
On the interchange of series and some

applications

A. Aizpuru A. Gutiérrez-Dávila

Abstract

In this paper we prove the basic matrix theorem of Antosik-Swartz under
weaker hypotheses than the ones they used. We obtain the converse result
for complete normed spaces and generalize Antosik’s interchange theorem for
double series in a normed space. As a consequence, a number of charac-
terizations on convergence in several spaces of vector sequences are derived.
Finally, we obtain a version of the Orlicz-Pettis theorem for Banach spaces
with a Schauder basis.

1 Introduction

Let (xij)i,j be a matrix in a normed space X such that: (1) For each j ∈ N, the
sequence (xij)i is convergent to some xj ∈ X and (2) For each infinite set M ⊂ N
there exists an infinite set P ⊆ M such that

(∑
j∈P xij

)
i
is a Cauchy sequence. In

this setting, the Basic Matrix Theorem ([3]) asserts that the sequences (xij)i are
uniformly convergent on j ∈ N and (xj)j converges to zero.

Many applications of the Basic Matrix Theorem in measure theory and Banach
spaces have been found since its appearance ([3], [14]), such as generalizations of
the uniform boundedness principle, the Banach-Steinhaus theorem and the classical
Schur and Phillips lemmas. It should also be noticed that the usual conditions of
the Basic Matrix theorem imply that every row xi = (xij)j is an element of c0(X)
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(the space of null sequences in X endowed with the supremum norm) and that this
theorem gives a sufficient condition for the convergence of a sequence in c0(X).

Florencio, Paúl and Virués [7] established an improvement of the Mikusiński-
Antosik diagonal theorem for topological groups, dealing with the behavior of the
diagonal of certain infinite matrices whose elements belong to a topological group.
This improvement yields both the Basic Matrix Theorem and the Antosik diago-
nal lemma ([3]). Fleischer [6] generalized these two results for K-convergence in
topological groups by using “hump” techniques. One of the basic ideas in that gen-
eralization is the following: if A is an infinite matrix in a K-space such that for
some infinite index set the rows converge to zero, then it is possible to obtain an
infinite subset for which these rows are absolutely summable. Traynor [13] gener-
alized the Mikusiński-Antosik theorem to noncommutative topological groups, and
also gave some applications to the Schur lemma, the Nikodym convergence theorem,
the Phillips lemma and the Banach-Steinhaus theorem.

In this paper we improve the Basic Matrix Theorem by using separation proper-
ties of natural families, those subfamilies of P (N) which contain the finite subsets,
with weaker hypotheses than those mentioned at the beginning of this introduction.
For complete spaces, the converse result will also be proved and, as a corollary, we
will obtain a characterization of convergence in c0(X).

A result of Swartz’s [12] that generalizes the Antosik interchange theorem ([2])
will be improved in Theorem 3.6. The technique we will use in the characterization
of convergence in c0(X) can be partially translated to cs(X), the space of conver-
gent series in X endowed with the norm ‖(xi)i‖ = supn‖

∑n
i=1 xi‖. This technique,

together with the improvement of the Swartz result, will allow us to obtain a char-
acterization of the convergence of sequences in cs(X). We can also consider other
characterization from the isomorphism between c0(X) and cs(X) (see Remark 3.9).
Analysis similar to that allows us to study two isomorphisms, the one from c(X), the
space of convergent sequences in X endowed with the supremum norm, to cs(X) and
the other one from c(X) to c0(X), in order to extend the previous characterizations
to the space c(X) (see Section 4).

Our results will be applied to Banach spaces with a Schauder basis, obtaining a
characterization of convergence and unconditional convergence of series by means of
the weak topology σ(X,M), where M is the basic sequence in X∗ associated with
the given Schauder basis. Therefore, we will also obtain a new version of the Orlicz-
Pettis theorem and observe that this result generalizes another result of Swartz’s
[11].

Although this paper has been developed within the framework of normed space
theory, most of the results could be extended, with some precautions, to normed
groups by using the techniques followed in [10] and [14]. As the topology of any
topological group is always generated by a family of quasi-norms ([4]), our results
could also be extended to topological groups.
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2 The Basic Matrix Theorem: convergence in c0(X)

Definition 2.1. We say that F is a natural family if φ0(N) ⊆ F ⊆ P (N), where
φ0(N) denotes the family of finite subsets of N.

Let F be a natural family and let
∑
i≥1

xi be a series in the normed space X. We

say that the series
∑

i

xi is F-convergent (resp. F-Cauchy, F-weakly convergent,

F-weakly Cauchy) if
∑
i∈A

xi is convergent (resp. Cauchy, weakly convergent, weakly

Cauchy), for each A ∈ F .
It is said that a natural family F has property SC if for every infinite set M ⊆ N

there exists an infinite set P ⊆ M such that P ∈ F .

In the literature, a family with property SC is also called a permeating family
([9]).

The basic matrix theorem implies that, if F is a natural family with property SC

and (xij)i,j is a matrix in a Banach space X such that

∑
j∈B

xij


i

is a convergent

sequence for each B ∈ F , then the sequences (xij)i are uniformly convergent on
j ∈ N.

Definition 2.2. We say that a natural family F has property Pc0 if there exists
a map f : N → N such that for every pair of sequences (jr)r and (mr)r in N with
j1 < m1 < j2 < m2 < · · · there exists an infinite set M ⊆ N and B ∈ F that verify:

(a) (mr−1, mr) ∩B = {jr}, for each r ∈ M .

(b) card([mr−1, mr] ∩B) ≤ f(r), for each r ∈ N \M .

It is easily seen that each natural family with property SC also has property Pc0 ;
however, it will be shown that there exist natural families which have property Pc0

and lack property SC (see remark at the end of this section).
We now prove that the previous result remains valid for natural families with prop-
erty Pc0 .

Theorem 2.3. Let (xij)i,j be a matrix in the normed space X with the following
properties:

1. For each j ∈ N, (xij)i is a Cauchy sequence.

2. There exists a map f : N → N such that if (jr)r and (mr)r are sequences of
natural numbers with j1 < m1 < j2 < m2 < · · · then there exist B ⊆ N and an
infinite set M ⊆ N with the properties: (i) (mr−1, mr) ∩ B = {jr} for r ∈ M ;
(ii) card([mr−1, mr] ∩B) ≤ f(r) for each r ∈ N \M ;

(iii)

∑
j∈B

xij


i

is a Cauchy sequence.

Then (xij)i are Cauchy sequences uniformly on j ∈ N.
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Proof. We first prove that (xij)j converges to zero for each i ∈ N. On the contrary,
suppose that there exist ε > 0, i0 ∈ N and a strictly increasing sequence of natural
numbers (jr)r with jr + 1 < jr+1 such that ‖xi0jr‖ > ε for r ∈ N.

Define mr = jr + 1 for r ∈ N. Applying our hypothesis, the sequences (jr)r and
(mr)r allow us to obtain two sets, B and M , as in 2. From the former inequality it
is obvious that, for each r ∈ M ,∥∥∥∥∥∥∥∥

∑
j∈B

j∈(mr−1,mr)

xi0j

∥∥∥∥∥∥∥∥ = ‖xi0jr‖ > ε,

which contradicts that
∑
j∈B

xi0j is a Cauchy series.

Having proved this preliminary step, we can now obtain our result. Suppose,
contrary to our claim, that there exists ε > 0 such that for every k ∈ N we can
choose i ∈ N, i > k, and j ∈ N which verify the inequality ‖xij − xkj‖ > ε. We now
proceed by induction. The following argument, which gives us the first step, can
then be applied to obtain the remaining inductive steps:

(i) Define k1 = 1. By the previous assumption there exist i1 > k1 and j1 such
that ‖xi1j1 − xk1j1‖ > ε.

(ii) Since (xij)j converge to zero for each i ∈ N, consider m1 ∈ N which verifies

the inequality ‖xij‖ <
ε

7 · 22 · f(2)
, for each i ∈ {1, 2, . . . , i1} and j ≥ m1. Let

us observe that m1 > j1.

(iii) Since (xij)i are Cauchy sequences, let k2 be such that

∥∥∥∥∥∥
∑
j∈C

(xij − xkj)

∥∥∥∥∥∥ < ε
7

for

i, k ≥ k2 and C ⊆ {1, 2, . . . ,m1}. It is clear that k2 > i1.

In the second step, we apply this argument again, with the difference that k2 has

been already defined and we consider
ε

7 · 23 · f(3)
to obtain m2.

We continue in this fashion to complete this inductive argument and obtain four
sequences (kr)r, (ir)r, (jr)r and (mr)r with k1 < i1 < k2 < i2 < . . . , j1 < m1 < j2 <
m2 < . . . such that, for r > 1,

(a) ‖xirjr − xkrjr‖ > ε.

(b)

∥∥∥∥∥∥
∑
j∈C

(xirj − xkrj)

∥∥∥∥∥∥ < ε
7

for each C ⊆ {1, 2, . . . ,mr−1}.

(c) ‖xij‖ <
ε

7 · 2r+1 · f(r + 1)
for each i ∈ {1, 2, . . . , ir} and j ≥ mr.

Let B and M be the sets that result from (jr)r and (mr)r in hypothesis 2. We
are now in a position to obtain a contradiction. Combining (a) and (b), we have
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that for each r ∈ M , r > 1,

∥∥∥∥∥∥
∑
j∈B

(xirj − xkrj)

∥∥∥∥∥∥ ≥ ‖xirjr − xkrjr‖ −

∥∥∥∥∥∥∥∥
∑
j∈B

j≤mr−1

(xirj − xkrj)

∥∥∥∥∥∥∥∥ −∥∥∥∥∥∥∥
∑
j∈B

j≥mr

(xirj − xkrj)

∥∥∥∥∥∥∥ > ε− ε
7
−

∑
k≥r

∑
j∈B

j∈[mk,mk+1)

‖xirj‖ −
∑
k≥r

∑
j∈B

j∈[mk,mk+1)

‖xkrj‖.

From (c) we obtain, for k ∈ N, k ≥ r,
∑
j∈B

j∈[mk,mk+1)

‖xirj‖ <
ε

7 · 2k+1 · f(k + 1)
. It

is suffices to notice that ir ∈ {1, 2, . . . ik} and j ≥ mk. The same inequality holds if
ir is replaced by kr, and thus∥∥∥∥∥∥

∑
j∈B

(xirj − xkrj)

∥∥∥∥∥∥ > ε− ε
7
−2·

∑
k≥r

ε

7 · 2k+1 · f(k + 1)
> ε− ε

7
− 2·ε

7
·

∑
k≥r+1

1

2k
>

4 · ε
7

,

which contradicts that

∑
j∈B

xij


i

is a Cauchy sequence. �

If F is a natural family with property Pc0 the result above remains valid if

hypotheses 1. and 2. are replaced by the condition:

∑
j∈B

xij


i

is a Cauchy sequence

for each B ∈ F .
From Theorem 2.3 we next characterize the convergence of a sequence in c0(X),

and so we prove the converse of the Basic Matrix Theorem for Banach spaces.

Corollary 2.4. Let X be a Banach space and let (xi)i be a sequence in c0(X),
xi = (xij)j for i ∈ N. The following statements are equivalent:

1. There exists a natural family F with property SC such that

∑
j∈B

xij


i

is a

convergent sequence for each B ∈ F .

2. There exists a natural family F with property Pc0 such that

∑
j∈B

xij


i

is a

convergent sequence for each B ∈ F .

3. The sequence (xi)i is convergent to some x0 ∈ c0(X).

Proof. It is clear that we need only prove that 3.⇒1. Let F be the family of all

subsets B ⊆ N such that

∑
j∈B

xij


i

is convergent and denote x0 = (xj)j. It is

obvious that φ0(N) ⊆ F .

First we claim that there exists a subsequence (nk)k such that
∑
k

‖xink
‖ converges

for each i ∈ N or, equivalently, that there exists an infinite set M ⊆ N such that
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∑
j∈M

‖xij‖ converges for each i ∈ N.

Since (xij)j converges to zero, it is well known that the above property holds for each
sequence (xij)j with i ∈ N fixed. Therefore, let us consider an infinite set M1 ⊆ N
with

∑
j∈M1

‖x1j‖ < ∞. The sequence (x2j)j∈M1 is also convergent to zero, so let

M2 ⊆ M1 be an infinite set, with inf M2 > inf M1, such that
∑

j∈M2

x2j is absolutely

convergent.
Completing this inductive argument, we obtain a sequence (Mk)k of infinite

subsets of N with Mk+1 ⊆ Mk, inf Mk+1 > inf Mk and
∑

j∈Mk

‖xkj‖ < ∞ for k ∈ N.

Define M0 = {m11, m21, m31 . . . }, where mk1 is the first element of Mk. It is
easy to verify that

∑
j∈M0

xij is absolutely convergent for i ∈ N. Since (xj)j is also

convergent to zero, there exists an infinite set M ⊆ M0 with
∑
j∈M

‖xj‖ < ∞ and∑
j∈M

‖xij‖ < ∞ for every i ∈ N, which establishes the validity of our claim.

Next we prove the desired implication. In order to show that our family F has
property SC, it is enough to construct an infinite set P ⊆ N such that lim

i

∑
j∈P

xij =∑
j∈P

xj. We can inductively construct three strictly increasing sequences (ir)r, (mr)r

and (jr)r of natural numbers such that, for r > 1,

(a) ‖xi − x0‖ <
1

(r + 1)2r+1
for each i ≥ ir.

(b)
∑

j∈B∩M

‖xij‖ <
1

2r+1
and

∑
j∈B∩M

‖xj‖ <
1

2r+1
for each i ∈ {1, 2, . . . , ir} and

B ⊆ {mr, . . . }.

(c) mr ≤ jr ≤ mr+1 and jr ∈ M for r ∈ N.

Let P = {jr : r ∈ N}. We next prove that limi

∑
j∈P

xij =
∑
j∈P

xj.

Consider ε > 0 and r ∈ N with 3
2r+1 < ε. Combining (a) and (b) we obtain, for each

i ∈ N, i ≥ ir,

∥∥∥∥∥∥
∑
j∈P

xij −
∑
j∈P

xj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥

∑
j∈P

j≤jr−1

(xij − xj)

∥∥∥∥∥∥∥∥ +
∑
j∈P

j≥mr

‖xij‖ −

∑
j∈P

j≥mr

‖xj‖ <
3

2r+1
< ε. �

Remark 2.5 Fleischer [6] proved the following result: Let (xij)i,j be a matrix from a
quasi-normed group whose columns are Cauchy and every infinite subset of indices
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has, for every ε > 0, an infinite subset J for which

lim sup
i,i′∈J

lim sup
finite F↑J

sup
finite F ′⊆J

∣∣∣∣∣∣
∑

j∈F ′\F
xij − xi′j

∣∣∣∣∣∣ < ε.

Then the columns are uniformly Cauchy.

Let (xij)ij be a matrix in a Banach space X whose rows are convergent to zero.
Under the assumptions of Fleischer’s result above, there exists x0 = (xj)j such that
limi xij = xj uniformly on j ∈ N. Define xi = (xij)j ∈ c0(X) for each i ∈ N, it
follows that (xi)i converges to x0 in c0(X). If we consider a matrix (xij)i,j in X
which does not verify Fleischer’s assumptions, then it is easy to check that (xi)i is
not a Cauchy sequence in c0(X). Thus it can be seen that properties 1., 2. and
3. in Corollary 2.4 are equivalent to the following: 4. The matrix (xij)i,j verifies
Fleischer’s assumptions.

We are interested in matrix results which are based on separation and supremum
properties of natural families. Let us observe that the natural families we consider
in this paper have established their own properties previously. Hence, Fleischer’s
techniques are not strongly connected with ours. �

In the following remark we give some examples of natural families with property
Pc0 which are not SC.

Remark 2.6 We now introduce a supremum property for natural families which
implies Pc0 .

We say that a natural family F has property P σ
c0

if for every pair (jr)r, (mr)r of
sequences in N with j1 < m1 < j2 < m2 < . . . there exist an infinite set M ⊆ N,
M ′ ⊆ M , B ∈ F and {lr : r ∈ M ′} ⊆ N such that B = {jr : r ∈ M}∪{lr : r ∈ M ′}
and, for each r ∈ M ′ and h ∈ M with r < h, mr ≤ lr ≤ mh−1.

If F denotes a natural family with property P σ
c0

, let us prove that F has also
property Pc0 . Let f : N → N be the map given by f(i) = 1 for i ∈ N. For every
pair of sequences (jr)r and (mr)r in N with j1 < m1 < j2 < m2 < . . . , let M ⊆ N,
M ′ ⊆ M , B ∈ F and {lr : r ∈ M ′} be the sets which verify the properties that
appear in the definition of P σ

c0
.

We prove that M and B satisfy properties (a) and (b) in Definition 2.2. It suffices
to show that:

(i) (mr−1, mr) ∩ {ls : s ∈ M ′} is empty if r ∈ M

(ii) [mr−1, mr] ∩ {ls : s ∈ M ′} is empty or a singleton if r ∈ N \M .

First, in order to prove (i), let us consider r ∈ M and k ∈ M ′ such that lk ∈
(mr−1, mr) and mk ≤ lk (according to the above definition). We distinguish three
cases:

(a.1) If k > r, then we have mr < mk ≤ lk, which contradicts the previous assump-
tion.
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(b.1) If k = r, then we have mr = mk ≤ lk ≤ mr and so lk = mr, which is impossible.

(c.1) If k < r it follows that mk ≤ lk ≤ mr−1 and so lk = mr−1, which is also
impossible.

We now prove (ii). Let k ∈ M ′ and r ∈ N \ M be such that lk ∈ [mr−1, mr]
and k is the largest possible in M ′ satisfying the previous property. Consider
k1 = inf {k′ ∈ M : k′ > k}. Then we have mk ≤ lk ≤ mk1−1, and consequently,
mr−1 ≤ lk ≤ mk1−1, mk ≤ lk ≤ mr. From this, we obtain k < r < k1. If there exists
lk′ ∈ [mr−1, mr] with k′ < k, we will have mk′ ≤ lk′ ≤ mk−1, which contradicts the
inequality k < r. This completes the proof.

The following example shows that there exist natural families with property Pc0

that lack property SC. Let B1 be the family of sets B ⊆ N with the following
properties:

(a) B and Bc contain infinitely many even numbers and odd numbers.

(b) {n ∈ N : {4n− 1, 4n} ⊆ B} is finite.

Let F1 = B1∪φ0(N). In order to prove that F1 has the property Pc0 , let us consider
the map f : N → N given by f(i) = 1 for i ∈ N and let (jr)r and (mr)r be two
sequences in N with j1 < m1 < j2 < m2 < . . . . Define A =

⋃
r{jr}, B1 = {2n : n ∈

N} − {4n : n ∈ N}, B2 = {4n : n ∈ N}, C1 = {2n− 1 : n ∈ N} − {4n− 1 : n ∈ N}
and C2 = {4n − 1 : n ∈ N}. In order to construct the infinite set M ⊆ N and
B ∈ F1 which verify (a) and (b) in Definition 2.2, we distinguish between two cases
and proceed by induction in each of them:

(A) A ∩ {2n : n ∈ N} is infinite.
In the first step of our inductive argument, we consider:

(i.1) r11 ∈ N such that jr11 is an even number.

(ii.1) r′11 ∈ N, r′11 > r11 satisfying [mr′11−1, mr′11
) ∩ (B1 ∪B2) 6= ∅. Let lr′11 be

an even number which belongs to the previous intersection set.

(iii.1) r12 ∈ N, r12 > r′11, which verifies [mr12−1, mr12) ∩ C1 6= ∅. Let kr12 be an
element which belongs to this intersection set.

Define A1 = {jr11 , kr12} and M1 = {r11}, let us observe that jr11 < mr11 ≤
mr′11−1 ≤ lr′11 < mr′11

≤ mr12−1 ≤ kr12 < mr12 .

In the second step we apply a similar argument. Let us consider:

(i.2) r21 ∈ N, r21 > r12 such that jr21 is an even number.

(ii.2) r′21 ∈ N, r′21 > r21 verifying [mr′21−1, mr′21
) ∩ (B1 ∪B2) 6= ∅, so we can

consider lr′21 which belongs to this intersection set.

(iii.2) r22 ∈ N, r22 > r′21, such that there exists kr22 ∈ N with kr22 ∈ [mr22−1, mr22)∩
C1.



On the interchange of series and some applications 417

Define A2 = {jr21 , kr22} and M2 = {r21}, it is clear that mr12 ≤ mr21−1 <
jr21 < mr21 ≤ mr′21−1 ≤ lr′21 < mr′21

≤ mr22−1 ≤ kr22 < mr22 .

We continue in this fashion to complete this inductive argument and so obtain
three strictly increasing sequences: (jri1

)i, (lr′i1)i, two sequences of even num-
bers, and (kri2

)i, whose elements belong to C1, with jri1
< mri1

≤ mr′i1−1 ≤
lr′i1 < mr′i1

≤ mri2−1 ≤ kri2
< mri2

≤ mr(i+1)1−1 < jr(i+1)1
for i ∈ N. Let us

define An = {jrn1 , krn2}, Mn = {rn1}, B =
⋃

n An and M =
⋃

n Mn. It is
obvious that B and M verify properties (a) and (b) in Definition 2.2 and also
B ∈ F1.

(B) A ∩ {2n− 1 : n ∈ N} is infinite.
This can be proved by using an argument similar to that in the previous case,
with the following differences: for each i ∈ N jri1

and lr′i1 must be odd numbers
and (kri2

)i must be a sequence in B1. This completes the proof

To see that F1 does not have property SC, it is sufficient to observe that there
is no infinite subset of the set of all multiples of 4 that belongs to F1.

As in the analysis of the previous family, it can be shown that the following
families have property Pc0 and lack property SC. It is enough to consider an induc-
tive argument easier than the previous one. The same notation used in the above
argument will be followed. Let Q1 be an infinite subset of N whose complementary
set is also infinite. Let Q2 and Q3 be two infinite subsets of N such that at least one
of them has an infinite complement. We consider and study the following families:

• Fα = {B ⊆ N : B ∩ Q1 is infinite} ∪ φ0(N). We can distinguish between two
cases: (i) if A ∩ Q1 is infinite (according to the previous notation, we have
A =

⋃
r{jr}), an easier inductive argument allows us to construct the sequence

(jri1
)i in Q1. We need only consider (i.1), (i.2), . . . ; (ii) if A ∩ Q1 is a finite

set, we need only construct the sequences (jri1
)i in A and (kri2

)i in Q1.
The complement of Q1 allows us to show that Fα does not have property SC.

• Fβ = {B ⊆ N : B ∩Q1 and Bc ∩Q1 are infinite}∪φ0(N). If A∩Q1 is infinite,
it is enough to construct the sequences (jri1

)i and (lr′i1)i whose elements belong
to Q1. If A∩Q1 is a finite set, we can construct (jri1

)i in A and the sequences
(lr′i1)i, (kri2

)i in Q1.
Then we can observe that there is no infinite subset of Qc

1 which belongs to
Fβ and so this family does not have property SC.

• Fσ = {B ⊆ N : B ∩ Q2 and B ∩ Q3 are infinite} ∪ φ0(N). If either A ∩ Q2

or A ∩ Q3 is infinite, the sequences (jri1
)i and (kri2

)i can be constructed so
that jri1

∈ Q2 or Q3, respectively, and kri2
∈ Q3 or Q2, respectively, for i ∈ N.

If A ∩ Q2 and A ∩ Q3 are both finite sets, a similar argument allows us to
obtain two sequences: (jri1

)i in A and (kri2
)i whose even terms belong to Q2

and whose odd terms belong to Q3.
Qc

2 and Qc
3 are not both finite sets and therefore Fσ lacks property SC.
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• Fθ = {B ⊆ N : B ∩ Q2, B ∩ Q3, B
c ∩ Q2 and Bc ∩ Q3 are infinite} ∪ φ0(N).

If either A ∩ Q2 or A ∩ Q3 is infinite, the sequences (jri1
)i and (kri2

)i can
be constructed so that jri1

∈ Q2 or Q3, respectively, and kri2
∈ Q3 or Q2,

respectively, for i ∈ N. Also, we must obtain the sequence (lr′i1)i whose even
terms belong to Q2 and whose odd terms belong to Q3. If A∩Q2 and A∩Q3

are both finite sets, we can proceed analogously to the above case with the
difference that jri1

∈ A for i ∈ N and the sequence (kri2
)i verifies kri2

∈ Q2 if i
is an even number and kri2

∈ Q3 if i is an odd number.
It is clear that Fθ does not have property SC.

�

3 Convergence in cs(X)

Let X be a Banach space and let cs(X) be the spacex = (xj)j :
∑
j

xj is convergent

 ,

endowed with the norm

‖(xi)i‖ = sup
n

{∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
}

.

It is clear that cs(X) is complete and that a sequence (xi)i, with xi = (xij)j for each
i ∈ N, converges to x0 = (xj)j in cs(X) if and only if lim

i

∑
j∈F

xij =
∑
j∈F

xj uniformly

on the family I0(N) of the finite intervals F in N.

Analysis similar to that in the previous section allows us to characterize the
convergence of a sequence (xi)i in cs(X). The result of Swartz’s [12] we mentioned
in the introduction can be improved in order to obtain a sufficient condition for the
above convergence. This matrix result, which we will study later, is based on the
following supremum property ([9]): A natural family F is called an IQ σ-family if,
for every sequence (Fi)i of intervals in N such that sup Fi < inf Fi+1, for each i ∈ N,
there exists an infinite set M ⊆ N such that B =

⋃
i∈M

Fi ∈ F .

In order to establish not only the abovementioned improvement, but also better
matrix results and a necessary condition for the convergence of a sequence in cs(X),
we consider the following separation properties of natural families:

Definition 3.1. Let F be a natural family. We say that F has property P0 if for
every sequence (Fi)i in I0(N) with sup Fi < inf Fi+1, for each i ∈ N, there exists an
infinite set M ⊆ N and B ∈ F satisfying Fi ⊆ B for each i ∈ M .

The following result can be easily verified:

Lemma 3.2. Let F be a natural family with property P0 and let
∑

i

xi be a F-Cauchy

series in the normed space X. Then
∑

i

xi is a Cauchy series.
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Definition 3.3. We say that a natural family F has property P1 if there exists a
map f : N → N such that for every pair (Fr)r, (mr)r of sequences in I0(N) and N,
respectively, with mr ≤ inf Fr ≤ sup Fr < mr+1 for each r ∈ N, there exist B ∈ F
and an infinite set M ⊆ N such that:

(a) For r ∈ M , B ∩ [mr, mr+1) = Fr.

(b) For r ∈ N \M and r > 1, B ∩ (mr, mr+1) is either empty or can be written as
the union of at most f(r − 1) intervals.

It is obvious that each natural family with property P1 has property P0, and
also that each IQ σ-family has property P1. However, it will be shown in the last
remark of this section that these two properties are not equivalent.

Lemma 3.4. Assume that F is a natural family with property P1 and (xij)i,j is a

matrix in the Banach space X such that

∑
j∈B

xij


i

is a convergent sequence for each

B ∈ F . Then

∑
j

xij


i

is convergent.

Proof. On the contrary, consider ε > 0 such that for every k ∈ N there exists i > k

with

∥∥∥∥∥∥
∑
j

xij −
∑
j

xkj

∥∥∥∥∥∥ > ε. Since F has property P1, we can choose a map f as in

Definition 3.3. The proof is based on the following inductive argument:
We establish the first inductive step, to which the following steps are very similar:

(i) Consider k1 = 1, the above assumption allows us to consider i1 > k1 with∥∥∥∥∥∥
∑
j

(xi1j − xk1j)

∥∥∥∥∥∥ > ε .

(ii) From Lemma 3.2, let m1 ∈ N be such that

∥∥∥∥∥∥
∑
j∈F

xij

∥∥∥∥∥∥ < ε
7·22·f(1)

, for F ∈ I0(N),

inf F ≥ m1 and i ∈ {1, 2, . . . , i1}, and so∥∥∥∥∥∥
∑

j≥m1

xij

∥∥∥∥∥∥ ≤ ε
7·22·f(1)

. Define F1 = [1, m1), then by (i) and the previous in-

equality we have

∥∥∥∥∥∥
∑
j∈F1

(xi1j − xk1j)

∥∥∥∥∥∥ >
6ε

7
.

(iii) Since (xij)i is a Cauchy sequence, there exists k2 ∈ N, k2 > i1, satisfying∥∥∥∥∥∥
∑
j∈C

(xpj − xqj)

∥∥∥∥∥∥ < ε
7
, for p, q ≥ k2 and C ⊆ {1, 2, . . . ,m1}.

In the second step, we apply this argument again, except that k2 has already

been defined, we consider
ε

7 · 23 · f(2)
to obtain m2 (from (iii) we have m2 > m1)

and F2 denotes the interval [m1, m2).
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It is now easy to complete this inductive argument and to obtain three strictly
increasing sequences of natural numbers (kr)r, (ir)r and (mr)r with k1 < i1 < k2 <
i2 < . . . such that, for r > 1, the following properties hold:

(a)

∥∥∥∥∥∥
∑
j∈Fr

(xirj − xkrj)

∥∥∥∥∥∥ > 5ε
7
, where Fr denotes the interval in N [mr−1, mr).

(b)

∥∥∥∥∥∥
∑
j∈C

(xpj − xqj)

∥∥∥∥∥∥ < ε
7
, for C ⊆ {1, 2, . . . ,mr−1} and p, q ≥ kr.

(c)

∥∥∥∥∥∥
∑
j∈F

xij

∥∥∥∥∥∥ < ε
7·2r+1·f(r)

, for i ∈ {1, 2, . . . , ir} and F ∈ I0(N), inf F ≥ mr.

For the sequences (Fr)r>1 and (mr−1)r>1, there exist B ∈ F and an infinite set
M ⊆ N with the properties (a) and (b) in Definition 3.3. An analysis similar to that

at the end of the proof of Theorem 2.3 shows that

∑
j∈B

xij


i

cannot be a Cauchy

sequence, which contradicts our hypothesis. �

Lemma 3.5. Let F be a natural family with property P1 and let (xij)i,j be a matrix in

the Banach space X such that the sequence

∑
j∈B

xij


i

is convergent for each B ∈ F .

Then

 ∑
j∈Am

xij


i

are uniformly convergent on m ∈ N, where Am = (m, +∞) ∩ N.

Proof. The proof is based on an inductive argument similar to that in the proof of
Lemma 3.4, so we only sketch our argument.

If the result is false, consider ε > 0 such that for every k, m ∈ N there exist

i ∈ N, i > k, and h ∈ N, h + 1 > m, with

∥∥∥∥∥∥
∑
j>h

(xij − xkj)

∥∥∥∥∥∥ > ε. Lemma 3.4 gives

that

∑
j

xij


i

and

 ∑
j>m

xij


i

, for m ∈ N, are Cauchy sequences.

Since F has property P1, we can choose a map f as in Definition 3.3. The
following argument, which gives us the first step, is very similar to that in the
remaining inductive steps:

(i) Choose k1 ∈ N such that

∥∥∥∥∥∥
∑
j

(xij − xkj)

∥∥∥∥∥∥ < ε
8
, for i, k ≥ k1.

(ii) Consider m1 = 1. By the previous assumption there exist i1 > k1 and h1 > m1,

with

∥∥∥∥∥∥
∑
j≥h1

(xi1j − xk1j)

∥∥∥∥∥∥ > ε. Define F1 = [m1, h1), by (i) and the previous in-

equality it follows that
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∥∥∥∥∥∥
∑
j∈F1

(xi1j − xk1j)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j

(xi1j − xk1j)−
∑
j≥h1

(xi1j − xk1j)

∥∥∥∥∥∥ ≥∥∥∥∥∥∥
∑
j≥h1

(xi1j − xk1j)

∥∥∥∥∥∥ −
∥∥∥∥∥∥
∑
j

(xi1j − xk1j)

∥∥∥∥∥∥ > 7·ε
8

.

(iii) Consider m2 ∈ N, m2 > h1, such that

∥∥∥∥∥∥
∑
j∈F

xij

∥∥∥∥∥∥ < ε
8·23·f(1)

, for F ∈ I0(N),

inf F ≥ m2 and i ∈ {1, 2, . . . , i1}.

In the second step we apply this argument again, except that m2 has already

been defined, (i) uses that

 ∑
j≥m2

xij


i

is a Cauchy sequence, k2 is chosen satisfying

k2 > i1 and we consider
ε

8 · 24 · f(2)
to obtain m3.

We continue in this fashion to complete this inductive argument. As in the proof
of Lemma 3.4, we can now consider the sequences (Fr)r≥1, (mr)r≥1 and analyse our
hypothesis in order to obtain a contradiction which proves the lemma. �

Theorem 3.6. Assume that F is a natural family with property P1 and (xij)i,j is

a matrix in the Banach space X such that

∑
j∈B

xij


i

is a convergent sequence for

each B ∈ F . If xj denotes the limit of the sequence (xij)i, for j ∈ N, then we have

1. lim
i

∑
j

xij

 =
∑
j

xj.

2. lim
i

∑
j∈F

xij =
∑
j∈F

xj uniformly on F ∈ I0(N).

3. If for every B ∈ F the series
∑

i

∑
j∈B

xij

 is convergent, then the series∑
i

∑
j

xij and
∑
j

∑
i

xij converge and their sums are equal.

Proof. From Lemmas 3.4 and 3.5 and the inequality∥∥∥∥∥∥
m∑

j=1

(xij − xkj)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j

(xij − xkj)−
∑
j>m

(xij − xkj)

∥∥∥∥∥∥ ≤∥∥∥∥∥∥
∑
j

(xij − xkj)

∥∥∥∥∥∥ +

∥∥∥∥∥∥
∑
j>m

(xij − xkj)

∥∥∥∥∥∥
it follows that

 m∑
j=1

xij


i

are uniformly convergent on m ∈ N. Let α denote the

limit of the sequence

∑
j

xij


i

. For every ε > 0 there exist i0, m0 ∈ N verifying:
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(i)

∥∥∥∥∥∥
∑
j

xij − α

∥∥∥∥∥∥ < ε
3
, for i ≥ i0.

(ii)

∥∥∥∥∥∥
m∑

j=1

(xij − xj)

∥∥∥∥∥∥ < ε
3
, for i ≥ i0 and m ∈ N.

(iii)

∥∥∥∥∥∥
m∑

j=1

xi0j −
∑
j

xi0j

∥∥∥∥∥∥ < ε
3
, for m ≥ m0.

From this it is obvious that

∥∥∥∥∥∥
m∑

j=1

xj − α

∥∥∥∥∥∥ < ε for each m ≥ m0, and so α =
∑
j

xj.

It is easily seen that lim
i

∑
j∈F

xij

 =
∑
j∈F

xj, lim
i

∑
j /∈F

xij

 =
∑
j /∈F

xj uniformly on

F ∈ I0(N) and lim
i

 ∑
j≥m

xij

 =
∑
j≥m

xj uniformly on m ∈ N.

Let us prove 3. If we let zlj =
∑
i≤l

xij, then the matrix (zlj)l,j verifies the hypoth-

esis of this theorem and therefore∑
i

∑
j

xij = lim
l

∑
j

zlj =
∑
j

∑
i

xij.

This completes the proof. �

Remark 3.7

a) Let (xij)i,j be a matrix in the Banach space X such that
∑

i

∑
j

xij =
∑
j

∑
i

xij.

As a consequence of Moore’s lemma ([5]), it can be deduced that the net n∑
i=1

m∑
j=1

xij


(n,m)∈N×N

converges if we consider, on N × N, the order relation:

(n, m) ≤ (n′, m′) if and only if n ≤ n′ and m ≤ m′. We also have that

lim
n,m

n∑
i=1

m∑
j=1

xij =
∑

i

∑
j

xij =
∑
j

∑
i

xij

b) Let (xij)i,j be a matrix in the Banach space X such that:

(1)
∑

i

xij converges for each j ∈ N.

(2)
∑
j

xij converges for each i ∈ N.

(3) For every sequence (Fr)r of intervals in N, Fr = [pr, qr] with pr <
qr < pr+1 for each r ∈ N, there exists a subsequence (Frk

)k such that∑
i

∑
k

∑
j∈Frk

xij converges.
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Then, Li Ronglu and Shin Min Kang [10] proved that the series
∑
i,j

xij,
∑

i

∑
j

xij

and
∑
j

∑
i

xij converge and their sums are equal. Proceeding as in the proofs

of Lemma 3.4, Lemma 3.5 and Theorem 3.6, it is easily shown that the result
above remains valid if (3) is replaced by the condition: there exists a map
f : N → N such that for every pair (Fr)r, (mr)r of sequences in I0(N) and N,
respectively, with mr ≤ inf Fr ≤ sup Fr < mr+1 for each r ∈ N, there exist
B ∈ F and an infinite set M ⊆ N as in Definition 3.3 such that the series∑

i

∑
j∈B

xij converges. Hence, for Banach spaces, we obtain a generalization of

the aforementioned result.

c) We have already referred to the matrix result obtained by Swartz [12], which
considers an IQ σ-family and generalizes Antosik interchange theorem ([2]).
For Banach spaces, this result is similar to our Theorem 3.6 (without 2.), but
we consider a family with property P1 instead of an IQ σ-family.

�

Theorem 3.6 enables us to give a characterization of the convergence in the space
cs(X).

Corollary 3.8. Let X be a Banach space and let (xi)i be a sequence in cs(X).
The following statements are equivalent:

1. There exists an IQ σ-family F such that

∑
j∈B

xij


i

is convergent, for each

B ∈ F .

2. There exists a natural family F with property P1 such that

∑
j∈B

xij


i

is con-

vergent, for each B ∈ F .

3. The sequence (xi)i is convergent to some x0 = (xj)j ∈ cs(X).

Proof. It is sufficient to prove that 1. is a consequence of 3. Write xi = (xij)j for
i ∈ N. In order to construct the IQ σ-family F define

F =

B ⊆ N :

∑
j∈B

xij


i

is convergent

 and let us consider a sequence (Fi)i in

I0(N) with sup Fi < inf Fi+1 for each i ∈ N. It is enough to show that there exists a

subsequence (Fik)k such that

∑
j∈B

xij


i

is convergent for B =
⋃

k Fik .

Let yil =
∑
j∈Fl

xij and yl =
∑
j∈Fl

xj for l ∈ N. The sequences yi = (yil)l and y0 = (yl)l

belong to c0(X) and, in this space, lim
i

yi = y0. As in the proof of Corollary 2.4, we

can construct an infinite set M ⊆ N such that lim
i

∑
l∈M

yil =
∑
l∈M

yl. Let B =
⋃

l∈M

Fl.

It is obvious that
∑
l∈M

yil =
∑
j∈B

xij and
∑
l∈M

yl =
∑
j∈B

xj. Therefore lim
i

∑
j∈B

xij =
∑
j∈B

xj.

�
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Remark 3.9 Let X be a Banach space. Corollary 2.4 and the isomorphism between
cs(X) and c0(X) allows us to obtain another characterization of the convergence of
a sequence in cs(X). We will first describe the isomorphism which will be considered
in this argument.
Let φ : cs(X) → c(X) be given by φ((x1, x2, . . . , xn, . . . )) = (x1, x1 + x2, . . . ,∑n

k=1 xk, . . . ) for x = (xi)i ∈ cs(X). For an element y = (yi)i ∈ c(X) we can con-
sider the sequence (y1, y2− y1, . . . , yn− yn−1, . . . ) = φ−1(y) which belongs to cs(X),
and so it is enough to observe that ‖φ(x)‖ = ‖x‖ to conclude that c(X) and cs(X)
are linearly isometric.
Let ϕ be the isomorphism from c(X) to c0(X) given by ϕ ((yi)i) = (y0, y1−y0, . . . , yn−1−
y0, . . . ) for y = (yi)i ∈ c(X) and y0 = limi yi. Also, ϕ−1 ((zi)i) = (z2 + z1, z3 +
z1, . . . , zn+1 + z1, . . . ) for each z = (zi)i ∈ c0(X).

If (xi)i denotes a sequence in cs(X) (or c(X) or c0(X)) we will write xi = (xij)j

for i ∈ N. Using the above notation, we obtain the following characterization:

Let X be a Banach space and let (xi)i be a sequence in cs(X). The following
conditions are equivalent:

1. There exists a natural family F with property SC such that

∑
k∈B

∑
j≥k

xij


i

is a

convergent sequence for each B ∈ F .

2. There exists a natural family F with property Pc0 such that

∑
j∈B

∑
j≥k

xij


i

is a

convergent sequence for each B ∈ F .

3. The sequence (xi)i is convergent to some x0 = (xj)j ∈ cs(X).

Proof.
It is sufficient to prove that properties 2. and 3. are equivalent. In the same

manner we can establish the equivalence between 1. and 3.

We first prove 2. ⇒ 3. Define zi = ϕ ◦ φ(xi) =

∑
j

xij,−
∑
j≥2

xij,−
∑
j≥3

xij, . . . ,

−
∑
j≥n

xij, . . .

 ∈ c0(X) and write zi = (zik)k with zi1 =
∑
j

xij and

zik = −
∑
j≥k

xij for k > 1. From 2. it follows that

∑
k∈B

zik


i

is convergent for each

B ∈ F , where F has property Pc0 , and so the sequence (zi)i and the family F
verify condition 2. in Corollary 2.4. We can observe that if 1 ∈ B we obtain the

same conclusion as

∑
j

xij


i

is convergent. Then we can denote by z0 ∈ c0(X) the

limit of (zi)i. Define x0 = φ−1 ◦ ϕ−1(z0) ∈ cs(X), it is obvious that limi x
i = x0.
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Conversely, define z0 = ϕ ◦ φ(x0) and zi = ϕ ◦ φ(xi) for each i ∈ N. Corollary

2.4 allows us to consider a natural family F with property Pc0 such that

∑
j∈B

zij


i

is convergent for B ∈ F . From the definition of φ and ϕ it is easy to complete this
argument. �

For Banach spaces with a Schauder basis, the following corollary asserts that
every series which is F -convergent in the topology σ(X, M), where M denotes the
set of associated coordinate functionals, is actually convergent in X.

Corollary 3.10. Let X be a Banach space with a Schauder basis {ai : i ∈ N} and
coordinate functionals M = {gi : i ∈ N} and let F be a natural family with property
P1. If

∑
j

xj is a series in X such that
∑
j∈B

xj is σ(X, M) convergent for B ∈ F ,

then
∑
j

xj is convergent in X.

Proof. It is sufficient to observe that the matrix (gi(xj)ai)i,j verifies the condition
3. in Theorem 3.6. �

Swartz [11] established the following result, which is based on the Antosik inter-
change theorem ([2]): Let X be a Hausdorff topological vector space with a Schauder
basis {ai : i ∈ N} and coordinate functionals M = {gi : i ∈ N}. If

∑
j

xj is σ(X, M)

subseries convergent, then
∑
j

xj is subseries convergent in the original topology of

X.
For Banach spaces, the following property ([1]) allows us to improve the above

result:

Definition 3.11. We say that a natural family F has property S1 if for every pair
[(Ai)i, (Bi)i] of disjoint sequences of mutually disjoint sets in φ0(N) there exists an
infinite set M ⊆ N and B ∈ F satisfying Ai ⊆ B and Bi ⊆ Bc for each i ∈ M .

Theorem 3.12. Let X be a Banach space with a Schauder basis {ai : i ∈ N} and
coordinate functionals M = {gi : i ∈ N} and let F be a natural family with property
S1. If

∑
j

xj is a series in X such that
∑
j∈B

xj is σ(X,M) convergent for each B ∈ F ,

then
∑
j

xj is unconditionally convergent (uco).

Proof. For k, j ∈ N, let zkj =
k∑

i=1

gi(xj)ai. It is easy to check that the matrix (zkj)k,j

is such that:

(i)

∑
j∈B

zkj


k

is convergent for each B ∈ F .

(ii)
∑
j

zkj is uco ([1]) for each k ∈ N.
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Then
∑
j

zkj are uco uniformly on k ∈ N ([1]). The rest of the proof is obvious.

�

Remark 3.13 We now give some examples of natural families with property P1 that
are not IQ σ-families. Define F2 = B2 ∪ φ0(N), where B2 is the family of the sets
A ⊆ N such that both A and Ac contain infinitely many even numbers and odd
numbers. Analysis similar to that in Remark 2.6 shows that F2 has property P1.
Let f : N → N be the map given by f(i) = 1 for i ∈ N. If (Fr)r and (mr)r are
two sequences in I0(N) and N, respectively, with mr ≤ inf Fr ≤ sup Fr < mr+1 for
r ∈ N, we now prove that there exist B ∈ F2 and an infinite set M ⊆ N which verify
properties (a) and (b) in Definition 3.3.
Define A =

⋃
r Fr, B = {2n : n ∈ N} and C = {2n − 1 : n ∈ N}. We consider two

cases and proceed by induction in each of them:

(A) A ∩B is an infinite set. In the first step we consider:

(i.1) r11, r12 ∈ N, with r11 < r12, such that Fr11 and Fr12 have at least one even
number.

(ii.1) r13 ∈ N, r13 ≥ r12, satisfying [mr13 , mr13+1)∩C 6= ∅. Let l1 be an element
which belongs to the previous intersection set.

(iii.1) r14 ∈ N, r14 ≥ r13, which verifies that there exists an odd number n1 > l1
which belongs to [mr14 , mr14+1).

Define A1 = Fr11 ∪{l1} and M1 = {r11}. Let us observe that mr1 ≤ inf Fr11 ≤
sup Fr11 < mr11+1 ≤ mr12 ≤ mr13 ≤ l1, and so l1 /∈ [mr11 , mr11+1).

We now apply this argument again with the difference that r21 must ver-
ify the inequality r21 > r14. Hence, the second step allows us to obtain
r21, r22, r23, r24 ∈ N, with r21 < r22 ≤ r23 ≤ r24, such that:

(i.2) Fr21 and Fr22 have at least an even number.

(ii.2) l2 ∈ [mr23 , mr23+1) ∩ C.

(iii.2) n2 > l2 and n2 ∈ [mr14 , mr14+1) ∩ C.

Define A2 = Fr21 ∪ {l2} and M2 = {r21}. It is clear that l1 < n1 <
mr14+1 ≤ mr21 , and so l1, n1 /∈ [mr21 , mr21+1). Also, it can be checked that
l2 /∈ [mr21 , mr21+1).

The inductive argument we have sketched above gives us four strictly increas-
ing sequences (ri1)i, (ri2)i, (ri3)i and (ri4)i in N, with ri1 < ri2 ≤ ri3 ≤ ri4 <
r(i+1)1 for i ∈ N, which verify the properties:

(a) Fri1
and Fri2

have at least one even number.

(b) For each i ∈ N, there exist two odd numbers li and ni with ni > li,
li ∈ [mri3

, mri3+1) and ni ∈ [mri4
, mri4+1).
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It can be checked that lk < nk < mri1
, for each i ∈ N, i > 1, and k ∈

{1, 2, . . . , i− 1}, and li ≥ mri1+1 for i ∈ N.

Define An = Frn1 ∪ {ln} and Mn = {rn1} for n ∈ N and let us consider
B =

⋃
n An and M =

⋃
n Mn. It is easily seen that B and M verify properties

(a) and (b) in Definition 3.3 and also B ∈ F2.

(B) A ∩ B is a finite set and A ∩ C is infinite. The proof is very similar to that
in the previous case with the following differences, for each i ∈ N: (i) ri1

and ri2 must verify that Fri1
and Fri2

have at least one odd number instead of
one even number; (ii) li and ni must be even numbers instead of odd numbers.

Let us observe that the union of the members of each subsequence of ([2n, 2n])n

does not belong to F2, and so this family is not an IQ σ-family.

Moreover, if Q1 is an infinite subset of N whose complement is also infinite,
an analysis similar to that in Remark 2.6 allows us to adapt the above inductive
argument in order to show that the following families have property P1:

• Fα = {B ⊆ N : B ∩Q1 is infinite} ∪ φ0(N)

• Fβ = {B ⊆ N : B ∩Q1 and Bc ∩Q1 are infinite} ∪ φ0(N).

Let {jr} be a strictly increasing sequence such that Qc
1 = {jr : r ∈ N} and define

Fr = {jr}, for each r ∈ N. Considering the sequence (Fr)r, we conclude that Fα

and Fβ are not IQ σ-families.

Let Q2 and Q3 be two infinite subsets of N with the property that at least one
of them has an infinite complement. Similarly, the following families have property
P1 but are not IQ σ-families.

• Fγ = {B ⊆ N : B ∩Q2 and B ∩Q3 are infinite} ∪ φ0(N).

• Fθ = {B ⊆ N : B ∩Q2, B ∩Q3, B
c ∩Q2 and Bc ∩Q3 are infinite } ∪ φ0(N).

�

4 Convergence in c(X)

Let X be a Banach space and let c(X) be the space of convergent sequences in X,
endowed with the norm

‖(xn)n‖ = sup
n
‖xn‖.

This space is linearly isometric to cs(X). Let φ be the isometry from cs(X)
to c(X) (see Remark 3.9). If (xi)i denotes a sequence in c(X) (or cs(X)) we will
write xi = (xij)j. From Corollary 3.8 we can now characterize the convergence of a
sequence in c(X), using the above notation.
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Theorem 4.1. Let X be a Banach space and let (xi)i be a sequence in c(X). The
following statements are equivalent:

1. Assume that (mj)j and (nj)j are two sequences in N with nj < mj ≤ nj+1, for
each j ∈ N. Then there exists an infinite set M ⊆ N such that ∑

j∈M

(ximj
− xinj

)


i

is a convergent sequence.

2. There exists a natural family with property P1 such that

∑
j∈B

(xij − xi(j−1))


i

is convergent for each B ∈ F (let us consider xi0 = 0).

3. The sequence (xi)i converges to some x0 = (xj)j ∈ c(X).

Proof. It is sufficient to establish the equivalence between properties 1. and 3.
Similarly, it can be shown that 2. and 3. are equivalent.

We first prove that 1. ⇒ 3. For every i ∈ N, write xi = (xij)j and yi = (yij)j =
φ−1(xi). It is sufficient to show that the family

F =

B ⊆ N :

∑
j∈B

yij


i

is convergent

 is an IQ σ-family (see Corollary 3.8).

Suppose that (Fj)j is a sequence of intervals with sup Fj < inf Fj+1 and let pj =
inf Fj and qj = sup Fj, for j ∈ N. Applying our hypothesis, the sequences (pj − 1)j

and (qj)j allow us to obtain an infinite set M ⊆ N such that

∑
l∈M

(xiql
− xi(pl−1))


i

=∑
j∈B

yij


i

, where B =
⋃

l∈M Fl, is convergent. We can certainly assume that

inf F1 > 1, for, if not, we replace (Fj)j by (Fj)j>1. Let us observe that
∑

j∈Fl
yij =

xiql
− xi(pl−1)) if pl 6= 1 and

∑
j∈Fl

yij = xiql
for Fl = [1, ql]. This proves that (yi)i

converges to some y0 ∈ cs(X) (Corollary 3.8), and so that limi x
i = x0, where

x0 = φ(y0).

Conversely, for every i ∈ N take yi = (yij)j = φ−1(xi) = φ−1((xij)j) and y0 =
(yj)j = φ−1(x0). If (mj)j and (nj)j are two sequences satisfying nj < mj ≤ nj+1

and Fj denotes the interval in N [nj + 1, mj], for each j ∈ N, from Corollary 3.8 it

follows that there exists an infinite set M ⊆ N such that

∑
j∈B

yij


i

is convergent,

where B =
⋃

l∈M

Fl. Obviously,

∑
l∈M

(ximl
− xinl

)


i

also converges. �

Remark 4.2 From Corollary 2.4 and the isomorphism ϕ between c(x) and c0(X)
(see Remark 3.9) we can obtain another characterization of the convergence of a
sequence in c(X). Let (xi)i be a sequence in c(X), we will denote xi = (xij)j and
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xi∞ = limj xij for i ∈ N . Analysis similar to that in the previous argument allows
us to consider and prove the following result:

Let X be a Banach space and let (xi)i be a sequence in c(X). The following
statements are equivalent:

1. There exist x0 = limi xi∞ and a natural family F with property SC such that∑
j∈B

(xi(j−1) − xi∞)


i

is a convergent sequence for each B ∈ F (let us consider

xi0 = 0).

2. There exist x0 = limi xi∞ and a natural family F with property Pc0 such that∑
j∈B

(xi(j−1) − xi∞)


i

is a convergent sequence for each B ∈ F (let us consider

xi0 = 0).

3. The sequence (xi)i is convergent to some x0 = (xj)j ∈ c(X).

Proof.
It is sufficient to prove that properties 2. and 3. are equivalent. In the same

manner we can establish the equivalence between 1. and 3.

We first prove that 2. ⇒ 3. Let us consider yi = ϕ(xi) = (xi∞, xi1−xi∞, . . . , xi(n−1)−
xi∞ . . . ). From 2. it is easy to check that (yi)i and the family F verify condition 2.
in Corollary 2.4, and so there exists y0 ∈ c0(X) such that the sequence (yi)i con-
verges to this element. We can observe that if 1 ∈ B we obtain the same conclusion
as (xi∞)i is a convergent sequence. It is enough to consider x0 = ϕ−1(y0), which
satisfies x0 = limi x

i in c(X), in order to complete this argument.

Conversely, if property 3. is verified we will denote by x0 the limit of the sequence
(xj)j = x0. It need only be shown that limi xi∞ = x0, as from Corollary 2.4 it is easy
to complete the proof. For each ε > 0 let us consider i0 ∈ N satisfying ‖xi−x0‖ < ε

3

for i ≥ i0. Fix i ∈ N, i ≥ i0, and let mi ∈ N be such that ‖ximi
− xi∞‖ < ε

3
and

‖xmi
− x0‖ < ε

3
. We are now in a position to check the following inequalities:

‖xi∞ − x0‖ ≤ ‖xi∞ − ximi
‖+ ‖ximi

− xmi
‖+ ‖xmi

− x0‖ < ε for i ≥ i0. �
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