi – A. de Luca

For instance, let w = abbbab. One has Hw = Kw = Lw = Rw = 3, R′w = 1, and
L′w = 2.

Proposition 6. Let w be a non-empty word. The following conditions are equiva-
lent.

1. R′w < Hw,

2. w has a period p ≤ |w| − R′w,

3. L′w < Kw,

4. w has a period p ≤ |w| − L′w.

Proof. 1. ⇒ 2. If R′w < Hw, then |h′w| ≥ R′w so that h′w is not right special in w. By
Lemma 1, πw = |w| −Hw + 1 ≤ |w| − R′w.

2.⇒ 1. Condition 2 implies that πw ≤ |w|−R′w. By Eq. (3), πw ≥ |w|−Hw + 1.
Thus, R′w < Hw.

1. ⇒ 3. If R′w ≤ Hw, then |h′w| ≥ R′w so that h′w is not right special in w. By
Lemma 1, h′w = k′w and h′w has no internal occurrences in w. Hence, k′w is not left
special. Since also any suffix of w of length ≥ Kw is unrepeated and, therefore, it is
not left special, it follows that L′w < Kw.

The proofs of the implications 3. ⇒ 4., 4. ⇒ 3., and 3. ⇒ 1. are obtained by
symmetric arguments. �

A non-empty word w is called periodic-like if it satisfies any of the equivalent
Conditions 1–4 of the previous proposition.

Observe that if a word w is not periodic-like, then from Eq. (4) one has R′w = Hw

and L′w = Kw.
If w is semiperiodic, then R′w ≤ Rw < Hw. Thus, by Proposition 6, any semiperi-

odic word is periodic-like. However, the converse is not generally true as shown by
the following example.

Example 2. Let w be the word w = abna, with n ≥ 2. In such a case, one has
Rw = n ≥ 2, Hw = 2, R′w = L′w = 1, and πw = n+ 1 so that w is periodic-like but
it is not semiperiodic.

The following proposition [6, 7] gives some further characterizations of periodic-
like words.

Proposition 7. Let w be a non-empty word. The following conditions are equiva-
lent.

1. w is periodic-like,

2. h′w is not right special in w,

3. h′w has no internal occurrences in w,

4. k′w is not left special in w,

5. k′w has no internal occurrences in w,
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6. the maximal border of w has no internal occurrences,

7. w has a border which has no internal occurrences.

For a periodic-like word w, since h′w is not a right special factor of w, by Lemma 1
the minimal period of w is

πw = |w| −Hw + 1 = |w| −Kw + 1. (5)

For any word w of A∗, we denote by Bw the set of the maximal proper boxes of
w. Let us introduce in A∗ the relation ≡ defined as follows. For any w, v ∈ A+,

w ≡ v if Bw = Bv and alph(w) ∩ alph(v) 6= ∅.

Moreover, we set ε ≡ ε.

Lemma 4. The relation ≡ is an equivalence relation.

Proof. From the definition of ≡, one has only to verify that the transitive property
holds. Suppose that w ≡ v and v ≡ u, with u, v, w ∈ A+. Then Bw = Bv = Bu.
If Bw 6= ∅, then alph(w) ∩ alph(u) 6= ∅ and, therefore, w ≡ u. If Bw = ∅, then, as
one easily verifies, w, v, and u are powers of single letters so that since alph(w) ∩
alph(v) 6= ∅ and alph(v) ∩ alph(u) 6= ∅, one has alph(w) = alph(v) = alph(u) and,
again, w ≡ u. �

Proposition 8. For any w, v ∈ A∗, if w ≈ v, then w ≡ v.

Proof. If w ≈ v, then F (w) ∩ An = F (v) ∩ An with n = 1 + min{Rw, Lw}. Since
n ≥ 1, one has alph(w) ∩ alph(v) 6= ∅.

Let us prove now that Bw = Bv. It is sufficient to prove that any proper box of
w is a proper box of v and vice versa. Let asb be a proper box of w, with a and b
letters and s a bispecial factor of w. Since s is bispecial, there exist letters c and
d such that sc, ds ∈ F (w), c 6= b, d 6= a. Moreover, |cs| = |sd| < |asb| ≤ n so that
asb, cs, sd ∈ F (v). This implies that s is bispecial in v and asb is a proper box of v.
Conversely, in a symmetric way, one can prove that any proper box of v is a proper
box of w. �

The following lemma, whose proof is in [5], gives a useful relation between the
sets of factors of two words which are in the relation ≡.

Lemma 5. For any w, v ∈ A∗ such that w ≡ v, one has

F (v) ⊆ F (w) ∪A+hwA
∗ ∪A∗kwA+.

Proposition 9. Let w be a word. The following conditions are equivalent:

1. w is periodic-like,

2. there exists a periodic word v, with the same root of w, such that v ≡ w,

3. there exists a periodic word v such that v ≡ w.
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Proof. 1. ⇒ 2. If w is periodic, then there is nothing to prove. Let us then suppose
that w is not periodic. Since w is periodic-like, by Eq. (5) we can write:

w = h′wuh
′
w, with u ∈ A+.

Let us set

v = h′wuh
′
wu = wu.

By Eq. (5), one has πw = |h′wu|. Moreover, v has the period πw so that πv ≤ πw and
πw ≤ πv since w is a factor of v. Thus, πw = πv that implies rw = rv = h′wu.

Since w is a prefix of v, any proper box of w is, trivially, a proper box of v. Let
us prove the converse.

Let α = asb be a proper box of v, with a, b ∈ A and s a bispecial factor of v.
We prove that h′w 6∈ F (s). Indeed, by Proposition 7, h′w has no internal occurrence
in w = h′wuh

′
w and, therefore, it has exactly two occurrences in v, one of which is

initial, whereas s has at least two non-initial occurrences in v because s is a left
special factor of v.

Since s is bispecial in v, there exist letters c 6= b and d 6= a such that sc, ds ∈
F (v). As h′w is not a factor of s, the words α = asb, sc, and ds occur either in the
prefix h′wuh

′
w of v or in the suffix h′wu of v. Thus α, sc, ds ∈ F (w). This proves that

α is a proper box of w. Thus v ≡ w.
2. ⇒ 3. Trivial.
3. ⇒ 1. Since v is periodic, by Proposition 1, Hv = Kv > Rv. Assume that w is

not periodic-like. Then h′w is a right special factor of w by virtue of Proposition 7.
This implies that there exist letters a and b, a 6= b, such that

hw = h′wa and h′wb ∈ F (w).

If Hw ≥ Hv, there exists a suffix t of h′w such that

ta, tb ∈ F (w), and |ta| = |tb| = Hv = Kv.

By Lemma 5 one derives that ta, tb ∈ F (v). Thus t is right special in v, so that
Rv ≥ |t|+ 1 = Hv, which is a contradiction.

If, on the contrary, Hw < Hv, one has |h′wa| = |h′wb| < Hv = Kv and, therefore,
by Lemma 5,

h′wa, h
′
wb ∈ F (v).

Denote by s the longest word such that sh′wa, sh
′
wb ∈ F (v). Since sh′w is right special

in v, one has

|sh′wa| = |sh′wb| ≤ Rv < Hv.

Thus, sh′wa and sh′wb are left extendable in v, i.e., there exist letters c and d such
that

csh′wa, dsh
′
wb ∈ F (v).

Moreover, c 6= d by the maximality of |s|. We conclude that csh′wa is a proper box
of v and, hence, a factor of w. This yields a contradiction, for h′wa = hw is not left
extendable in w. This proves that w is periodic-like. �
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The preceding proposition shows that periodic-like words are exactly the words
which can be ‘prolonged’ in a periodic word, without changing the set of maximal
proper boxes.

The following proposition shows that the equivalence ≡ saturates the class of
periodic-like words.

Proposition 10. For all w, v ∈ A∗, if w is periodic-like and w ≡ v, then v is
periodic-like.

Proof. Since w is periodic-like, by Proposition 9 there exists a periodic word u such
that u ≡ w. Thus, u ≡ v and therefore, again by the preceding proposition, v is
periodic-like. �

Theorem 2. Let w be a periodic-like word. One has w ≡ v if and only if v is
periodic-like and root-conjugate to w.

Proof. Let w be a periodic-like word such that w ≡ v. By the preceding proposition,
v is periodic-like. We prove that w and v are root-conjugate. By Proposition 9 we
can assume, with no loss of generality, that w and v are periodic.

First, let us suppose that πv ≥ πw. Since w is periodic, i.e., |w| ≥ 2πw, by Eq. (5)
one derives Hw = Kw ≥ 1 + πw. Thus, by Lemma 5, all the factors of v of length
1 + πw are factors of w. From this, one derives that v has the period πw. Indeed,
write v = a1 · · · an, with ai ∈ A, 1 ≤ i ≤ n. For 1 ≤ i ≤ n − πw one has ai = ai+πw
since ai · · · ai+πw is a factor of w. Thus, πv ≤ πw. We conclude that πw = πv. If
one supposes that πv ≤ πw, one obtains again πw = πv, by a symmetric argument.
Hence, in any case, πw = πv.

Moreover, rv is a factor of w of length πw and, therefore, it is conjugate to rw.
We conclude that w and v are root-conjugate.

Conversely, suppose that v and w are periodic-like and root-conjugate. By Propo-
sition 9 we can assume, with no loss of generality, that w and v are periodic. As v
and w are root-conjugate, πw = |rw| = |rv| = πv. Set m = πv = πw. Since v and w
are periodic, the sets F (v)∩Am and F (w)∩Am are equal to the conjugacy class of rw
and rv, respectively. Since v and w are root-conjugate, then F (v)∩Am = F (w)∩Am.
Since m ≥ n = 1 + min{Rw, Lw} it follows that F (v) ∩ An = F (w) ∩ An. Hence,
w ≈ v and consequently, by Proposition 8, w ≡ v. �

The preceding theorem gives a complete description of the equivalence classes
(mod ≡) of periodic-like words. Such classes are the intersections of the root-
conjugacy classes with the set of periodic-like words. Thus, the root-conjugacy class
of a periodic-like word w is uniquely determined by alph(w) and the set Bw of its
maximal proper boxes.

The following example shows that the hypothesis that w is periodic-like is essen-
tial. In fact, there are words which are not periodic-like, whose equivalence classes
(mod ≡) are not included in any root-conjugacy class.

Example 3. Consider the set of words apbq, with p, q ≥ 2. These words are
not periodic-like and they have the same set of maximal proper boxes, given by
{aa, ab, bb}. However, any two distinct words of this set are not root-conjugate.
One can easily verify that the set {apbq | p, q ≥ 2} is a class of the equivalence ≡.
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The following proposition shows that the equivalences ≈ and ≡ coincide on
semiperiodic words.

Proposition 11. Let w and v be semiperiodic words. Then,

w ≡ v if and only if w ≈ v.

Proof. By Theorem 2, if w ≡ v, then w and v are root-conjugate. Consequently, by
Theorem 1, one has w ≈ v.

Conversely, if w ≈ v, then one has w ≡ v, by Proposition 8. �

The following proposition shows that the equivalence class (mod ≈) of a periodic-
like word which is not semiperiodic is a singleton.

Proposition 12. Let w be a periodic-like word which is not semiperiodic. If w ≈ v,
then w = v.

Proof. Since w is periodic-like, by Eq. (5) one has Hw = Kw. Moreover, since w is
not semiperiodic, by Proposition 1 one has

Hw = Kw ≤ min{Lw, Rw}.
Hence, by the previous equation and Eq. (1), one has

Rw = max{Rw, Kw} = max{Lw, Hw} = Lw = min{Lw, Rw}.
Thus min{Lw, Rw} = max{Rw, Kw}. Now, set n = 1 + max{Rw, Kw}. Since w ≈ v,
w and v have the same set of factors up to length n. As proved in [3], a word w
is uniquely determined by its set of factors up to length 1 + max{Rw, Kw}. Hence,
w = v. �

5 Periodicity theorems

In this section, by using the notion of periodic-like word, we give an improvement
of the periodicity theorem of Fine and Wilf in the case of finite words.

Moreover, we consider a canonical decomposition of a word in periodic-like sub-
words. We give a new periodicity theorem [7], showing that the minimal period
of a word is equal to the sum of the minimal periods of the periodic-like subwords
occurring in the canonical decomposition.

The following lemma [6, 7] gives a condition assuring that a period of a prefix of
a word can be ‘extended’ to the entire word.

Lemma 6. If a word w has a prefix of period p and length p+R′w, then p is a period
of w.

Proposition 13. If a word w has two periods p, q ≤ |w| − R′w, then w has also the
period d = gcd(p, q).

Proof. We can assume, with no loss of generality, that p < q. Set w = a1a2 · · · an,
with ai ∈ A, 1 ≤ i ≤ n. For 1 ≤ i ≤ R′w, one has i + q ≤ |w| = n and

ai = ai+q = ai+q−p.

Thus, a1a2 · · · aR′w+q−p has the period q− p. By the preceding proposition, q− p is a
period of w. By making induction on max{p, q}, w has the period gcd(p, q−p) = d.�
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Corollary 1. Let w be a word. For any period p of w either p is a multiple of the
minimal period πw or p > |w| − R′w.

Proof. If p ≤ |w| −R′w, then, by Proposition 13, w has the period gcd(p, πw). Thus,
gcd(p, πw) = πw so that p is a multiple of πw. �

The preceding corollary shows that a periodic word satisfies the harmonic prop-
erty (cf. Sect. 1) for all periods which are less than or equal to |w| − R′w.

By Proposition 13 one easily derives [6, 7] the theorem of Fine and Wilf for finite
words.

Theorem 3. Let w be a word having two periods p and q and length

|w| ≥ p + q − gcd(p, q).

Then w has the period gcd(p, q).

Proof. It is well known that one can always reduce himself to consider only the case
when gcd(p, q) = 1 (see e.g. [13]). Since p, q ≥ R′w + 1, one has

|w| ≥ p+ q − 1 ≥ q +R′w and |w| ≥ p+ q − 1 ≥ p +R′w.

This implies that p, q ≤ |w| − R′w, so that the conclusion follows from Proposition
13. �

The following proposition shows that, under the hypotheses of the previous
theorem, w is periodic and, with the only exception of a trivial case, one has
p, q < |w| − Rw.

Proposition 14. Let w be a word having two periods p and q, with p < q, and
length

|w| ≥ p + q − gcd(p, q).

Then w is periodic and p < |w| − Rw. If, moreover, q is not a multiple of p, then
q < |w| − Rw.

Proof. By the theorem of Fine and Wilf, d = gcd(p, q) is a period of w. Moreover,
q − d ≥ p, so that |w| ≥ p+ q − d ≥ 2p, i.e., w is periodic. By Eq. (3), p ≥ Rw + 1,
so that

|w| ≥ p+ q − d ≥ Rw + 1 + p.

Thus, p < |w| − Rw.

Let us now suppose that q is not a multiple of p. In such a case, p− d ≥ d, so
that

|w| ≥ p + q − d ≥ q + d.

Since d is a period of w, one has d ≥ Rw + 1 and |w| ≥ q + Rw + 1, that implies
q < |w| − Rw. �
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We remark that the lower bound for the length of a word in the theorem of Fine
and Wilf is optimal if one does not make any further hypothesis on the ‘structure’
of the word. Indeed, for any pair of integers p and q one can always construct a
word w of length |w| = p + q − d − 1, with d = gcd(p, q), and such that w has the
periods p and q but not the period d. However, by using Proposition 13, one can
show [7] that this lower bound can decrease if one makes a restriction on the value
of R′w. For instance, if a word w of length 16 has periods 9 and 11 and R′w ≤ 5, then
w has period 1, i.e., it is a power of a letter. Notice that 16 < 9 + 11− gcd(9, 11).

We shall now relate the minimal period πw of a non-empty word w with the min-
imal periods of the elements of a suitable decomposition of w called (left) canonical
decomposition of the word w in periodic-like subwords [7].

This canonical decomposition is obtained by the following inductive procedure.
We make induction on the length of w. The word h′w occurs at least twice in w.

We shall consider now all the occurrences of h′w in w. Formally, we can write

w = λih
′
wµi, i = 1, . . . , n,

with
|λ1| < |λ2| < · · · < |λn|,

where n ≥ 2 and (λi, µi), i = 1, . . . , n, denote all the distinct occurrences of h′w in
w. Note that λ1 = ε, since h′w is a prefix of w.

For i = 1, . . . , n−1, one has λih
′
wµi = λi+1h

′
wµi+1 so that for suitable αi, βi ∈ A+,

λi+1 = λiαi, µi = βiµi+1, and αih
′
w = h′wβi.

For i = 1, . . . , n− 1, we set
wi = αih

′
w = h′wβi.

If µn = ε (and, in particular, if |w| = 1 which gives the base of the induction), then
the canonical decomposition of w in periodic-like subwords is

(w1, . . . , wn−1).

Let us then suppose that µn 6= ε and consider the word

wn = h′wµn.

Since |wn| < |w|, by making induction on the length of w, we can assume that the
canonical decomposition of wn in periodic-like subwords is defined. Let us denote
it by (w′1, . . . , w

′
m), m ≥ 1. Then the canonical decomposition of w in periodic-like

subwords is
(w1, . . . , wn−1, w

′
1, . . . , w

′
m).

The following noteworthy theorem, proved in [7], holds.

Theorem 4. Let w be a word and (w1, w2, . . . , wn) be its canonical decomposition
in periodic-like subwords. Then

πw =
n∑
i=1

πwi.
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Example 4. Let w be the word:

w = abccbabaabccbbaabccbaaabcabab

where the occurrences of h′w = abcc are underlined. The first elements of the canon-
ical decomposition in periodic-like subwords of w are

w1 = abccbabaabcc and w2 = abccbbaabcc.

Since µ3 = baaabcabab 6= ε, we have to compute the canonical decomposition in
periodic-like subwords of h′wµ3 = abccbaaabcabab. We obtain

w′1 = abccbaaabc

and µ′2 = abab. Decomposing abcab ab, one obtains

w′′1 = abcab and w′′2 = ab ab.

Thus, the canonical decomposition of w is (w1, w2, w
′
1, w

′′
1 , w

′′
2). One has πw1 = 8,

πw2 = 7, πw′1 = 7, πw′′1 = 3, πw′′2 = 2, and πw = 27.

The following proposition [6] shows that if a word has a periodic-like factor
having the same minimal period, then the word has to be periodic-like.

Proposition 15. Let u be a periodic-like factor of a word w. If πu = πw, then w is
periodic-like.

Some noteworthy consequences of the preceding proposition concerning the ‘lo-
cal’ periodicity of a word and the critical point theorem are shown in [7].

6 Concluding remarks

We have considered two suitable generalizations of the notion of periodic word,
namely semiperiodic and periodic-like words. The definition of these classes was
based on the relations between the minimal period πw of a word w and the param-
eters Rw, Lw, Hw, Kw, R′w, and L′w.

However, these two notions are naturally linked to the equivalences ≈ and
≡. Indeed, Propositions 3 characterizes semiperiodic words as the words w which
can be ‘prolonged’ in a periodic word, without adding new factors of length 1 +
min{Rw, Lw}. Similarly, Proposition 9 shows that periodic-like words are exactly
the words which can be ‘prolonged’ in a periodic word, without changing the set of
maximal proper boxes.

A complete description of the equivalence classes (mod ≈) and (mod ≡) of
periodic-like words was given by Theorems 1 and 2 and Proposition 12: the equiv-
alence ≈ coincides with root-conjugacy on the class of semiperiodic words and is
reduced to identity on the class of periodic-like words which are not semiperiodic,
while ≡ coincides with the root-conjugacy on the entire class of periodic-like words.

Despite the uniqueness conditions of Proposition 4, we do not have, up to now,
a complete description of the equivalence classes (mod ≈) and (mod ≡) of words
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which are not periodic-like. We remark that for the equivalence ≡ there is no result
corresponding to Propositions 4 and 5, which hold for the equivalence ≈. Indeed,
the words

apbq, with p, q ≥ 2,

considered in Example 3 are not periodic-like and two distinct words of this kind
are in the same class (mod ≡) but they are not root-conjugate. Moreover, there are
distinct words of this kind having the same length such as, e.g., aabbb and aaabb.
Another example is given by the two words w = abcadcadc and v = abcabcadc which
are not periodic-like. One has |w| = |v| and Bw = Bv = {ab, ad, bc, ca, dc}, so that
w ≡ v. However, they are not root-conjugate.

As we have seen, periodic-like words w satisfy the condition

πw = |w| −Hw + 1 = |w| −Kw + 1,

so that, in view of Eq. (3), they can be considered as ‘words of minimal period’.
However, there are words satisfying the previous equation, which are not periodic-
like. For instance, for the word w = abbabaab one has Hw = Kw = Rw = Lw = 3,
|w| = 8, and πw = 6.

One can also consider the more restricted class of the words w for which

πw = max{Rw, Lw}+ 1. (6)

As proved in [9], this class includes the words of the set PER which are semiperiodic
words (cf. Sect. 3). However, it includes also words which are not periodic-like such
as w = aaaba.

If Eq. (6) is satisfied, then from Eq. (3), one obtains that |w| = max{Rw, Lw}+
min{Kw, Hw} and, from Eq. (1), one easily derives that

|w| = Rw +Kw = Lw +Hw.

The words satisfying the preceding relation have been studied in [9] and called
trapezoidal words (see also [8]). A remarkable example of trapezoidal words is given
by the finite factors of Sturmian words (cf. [14, Chap. 2]).
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(2000), Theoretical Computer Science, to appear.

[6] A. Carpi and A. de Luca, Periodic-like words, in: M. Nielsen and B. Rovan
(Eds.) Mathematical Foundations of Computer Science 2000, Lecture Notes in
Computer Science, vol. 1893, Springer-Verlag (Berlin, 2000) pp. 264–274.

[7] A. Carpi and A. de Luca, Periodic-like words, periodicity, and boxes, Preprint
30/2000, Dipartimento di Matematica dell’Università di Roma “La Sapienza”
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