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Abstract

In this short note a theorem on the random-like behaviour of d-th powers
in GF (q) is proved, for d|q − 1. It is a common generalization of a result by
Szőnyi [4] and another by Babai, Gál and Wigderson [1].

1 Introduction

In this paper we prove a theorem, which is a common generalization of a result of
Szőnyi [4] and another by Babai, Gál and Wigderson [1]. It is interesting in itself,
applications can be found in future. Its moral, roughly speaking, is that under some
light and natural conditions, it is a “random event of probability 1

d
” being a d-th

power in GF (q), where d is a divisor of q − 1.
In fact this theorem is a consequence of the character sum version of Weil’s

estimate. In order to formulate it, we need a

Definition 1.1. Let f1(x), . . . , fm(x) ∈ GF (q)[x] be given polynomials. We say that
their system is d-power independent, if no partial product f s1i1 f

s2
i2 . . . f

sj
ij (1 ≤ j ≤ m;

1 ≤ i1 < i2 < . . . < ij ≤ m; 1 ≤ s1, s2, . . . , sj ≤ d − 1) can be written as a constant
multiple of a d-th power of a polynomial.

Equivalently, one may say that if any product f s1i1 f
s2
i2 . . . f

sj
ij is a constant multiple

of a d-th power of a polynomial, then this product is ‘trivial’, i.e. for all the exponents
d|si, i = 1, . . . , j. Now
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Theorem 1.2. Let f1(x), . . . , fm(x) ∈ GF (q)[x] be a set of d-power independent
polynomials, where d|(q − 1). If

dm−1
m∑
i=1

deg(fi) <
q +
√
q(dm − 1)

d(d−1)
2

√
q + 1

,

then there is an x0 ∈ GF (q) such that every fi(x0) is a d-th power in GF (q) for
every i = 1, . . . , m. More precisely, if we denote the number of these x0-s by N , then

|N − q

dm
| ≤

(
d − 1

2

√
q +

1

d

)
m∑
i=1

deg(fi)−
√
q
(
1− 1

dm

)
.

For the sake of simplicity one can say that if
∑m
i=1 deg(fi) <

2
√
q

dm(d−1)
then |N −

q
dm
| ≤ d−1

2

√
q
∑m
i=1 deg(fi), if dm ≥ 4.

Note that this theorem implies that, under some natural conditions, one can
solve a system of equations

χd(fi(x)) = δi (i = 1, . . . , m),

where the δi-s are d-th complex roots of unity, and χd is the multiplicative character
of order d. So ‘the d-th power behaviour’ can be prescribed if the polynomials are
‘independent’. It can be interpreted as ‘being a d-th power’ is like a random event
of probability 1

d
.

Some words about the condition d|(q− 1): as the d-th and the g.c.d.(d, q− 1)-th
powers are the same, if d|q − 1 were not the case, one may apply the lemma with
g.c.d.(d, q− 1) instead of d.

We remark that Szőnyi [4] proved this theorem for d = 2, while L. Babai, A. Gál
and Wigderson [1] for linear polynomials.

We will need

Result 1.3 (character sum version of Weil’s estimate, [2], Thm. 5.41) Let f(x) be a
polynomial over GF (q) and r the number of distinct roots of f in its splitting field.
If χe is a multiplicative character (of order e)of GF (q) and f(x) 6= cg(x)e, then

|
∑

x∈GF (q)

χe(f(x))| ≤ (r − 1)
√
q.

�

2 The proof

Proof of Theorem 1.2: First note that we use the definition χ(x) = χd(x) = x
q−1
d .

Let {ε0 = 1, ε1, ε2, . . . , εd−1} be the set of d-th complex roots of unity. Define the
following expression:

H =
∑

x∈GF (q)

m∏
i=1

(χ(fi(x))− ε1)(χ(fi(x))− ε2) . . . (χ(fi(x))− εd−1)

=
∑

x∈GF (q)

m∏
i=1

(χ(fi(x))
d−1 + χ(fi(x))

d−2 + . . . + χ(fi(x)) + 1).
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As N denotes the number of ‘solutions’, H is roughly dmN (because the product
(χ(fi(x))− ε1)(χ(fi(x)) − ε2) . . . (χ(fi(x)) − εd−1) is zero if χ(fi(x)) 6= 1 or 0; it is
±1 if fi(x) = 0 and it is as big as d iff χ(fi(x)) = 1). An ‘error term’ comes from
the zeros of the polynomials:

|H − dmN | ≤ dm−1
m∑
i=1

deg(fi).

Let’s examine H:

H = q +
∑

x∈GF (q)

m∑
j=1

∑
1≤i1<...<ij≤m

∑
1≤s1,...,sj≤d−1

χ(fi1(x)
s1fi2(x)

s2 . . . fij(x)
sj).

The second term (which is a real integer in fact, but it is not important for us now)
has absolute value less than

|H − q| ≤
m∑
j=1

∑
1≤i1<...<ij≤m

∑
1≤s1,...,sj≤d−1

 j∑
k=1

deg(fik)sk − 1

√q
by Weil. But this is equal to

√
q
m∑
j=1

∑
1≤i1<...<ij≤m

j∑
k=1

deg(fik)(d − 1)j−1
d−1∑
l=1

l −√q
m∑
j=1

(
m
j

)
(d− 1)j

=
d(d − 1)

2

√
q

m∑
j=1

(d − 1)j−1

(
m− 1
j − 1

)
m∑
i=1

deg(fi)−
√
q(dm − 1)

=
d(d − 1)

2
dm−1√q

m∑
i=1

deg(fi)−
√
q(dm − 1).

Now, using the assumption

dm−1
m∑
i=1

deg(fi) <
q +
√
q(dm − 1)

d(d−1)
2

√
q + 1

,

we have

d(d − 1)

2
dm−1√q

m∑
i=1

deg(fi)−
√
q(dm − 1) + dm−1

m∑
i=1

deg(fi) < q,

so N > 0 and the existence of x0 is proved. For the inequality we can divide the left
hand side by dm to get

|N − q

dm
| ≤

(
d − 1

2

√
q +

1

d

)
m∑
i=1

deg(fi)−
√
q
(
1− 1

dm

)
.

�
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