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algebras

Rodia I. Hadjigeorgiou

0. Introduction

The classical problem of existence of non-local function algebras was settled in the
affirmative by Eva Kallin in the early sixties by her well-known example [17], (see
also [6, p. 170] and [22, p. 83, Example]. A few years later R. G. Blumenthal [3, 4]
remarked that Kallin’s example was simply a particular case of a type of algebras
studied by S. J. Sidney in his dissertation (see [21]). The previous results were
obtained within the standard context of Banach function algebra theory.

On the other hand, working within the general framework of Topological Al-
gebras, not necessarily normed ones (we refer to A. Mallios [18] for the relevant
terminology), we have already considered in [12] the spectrum of Sidney’s algebra.
More precisely, we looked at it, as a ”gluing space” of the spectra of two factor tensor
product algebras, whose sum constituted, by definition, the algebra of Sidney. In
point of fact, it was Blumenthal (loc. cit.), who actually defined the spectrum of
Sidney’s algebra, as a gluing space, his result being thus subsumed into ours [12,
Theorem 5.2]. Now, continuing herewith our previous work in [12], we further ob-
tain a general existence theorem for non-local topological algebras (à la Blumenthal;
see Theorem 3.2). Furthermore, based on a recent article of R. D. Mehta [19], still
within the Banach function algebra theory, we consider the Choquet boundary of
the (generalized) algebra of Sidney (cf. Theorem 4.1 in the sequel). Indeed, by
changing the hypotheses, appropriately, we are able to have the same boundary in
a more concrete form, than that one in [12]. Yet, following in the preceding general
set-up A. Mallios [18] (see Lemma 4.1 below), we also obtain the Šilov boundary of
the same Sidney’s algebra, as above.
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1. Preliminaries

In all that follows by a topological algebra E we mean a topological C-algebra with
non-empty spectrum M(E), endowed with the Gel’fand topology. The Gel’fand map
of E, given by

G : E → Cc(M(E)) : x 7→ G(x̂) ≡ x̂ : M(E) → C
: f 7→ x̂(f) := f(x),

defines, through its image, the so called Gel’fand transform algebra of E, denoted by
Ê and topologized as a locally m-convex algebra, when Cc(M(E)) carries the topology
”c” of compact convergence [18, p. 19, Example 3.1]. By a spectral algebra, we mean
a topological algebra E satisfying

SpE(x) = x̂(M(E)), x ∈ E, (1.1)

where SpE(x) stands for the spectrum of x ∈ E. This spectral property characterizes
advertible completeness in a unital locally m-convex algebra [ibid. p. 104, Corollary
6.4]. Besides E is said to be hereditarily Weierstrass, when every |x̂|, x ∈ E, attains
its supremum at a point of M(E), while this property is retained by every closed
subset of M(E) (take e.g. a normal Weierstrass space or a countably compact space
[8, p. 11, 1.4]). Now, given a 2-sided ideal I of E, the set

hE(I) = {f ∈ M(E) : ker(f) ⊇ I},

being, apparently, a closed subset of M(E), is called the hull of I in M(E), realizing
the spectrum of E/I, as well as, that one of E/I. That is, one has

M(E/I)
∼=

homeo
hE(I) = hE(I)

∼=
homeo

M(E/I). (1.2)

(See also [18, p. 330, Definition 1.1, p. 335, Lemma 3.1, p. 339, Theorem 4.1 and
p. 347, (4.41)]). Furthermore, one obtains [9, p. 314, Theorem 2.1]

M(I)
∼=

homeo
(hE(I))c = (hE(I))c ∼=

homeo
M(I). (1.3)

For a given B ⊆ M(E), the geometric (or even E-convex) hull of B is defined by
the relation,

(1.4)
(B)E ≡ E − hull(B) = {f ∈ M(E) : |f(x)| ≤ pB(x̂)

≡ supf∈B |x̂(f)|, x ∈ E},
viz. one has a closed subset of M(E), such that

(B)E = (B)E . (1.5)

The same notion is inclusion-preserving, while if (B)E = B, then B is called E-
convex. We note that every hull and every zero set of an x̂, x ∈ E, are E-convex [15].
Considering the restriction algebra E |̂B, endowed with the relative topology from
Cc(B), the continuity of the Gel’fand map of E implies the following homeomorphism
into (cf. [9, p. 283, Theorem 1.2])

M(E |̂B) ⊂→homeo
(B)E, (1.6)



Spectral geometry of non-local topological algebras 393

where the indicated map is given by

θ ≡ t(r ◦ G),

with r : Eˆ → E |̂B, the restriction map. Since (imθ)E = (B)E, we say that
M(E |̂B) is ”E-convex” (viz. θ(M(E |̂B)) is so) iff θ is onto. The surjectivity
of θ is also attained, when B is compact, or when E |̂B is a Q′-algebra, in the
sense that every maximal regular 2-sided ideal is closed (see, for instance, [16] for
the terminology applied). The significance, for several applications, of this type
of topological algebras, in place of ”Q” ones, has been already pointed out by A.
Mallios in [18, p. 73, Scholium 7.1]. This sort of a topological algebra has also lately
named by M. Abel [1] a ”Mallios algebra”.

Now, the Šilov boundary of E, denoted by ∂(E), is the least boundary set of
E; that is, the smallest closed subset of M(E) on which the Gel’fand transform of
every x ∈ E attains its maximum absolute value [18, p. 189, Definition 2.2]. On the
other hand, the Choquet boundary Ch(E) of E, is that set of continuous characters
of E which are represented only by the respective Dirac measures [11, (4.1)]. In
this regard, we note that the compactness of M(E) of a unital topological algebra E
ensures both the existence of ∂(E), as well as, the density of Ch(E) in ∂(E). Given
a continuous algebra morphism φ between the topological algebras E and F , we know
that the corresponding transpose map tφ : M(F ) → M(E) preserves the Choquet
boundaries, that is, one has

tφ(Ch(F )) ⊆ Ch(E), (1.7)

while if tφ is 1-1 and proper, then one has ([10, p. 124, Lemma 5.1] and/or [13,
Theorem 3.4]),

tφ(Ch(F )) = Ch(E) ∩ tφ(M(F )). (1.8)

Yet, it is a standard result that, given two topological algebras E and F , the
corresponding tensor product algebra E⊗F , endowed with a ”compatible” topology
τ , has spectrum (see [18, p. 409, Theorem 1.1])

M(E ⊗
τ

F )
∼=

homeo
M(E)×M(F ). (1.9)

Now, by looking at the Šilov boundary of a topological tensor product algebra
E ⊗

τ
F , this exists, when ∂(E) and ∂(F ) exist, and is realized by

∂(E ⊗
τ

F )
∼=

homeo
∂(E)× ∂(F ). (1.10)

(ibid., p. 436, Theorem 1.1). Yet, concerning the Choquet boundary of E ⊗
τ

F ,
based on certain characterizations of the Choquet points, given in [14, Theorem
5.1], one obtains,

Ch(E ⊗
τ

F )
∼=

homeo
Ch(E)× Ch(F ), (1.11)

when the spectra M(E), M(F ) are Q-spaces and the Gel’fand transform algebras
E ,̂ F ,̂ (E ⊗ F )ˆ= Eˆ⊗ Fˆare σ-complete (cf. also [9, p. 378, Theorem 2.1]). In
this connection, we recall that a completely regular space X is a Q-space (”Hewitt
space”, cf. [23, p. 206, (Q4)]), if every character of the algebra Cc(X) is continuous.
See also [20, pp. 140, 142].
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2. Gluing spectra together

Given two ”intersected ” topological algebras E and F (they share an ideal, cf.
Lemma 2.1 below), with spectra M(E), M(F ), respectively, related by a continu-
ous injection, one computes the bigger spectrum by attaching the smaller one to the
spectrum of a suitable quotient algebra, along the intersection of the latter two spec-
tra; this, in turn, has a special bearing on the intersection of the algebras involved
(Theorem 2.1, below). This specializes to Blumenthal’s Theorem [3, p. (2.2), Theo-
rem 2.2] and/or [4, p. 343, Theorem 1.1], formulated for Banach function algebras
(see also [22, p. 97, Theorem 9.15]). Here we also applied [12, p. 2629, Theorem 3.1]
an elementary proof, in comparison with that of Blumenthal, namely, not depending
on the local maximum modulus principle.

For convenience, we recall the concept of ”gluing two sets together, along their
intersection.”

Definition 2.1. Given two sets X , Y with non-empty intersection X∩Y , gluing
Y to X along their intersection X ∩ Y (via the natural embedding of X ∩ Y in Y ),
means the quotient space

X ∪ Y/ ∼ ≡ X
⋃

X∩Y

Y,

where the equivalence relation ”∼” is defined as follows: Denoting by π : X ∪ Y →
X ∪ Y/ ∼ the quotient map and j : X ∩ Y → Y the natural embedding, we set

π(x) := {x}, if x ∈ (X \ Y ) ∪ (Y \X),

and
π(x) := X ∩ Y, if x ∈ X ∩ Y.

Clearly, the binary relation π is the equivalence relation generated by the graph
of j. Besides this equivalence relation renders X ∪ Y/ ∼ a disjoint union of X and
Y , since

X
⋃

X∩Y

Y = π(X ∪ Y ) ∼= X ∪ (Y \X) (2.1)

= X ⊕ (Y \X) ∼= X ⊕ Y.

So, if X ,Y are topological spaces, in view of (2.1), X
⋃

X∩Y Y is endowed with the
topology of a disjoint union (: topological sum).

The following are needed for the main conclusions of this paper, as contained in
Sections 3, 4 below. Those proofs of the results stated herewith, that are not already
derived from the relevant discussion, can be found in our previous publication in
[12]; however, for convenience of reference, we also give here the corresponding
statements.

Lemma 2.1.. Let E ,F be topological algebras with spectra M(E) , M(F ), re-
spectively, such that

i : M(E) ⊂→ i
M(F ),

and I a common ideal of E , F . Then, one has

hE(I) = (hE(I))F ∩M(E) = hF (I) ∩M(E). (2.2)
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In particular, if I is a 2-sided ideal, such that on I the relative topology from F
is smaller than that of E, that is, the natural injection

(I , τE) ⊂→ (I , τF )

is continuous, then one gets

M(F ) \M(E) ⊆ hF (I),

up to a natural embedding (: continuous injection). �

Theorem 2.1.. Let E , F be topological algebras, such that

i : M(E) ⊂→cont.
M(F ).

Moreover, let I be a common 2-sided ideal of E and F , having the following (canon-
ical) injection continuous

(I , τE) ⊂→ (I , τF ).

Then, one has
M(F ) = M(E)

⋃
M(E/I)

M(F/I), (2.3)

up to a continuous bijection. This becomes a homeomorphism, when the second
member in (2.3) is compact. �

In this regard, we still obtain that,

M(E) ∩M(F/I)
∼=

homeo
M(E/I) ≡ B

(see [12, (3.23) in Theorem 3.1]).
The preceding Theorem 2.1 supplies a generalization of the particular case that

E = I, since then, due to (1.2) and (1.3), we have,

M(F ) = hF (I) ∪ (hF (I))c ∼=
homeo

M(F/I) ∨M(I).

On the other hand, by considering the topological algebra F |̂B, instead of F/I
we have, under the continuity of the Gel’fand map of F , that (cf. also (1.4), (1.6)),

(2.4)
M(E/I)

∼=
homeo

hE(I) ≡ B ⊂
→ M(F |̂B) ⊂→ homeo

(B)F

⊆ (B)I
F = hF (I)

∼=
homeo

M(F/I) ⊆ M(F ).

Thus, in view of (2.2), as well, one further obtains,

B = M(E) ∩M(F |̂B)
∼=

homeo
M(E) ∩ (B)F (2.5)

= M(E) ∩ (B)I
F = M(E) ∩ hF (I),

while, by (2.5), we still have

M(F/I)
∼=

homeo
hF (I) = (M(E))c ∪B = (M(E))c ∪M(F |̂B)

= (M(E))c ∪ (B)F .
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Therefore, by assuming

M(F/I) = M(F |̂B) or, equivalently, (M(E))c ⊆ M(F |̂B), (2.6)

and based on the proof of Theorem 2.1, the space M(F ) is obtained by gluing

M(F |̂B) to M(E) along their intersection B ≡ hE(I)
∼=

homeo
M(E/I), via the nat-

ural embedding (cf. (2.4)) of B ≡ hE(I) in M(F |̂B). Thus, as an immediate
consequence of the preceding, one gets the next result, specializing to Blumenthal’s
Theorem, that initially was given for Banach function algebras in [3, p. (2.2)], [4, p.
343].

Theorem 2.2.. Let E , F be topological algebras with F having a continuous
Gel’fand map, such that

i : M(E) ⊂→cont.
M(F ).

Moreover, let I be a common 2-sided ideal of E and F , with

(I , τE) ⊂→ (I , τF )

continuous and
B ≡ hE(I),

such that
M(F/I) = M(F |̂B). (2.7)

Then, one has
M(F ) = M(E)

⋃
B

M(F |̂B), (2.8)

up to a continuous bijection, which becomes a homeomorphism, when the second
member of (2.8) is compact. �

Referring to the rel. (2.7), this is attained when M(F |̂B) is F -convex and

pB(x̂) ≡ phE(I)(x̂) = phF (I)(x̂), x ∈ F,

since then (see also comments after (1.5))

M(F |̂B) ∼= (B)F ≡ (hE(I))F = (hF (I))F = hF (I) ∼= M(F/I).

Another condition guaranteeing (2.7) is hE(I) to be a boundary set for
C(hF (I)); for then

hF (I) = (hE(I))C(hF (I)) ⊆ (hE(I))F ⊆ hF (I).

On the other hand, the equivalent relation to (2.7), as given by (2.6), is accom-
plished by employing, within our extended framework, the local maximum modulus
principle. Concerning this principle for topological (non-normed) algebras, see, for
instance, [2, p. 67, Corollary 4.3], [18, p. 258, Lemma 1.3] and [9, p. 328, Corollary
3.1].

As an application of Theorems 2.1 and 2.2, we get now at the corresponding
Theorem of Sidney for topological tensor product algebras:
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Thus, suppose we are given two topological algebras E and F , a subalgebra A
of E and a 2-sided ideal J of F . Hence, E ⊗ J and A⊗ F are a 2-sided ideal and a
subalgebra of E ⊗ F , respectively. Furthermore, consider the topological algebra

A0 = E ⊗
τ

J + A ⊗
τ

F ⊆ E ⊗
τ

F, (2.9)

which also has E ⊗ J as a 2-sided ideal. Now, we note that (cf. [9, Lemma 3.1],
along with (1.2) in the preceding),

M(E ⊗
τ

F/E ⊗ J)
∼=

homeo
hE⊗

τ
F (E ⊗ J) = M(E)× hF (J)

= M(E)×M(F/J)

and that, if A is separating in E, the same holds true for A ⊗
τ

F ⊆ A0 in E ⊗
τ

F ,
accordingly for A0, as well, that is,

M(E ⊗
τ

F ) ⊂→cont.
M(A0).

Thus, by further applying Theorem 2.1 to the algebras E ⊗
τ

F and A0, we immedi-
ately have the next.

Theorem 2.3.. Let E , F be unital topological algebras, A a separating subalgebra
of E, containing the constants and J a 2-sided ideal of F . Moreover, let E ⊗

τ
F be

the corresponding unital tensor product algebra, endowed with a compatible topology
τ , and A0 the subalgebra of it given by (2.9). Then, one has

M(A0) = (M(E)×M(F ))
⋃

M(E⊗
τ
F/E⊗

τ
J)

M(A0/E ⊗
τ

J), (2.10)

up to a continuous bijection, which becomes a homeomorphism when the second
member in (2.10) is compact. �

Yet, as an application of Theorem 2.2, we also obtain the next general version
of Sidney’s Theorem, as above, employing an entirely simple proof; cf., instead, [21,
p. 135, Theorem 3.3], or even [3, p. (2.5), Corollary 2.4]. Thus, one has.

Theorem 2.4.. Assuming the context of Theorem 2.3, suppose that A0 has con-
tinuous Gel’fand map GA0

and

M(A0/E ⊗
τ

J) = M(A0 |̂M(E)×hF (J)
).

Then, one gets

M(A0) = (M(E)×M(F ))
⋃

M(E)×M(F/J)

(M(A |̂M(E)
)×M(F/J)), (2.11)

up to a continuous bijection, which becomes a homeomorphism, under the compact-
ness of the second member in (2.11). In particular, if M(A |̂M(E)

) is A-convex,

then it is homeomorphic to (M(E))A, while it is further identified with M(A), iff

sup
f∈M(E)

|f(x)| = sup
f∈M(A)

|f(x)|, x ∈ A, (2.12)

so that, one then obtains

M(A0) = (M(E)×M(F ))
⋃

M(E)×M(F/J)

(M(A)×M(F/J)). (2.13)

�
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In the previous Theorem 2.4 the condition (2.12) is attained under suitable con-
ditions, either for the spectra of the algebras involved, or for the algebras themselves.
Thus, (2.12) is fulfilled when

M(E) = M(A),

or in the case E is a commutative advertibly complete locally m-convex algebra, with
the subalgebra A being also advertibly complete in the relative topology; indeed, their
spectral radii then coincide, viz. one has

sup
f∈M(E)

|f(x)| = rE(x) = rA(x) = sup
f∈M(A)

|f(x)|, x ∈ A

(cf. [18, p. 99, Theorem 6.1, p. 104, Corollary 6.5]).
Furthermore, since

M(A)×M(F/J) ⊆ M(A)×M(F )
∼=

homeo
M(A ⊗

τ
F ),

and, by hypothesis for A,

M(E)×M(F ) ∼= M(E ⊗
τ

F ) ⊂→cont.
M(A ⊗

τ
F ),

we obtain from (2.13) that

M(A0) ⊂→cont.
M(A ⊗

τ
F ), (2.14)

where M(A0) is only continuously identified with the second member of (2.13).

3. Non-local topological algebras

In this section we show that the algebras constructed in Sidney’s Theorem [21, p.
135, Theorem 3.3] belong to the special class of non-local (topological) algebras. In
this regard, given a topological algebra E, we say that a function h ∈ Cc(M(E)) is
locally in E ,̂ if there exists an open covering {Ui : i ∈ I} of M(E), such that h|Ui

∈
E |̂Ui

, i ∈ I; equivalently, for every f ∈ M(E), there exists an open neighbourhood
U of f in M(E), such that h|U ∈ E |̂U . Thus, E is said to be a non-local algebra, if
there exists a function h in C(M(E)), which locally belongs to E ,̂ but not globally
to it, viz. h 6∈ E .̂ (See also e.g. [18, p. 348, Theorem 5.1].

Now, given a topological algebra E, assume that M(E) has a partition defined
by two closed subsets X , Y . Furthermore, considering the algebra A0, as given by
(2.9), suppose that there is ẑ ∈ F \̂J ,̂ such that

hF (J) ⊆ ker(ẑ). (3.1)

Thus, setting

V = M(A0)\(Y ×M(F )) = (X ×M(F )) ∪ (M(A)\M(E))× hF (J),
W = M(A0)\(X ×M(F ) = (Y ×M(F )) ∪ (M(A)\M(E))× hF (J),

when M(E ⊗
τ

F ) is closed in M(A0), we get an open covering of M(A0), through
V, W , with

V ∩W = (M(A)\M(E))× hF (J). (3.2)
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We now define the function

φ =

{
0 on V
ẑ on W,

(3.3)

which, due to (3.2) and (3.1), is well-defined and continuous on M(A0), i.e. φ ∈
Cc(M(A0)). Besides, since φ|V = 0 and φ|W = ẑ = 1Aˆ⊗ẑ ∈ Â⊗Fˆ⊆ A0̂ , φ is locally
in A0 .̂ Here we assume that A is unital; this is actually guaranteed by Theorem 3.1
below (based on Šilov’s Idempotent Theorem), the unit element of A being, in fact,
independent of that of E. We show that φ 6∈ A0 ,̂ through a characterization of the
algebra A, based on a previous Banach function algebra result of R. G. Blumenthal
[3, Lemma 3.2].

The following byproduct of the preceding, although not needed for the sequel, it
does have, however, an interest p e r c e, which thus permits its inclusion herein.
Namely, one has.

Lemma 3.1.. Let E , F be topological algebras and φ : E → F an onto con-
tinuous algebra morphism, with tφ : M(F ) → M(E) the respective transpose map.
Moreover, consider B ⊆ M(F ) with tφ(B) a boundary set for E. Then, B is a
boundary set for F , as well.

Proof. By the hypothesis for tφ(B), for every x ∈ E there exists g0 ∈ B, such
that

‖x̂‖M(E)
≡ sup

g∈M(E)

|x̂(g)| = |x̂(tφ(g0))| = |φ̂(x)(g0)|. (3.4)

Now, for every y ∈ F , there exists, due to surjectivity of φ, x ∈ E, such that
y = φ(x). Thus (cf. also (3.4))

‖ŷ‖M(F )
= ‖φ̂(x)‖M(F )

= ‖x̂ ◦ tφ‖M(F )
= ‖x̂‖tφ(M(F ))

≤ ‖x̂‖M(E)
= |φ̂(x)(g0)| = |ŷ(g0)|,

for some g0 ∈ B, which proves the assertion. �

Theorem 3.1.. Let E , F be unital topological algebras, A a commutative semi-
simple complete locally m-convex separating subalgebra of E and J a 2-sided ideal
of F satisfying (3.1) for some ẑ ∈ F \̂J .̂ Moreover, let E⊗F be the corresponding
unital tensor product algebra endowed with a compatible topology τ , and A0 the
subalgebra of it given by (2.9), with continuous Gel’fand map GA0

, such that M(E ⊗
τ

F ) is closed in M(A0) and

M(A0/E ⊗
τ

J) = M(A0 |̂M(E)×hF (J)
).

Finally, assume that A |̂M(E)
is closed in Cc(M(E)), with spectrum A-convex, such

that
sup

f∈M(E)

|f(x)| = sup
f∈M(A)

|f(x)|, x ∈ A,

while M(E) is a k-space, having a partition by two closed subsets X, Y . Then, the
function φ, defined by (3.3), is not in A0 ,̂ if, and only if, either one of the two
following relations holds true, viz.

(X)A ∪ (Y )A 6= M(A), (3.5)
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or

(X)A ∩ (Y )A 6= ∅. (3.6)

Proof. If both (3.5) and (3.6) are not valid, by the Šilov Idempotent Theorem
(cf. [5] and/or [7]), there exists x ∈ A, such that

x̂2 = x̂, (x̂)−1(0) = (X)A, (x̂)−1(1) = (Y )A .

Then, for ẑ ∈ F \̂Jˆsatisfying (3.1), we have

x̂⊗ z =

{
0 on (X)A ×M(F )
ẑ on (Y )A ×M(F ),

so that φ = x̂⊗ z|M(A0)
∈ (A ⊗

τ
F ) |̂M(A0)

⊆ A0 .̂ Hence, either (3.5) or (3.6) is a
necessary condition for φ not to be in A0 .̂

Assuming now, that either (3.5) or (3.6) holds true, if we find a measure µ ∈
Mc(M(E ⊗

τ
F )) ∼= (Cc(M(E ⊗

τ
F )))′ (cf. [18, p. 474, Lemma 2.1]), such that

µ ∈ (A0 )̂⊥ and µ(φ) 6= 0, (3.7)

then, we have, of course, that φ 6∈ A0 .̂ Since ẑ ∈ F \̂J ,̂ there is (Hahn-Banach)
ν ∈Mc(M(F )), with

ν ∈ (J )̂⊥ and ν(ẑ ) 6= 0. (3.8)

Now, applying Šilov’s Idempotent Theorem to Cc(M(E)), one finds h ∈ Cc(M(E)),
such that h2 = h, h−1(0) = X and h−1(1) = Y . We show that h 6∈ A |̂M(E)

⊆ E ;̂

if h ∈ A |̂M(E)
, then h = α̂0|M(E)

, for some α0 ∈ A, with α̂2
0 − α̂0 = 0 |M(E)

, and

since M(A |̂M(E)
) ∼= (M(E))A = M(A) one obtains (Šilov Idempotent Theorem for

A |̂M(E)
)

α̂−1
0 (0) ∪ α̂−1

0 (1) = M(A). (3.9)

By the A-convexity of α̂−1
0 (0) and the continuity of GA , implied by that one of GA0

,

we get M(A |̂α̂−1
0 (0))

∼= α̂−1
0 (0), and thus

(X)A |̂
α̂−1
0

(0)
⊆ (X)A ⊆ α̂−1

0 (0), (3.10)

while α̂−1
0 (0) ∩M(E) = X. Now, since α0 ∈ A is idempotent, we have [7]

A = α0A + (1− α0)A,

so that if f ∈ α̂−1
0 (0), then, for every A 3 α = α0x + (1− α0)y, we get

|α̂(f)| = |ŷ(f)| ≤ ‖α̂‖α̂−1
0 (0) = ‖(1− α̂0)ŷ‖α̂−1

0 (0)

≤ ‖(1− α̂0)ŷ‖M(A)
= ‖(1− α̂0)ŷ‖M(E)

= ‖ŷ‖X = ‖α̂‖X ,

hence, f ∈ (X)A |̂
α̂−1
0

(0)
. Thus, due to (3.10), one gets

(X)A = α̂−1
0 (0),
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and similarly
(Y )A = α̂−1

0 (1),

which along with (3.9) contradicts both (3.5) and (3.6). Therefore, h 6∈ A |̂M(E)
,

implying the existence of a measure λ ∈Mc(M(E)), such that

λ ∈ (A |̂M(E)
)⊥ and λ(h) ≡

∫
Y
dλ 6= 0. (3.11)

Finally, by taking the measure µ ≡ λ × ν ∈ Mc(M(E ⊗
τ

F )), we have by (3.8)

and (3.11) that µ(φ) 6= 0 and µ ∈ ((E ⊗
τ

J) )̂⊥, ((A ⊗
τ

F ) )̂⊥, which implies (3.7),
hence, φ 6∈ A0 .̂ �

An immediate consequence of the preceding Theorem 3.1 is now the following
result, providing a method of constructing non-local topological algebras.

Theorem 3.2.. Suppose we are given the context of Theorem 3.1 and assume
that either one of the following two relations holds true, viz.

(X)A ∪ (Y )A 6= M(A),
or

(X)A ∩ (Y )A 6= ∅.
Then, A0 is a non-local topological algebra. �

4. Boundaries of A0

We compute in this section certain standard boundaries of A0 (cf. (2.9)). In this
connection, we have already given in [12] the Šilov, Bishop and Choquet boundaries
using the technique of gluing topological spaces together. Here, based on the relation
(2.11), we obtain, by a different approach, a more concrete form of Choquet and Šilov
boundaries of A0, generalizing also a previous Banach function algebra result of R. D.
Mehta [19, Theorem 3.1]; the latter was formulated for a certain particular function
algebra on a product space. Thus, one has the following.

Theorem 4.1.. Let E , F be unital topological algebras with spectra M(E), M(F )
Q-spaces and Gel’fand transform algebras E ,̂ Fˆ σ-complete, A a separating subal-
gebra containing the constants, with spectrum M(A) a Q-space, Â σ-complete and J
a 2-sided ideal of F . Moreover, let E ⊗

τ
F be the corresponding unital tensor product

algebra endowed with a compatible topology τ , having (E ⊗
τ

F )̂ = Eˆ⊗Fˆσ-complete
and A0 the subalgebra of E ⊗

τ
F , defined by (2.9), with continuous Gel’fand map

GA0
, such that

M(A0/E ⊗
τ

J) = M(A0 |̂M(E)×hF (J)
).

Finally, let M(A |̂M(E)
) be A-convex with

sup
f∈M(E)

|f(x)| = sup
f∈M(A)

|f(x)|, x ∈ A.

Then, one has

Ch(A0) ⊃←
(
Ch(E)× (Ch(F )\M(F/J))

)
∨

(
Ch(A)×M(F/J)

)
, (4.1)
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up to a continuous injection. In particular, if M(E) , M(J) and the second member
in (4.1) are compact (equivalently each factor is compact), we obtain the homeo-
morphisms

Ch(A0) = (Ch(E)× Ch(J)) ∨ (Ch(A)×M(F/J)), (4.2)

and
∂(A0) = (∂(E)× ∂(J)) ∨ (∂(A)×M(F/J)). (4.3)

Proof. By hypothesis for A, we have (cf. also (1.9) and (2.14))

M(E)×M(F ) ∼= M(E ⊗
τ

F ) ⊂→ cont.
M(A0)

⊂
→ cont.

M(A ⊗
τ

F ) ∼= M(A)×M(F ),

so that, by virtue of (1.11), we get

Ch(E)× Ch(F ) ⊂→ cont.
Ch(A0) ⊂→ cont.

Ch(A)× Ch(F ). (4.4)

Now, since Ch(F )\M(F/J) ⊆ Ch(F ), one gets, by (4.4),

Ch(E)×
(
Ch(F )\M(F/J)

)
⊆ Ch(E)× Ch(F ) ⊆ Ch(A0). (4.5)

On the other hand, by taking h0 = f0 ⊗ g0 ∈ Ch(A) × hF (J) ⊆ M(A) × hF (J) ⊆
M(A0) ⊂→ M(A)×M(F ), we show that h0 ∈ Ch(A0). So, if W is a neighbourhood
of h0 in M(A0), there exist open neighbourhoods U of f0 in M(A) and V of g0 in
hF (J), with h0 = f0 ⊗ g0 ∈ U ⊗ V ⊆ W . Since f0 ∈ Ch(A), given U , as before,
there exists, equivalently [14, Theorem 5.1, 4)], x ∈ A such that

f0 ∈ Mx̂ ⊆ U,

where
Mx̂ = {f ∈ M(A) : |f(x)| = sup

h∈M(A)

|h(x)|}.

Thus, x⊗ 1F ∈ A0, with |h0(x⊗ 1F )| = |f0(x)|, while

Mx̂⊗1F
= {h = (f, g) ∈ M(A0) : |h(x⊗ 1F )| = |f(x)|

= sup
h′∈M(A0)

|h′(x⊗ 1F )| = sup
f ′∈M(A)

|f ′(x)|} = Mx̂ .

Hence, h0 ∈ Mx̂⊗1F
= Mx̂ ⊆ U = U × {g0} ⊆ U × V ⊆ W , implying that h0 ∈

Ch(A0), so that
Ch(A)× hF (J) ⊆ Ch(A0). (4.6)

Now, given that (4.5) and (4.6) have empty intersection, we get (4.1) up to a
continuous injection. On the other hand, assuming the compactness of M(E) , M(J)
and due to (1.8), we have

Ch(E) = Ch(A) ∩M(E),

as well as (cf. also (1.2), (1.3)),

Ch(J) = Ch(F ) ∩M(J) = Ch(F )\M(F/J).
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Furthermore, assuming the compactness of the second member in (4.1), then (4.2)
would have been proved, up to a homeomorphism, have we shown(

(Ch(E)× (Ch(F )\hF (J))) ∪ (Ch(A)× hF (J))
)c

⊆ Ch(A0)
c . (4.7)

Hence, one gets (4.3), as well, by taking closures to both sides of (4.2).
Now, since the first member in (4.7) is equal to the union of the following sets,

K ≡ (M(E) ∩ Ch(A)c)× (Ch(F ) ∪ hF (J))c,

L ≡ (M(E) ∩ Ch(A)c)×
(
(Ch(F )c ∪ hF (J)) ∩ hF (J)

)
,

M ≡ Ch(E)× (Ch(F ) ∪ hF (J))c,
N ≡ (M(E) ∩ Ch(A)c)× (Ch(F ) ∩ hF (J)c),

S ≡ (M(E) ∪ Ch(A)c)×
(
(Ch(F )c ∪ hF (J)) ∩ hF (J)

)
,

we prove e.g. that N ⊆ Ch(A0)
c , that, in turn, implies (4.7). So, given (f, g) ∈

N and a representing measure µ(f, g) of it, that is µ(f, g) ∈ M+
c (M(A0)) (:positive

measures) with µ(f, g) = δ(f, g) |A0ˆ
, let µ(f, g) = δ(f, g) . Then, µ(f, g) ◦ ti ∈M+

c (M(A ⊗
τ

F )), where ti : C(M(A ⊗
τ

F )) → C(M(A0)), such that (µ(f, g) ◦ ti)(h) = µ(f, g)(h ◦
i) = δ(f, g)(h ◦ i) = h(i(f, g)) = δi(f, g)(h), for every h ∈ C(M(A ⊗

τ
F )). Hence,

i(f, g) ≡ (f, g) ∈ Ch(A ⊗
τ

F ) ∼= Ch(A)× Ch(F ), a contradiction, since f 6∈ Ch(A).
Thus µ(f, g) 6= δ(f, g), implying that (f, g) 6∈ Ch(A0), that is the assertion. �

Scholium 4.1.- In the case J is a primary ideal of F , that is, J is closed with
hull hF (J) consisting exactly of one element f0 , then the quotient algebra F/J is
a primary or local algebra, in the sense that M(F/J) ∼= hF (J) consists of just one
point (cf. [18, p. 351, Definition 6.3]). In fact, the converse is true, as well (A.
Mallios); so one has the following characterization

a closed ideal I of a topological algebra E is primary iff
the quotient algebra E/I is local (: primary).

Thus, in the setting of Theorems 2.4 and 4.1, we obtain, up to homeomorphisms,
the relations

M(A0) = (M(E)×M(F ))
⋃

M(E)×{f0}

(M(A)× {f0}),

Ch(A0) =
(
Ch(E)× (Ch(F )\{f0})

)
∨

(
Ch(A)× {f0}

)
,

and

∂(A0) =
(
∂(E)× ∂(F )

)
∨

(
∂(A)× {f0}

)
.

On the other hand, one can compute the Šilov boundary of A0, independently of
its Choquet boundary, based on a relevant result of A. Mallios [18, p. 195, Theorem
2.2], establishing a connection between the Šilov boundaries of two appropriate
topological algebras, related by a continuous algebra morphism. Indeed, we use
here a more general form of this result, given in [9, p. 38, Lemma 4.2]. That is, we
have.
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Lemma 4.1.. Let E , F be unital spectral algebras (cf. (1.1)) with M(E) hered-
itarily Weierstrass, and φ : E → F a continuous algebra morphism, preserving the
spectral radii; that is,

rE(x) = rF (φ(x)), x ∈ E.

Then, one has
∂(E) ⊆ tφ(∂(F )), (4.8)

with tφ : M(F ) → M(E) the transpose map of φ. In particular, if E has continuous
Gel’fand map, then ∂(E) is characterized by the property of being the largest closed
subset of M(E) satisfying (4.8), for any given triad (E , φ , F ). �

On the basis of the preceding discussion, we obtain now the next generalization
of a result of Sidney for Banach function algebras (see [21, p. 136, Proposition 3.5]).

Theorem 4.2.. Let E , F be unital topological algebras, A a separating subalgebra
of E containing the constants and J a 2-sided ideal of F . Moreover, let E ⊗

τ
F be

the corresponding unital topological tensor product algebra and A0 the subalgebra of
it defined by (2.9), with continuous Gel’fand map GA0

, such that

M(A0/E ⊗
τ

F ) = M(A0 |̂M(E)×hF (J)
),

and
sup

f∈M(E)

|f(x)| = sup
f∈M(A)

|f(x)|, x ∈ A.

Finally, let A ⊗
τ

F, E ⊗
τ

J, A0, E ⊗
τ

F be spectral algebras, with spectra hereditarily
Weierstrass spaces but M(E ⊗

τ
F ), such that

(4.9)

rA ⊗
τ F (ω) = rA0

(ω), ω ∈ A ⊗
τ

F ⊆ A0,

rA0
(z) = rE ⊗

τ F (z), z ∈ A0 ⊆ E ⊗
τ

F ,

rE ⊗
τ J(s) = rA0

(s), s ∈ E ⊗
τ

J ⊆ A0.

Then, one has(
∂(E)× ∂(J)

)
∪

(
∂(A)× ∂(F )

)
⊆ ∂(A0) ⊆ ∂(E)× ∂(F ). (4.10)

Proof. The hypothesis for A implies the injectivity of the continuous maps

M(E ⊗
τ

F ) ⊂→ η
M(A0) ⊂→ κ

M(A ⊗
τ

F ), (4.11)

as well as, of the following one

M(A0) ⊂→ λ
M(E ⊗

τ
J),

since
(i× j) ◦ λ = κ,

with i× j : M(E)×M(J) ⊂→ M(A)×M(F ). Thus, by Lemma 4.1 and (1.10), we
obtain the relations

∂(A)× ∂(F )
∼=

homeo
∂(A ⊗

τ
F ) ⊆ κ(∂(A0))

∼=
homeo

∂(A0),

∂(E)× ∂(J)
∼=

homeo
∂(E ⊗

τ
J) ⊆ λ(∂(A0))

∼=
homeo

∂(A0),

∂(A0) ⊆ η(∂(E ⊗
τ

F ))
∼=

homeo
∂(E ⊗

τ
F )

∼=
homeo

∂(E)× ∂(F ),

providing the desired relation (4.10). �



Spectral geometry of non-local topological algebras 405

Now, given two subsets A ,B of a topological space X, one obtains that

A ⊆ A\B ⇔ intA(B) = ∅,

having equality when A is closed. Thus, we get the next.

Lemma 4.2.. Let E be a topological algebra and I an ideal of E. Then, the two
following assertions are equivalent:

1) ∂(E) = ∂(E)\hE(I) = ∂(E)\hE(I).
2) int∂(E)(hE(I)) = ∅.

In particular, if I is 2-sided, then 1) is equivalent to

3) ∂(E)
∼=

homeo
∂(I). �

A combination of Theorem 4.2 with Lemma 4.2 provides now the next extension
of [21, p. 136, Corollary 3.6].

Theorem 4.3.. Considering the context of Theorem 4.2, assume that

int∂(F )(hF (J)) = ∅.

Then, one has
∂(A0) = ∂(E)× ∂(F ) = ∂(E)× ∂(J),

up to homeomorphisms.

Proof. By virtue of (4.11) and

rE ⊗
τ F (ω) = rA ⊗

τ F (ω), ω ∈ A ⊗
τ

F,

resulting from the first two equalities in (4.9), we get (Lemma 4.1)

∂(A)× ∂(F )
∼=

homeo
∂(A ⊗

τ
F ) ⊆ ∂(E ⊗

τ
F )

∼=
homeo

∂(E)× ∂(F ),

so that, in view also of Lemma 4.2, (4.10) implies already the assertion. �
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