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Abstract

We consider a nonlinear coupled system of two wave equations with mem-
ory condition at the boundary and we study the asymptotic behavior of the
corresponding solutions. We proved that the energy decay with the same rate
of decay of the relaxation functions, that is, the energy decays exponentially
when the relaxation functions decay exponentially and decay polynomially
when the relaxation functions decay polynomially.

1. Introduction

The main purpose of this work is to study the asymptotic behavior of the solutions
of a nonlinear coupled system of two wave equations with boundary conditions of
memory type. To formalize this problem let us take Ω an open bounded set of Rn

with smooth boundary Γ and let us assume that Γ can be divided in two not null
parts

Γ = Γ0 ∪ Γ1 with Γ̄0 ∩ Γ̄1 = ∅.
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Let us denote by ν(x) the unit normal vector at x ∈ Γ outside of Ω and let us
consider the following initial boundary value problem

utt − β1∆u+ f(u− v) = 0 in Ω× (0,∞), (1..1)

vtt − β2∆v − f(u− v) = 0 in Ω× (0,∞), (1..2)

u = v = 0 on Γ0 × (0,∞), (1..3)

u+
∫ t

0
g1(t− s)

∂u

∂ν
(s)ds = 0 on Γ1 × (0,∞), (1..4)

v +
∫ t

0
g2(t− s)

∂v

∂ν
(s)ds = 0 on Γ1 × (0,∞), (1..5)

(u(0, x), v(0, x)) = (u0(x), v0(x)), (ut(0, x), vt(0, x)) = (u1(x), v1(x)) in Ω.
(1..6)

Here, u and v are the transverse displacements. The elasticity coefficients βi are
positive, the relaxation functions gi are positive and non decreasing and the function
f ∈ C1(R) satisfies

f(s)s ≥ 0 ∀s ∈ R, ∀i = 1, 2.

Additionally, we suppose that f is superlinear, that is

f(s)s ≥ (2 + δ)F (s), F (z) :=
∫ z

0
f(s)ds ∀s ∈ R, ∀i = 1, 2,

for some δ > 0 with the following growth conditions

|f(x)− f(y)| ≤ c(1 + |x|ρ−1 + |y|ρ−1)|x− y|, ∀x, y ∈ R, ∀i = 1, 2,

for some c > 0 and ρ ≥ 1 such that (n−2)ρ ≤ n. The integral equations (1..4)-(1..5)
describe the memory effects which can be caused, for example, by the interaction
with another viscoelastic element. Also, we shall assume that there exists x0 ∈ Rn

such that

Γ0 = {x ∈ Γ : ν(x) · (x− x0) ≤ 0},
Γ1 = {x ∈ Γ : ν(x) · (x− x0) > 0}.

An example of a set Ω satisfying those properties is showed in Figure 1.
Let us denote m(x) = x−x0. Note that the compactness of Γ1 implies that there

exists a small positive constant δ0 such that

0 < δ0 ≤ m(x) · ν(x), ∀x ∈ Γ1.

Dissipative coupled systems of the wave equations with f(s) = αs were studied by
several authors, see for example [1, 2, 3, 4] among others. In [4], Komornik and Rao
studied a linear system of two compactly coupled wave equations with boundary
frictional damping in both equations. They showed the existence, regularity and
stability of the corresponding solutions. The stability results obtained in [4] were
extended by Aassila [1] for a coupled system with weak frictional damping at infin-
ity. In a second work, Aassila [2], removes the dissipation of one equation and shows
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Figure 1. The set Ω.

strong asymptotic stability and non uniform stability for some particular cases de-
pending on the coupling constant. Another similar coupled system with boundary
frictional damping on only one of the equations was studied by Alabau [3]. She
shows the polynomial decay of the corresponding strong solutions when the speed of
wave propagation of the both equations are the same (β1 = β2). Concerning to the
memory condition at the boundary and f(s) = αs we can cite the work of Oquendo
and Santos [6]. They showed the existence, regularity and stability exponential and
polynomial of the corresponding solutions. It seems to us that there is no result con-
cerning the asymptotic stability of solutions for the system (1..1)-(1..6) when the
system is coupled non linearly. So to fill this gap we study this topic here. The main
result of this paper is to show that the solutions of the system (1..1)-(1..6) decays
uniformly in time with the same rate of decay of the relaxation functions. More
precisely, we show that the solution decays exponentially to zero provided g1, g2

decays exponentially to zero. When the relaxation functions g1, g2 decays polyno-
mially, we show that the corresponding solution also decays polynomially to zero.
The method used is based on the construction of a suitable Lyapunov functional L
satisfying

d

dt
L(t) ≤ −c1L(t) + c2e

−γt or
d

dt
L(t) ≤ −c1L(t)1+ 1

α +
c2

(1 + t)α+1
,

for some positive constants c1, c2, γ and α. Note that, because of condition (1..3)
the solution of the system (1..1)-(1..6) must belong to the following space

V := {v ∈ H1(Ω) : v = 0 on Γ0}.

The notations we use in this paper are standard and can be found in Lions’ book
[5]. In the sequel, by c (sometime c1, c2, . . . ), we denote various positive constants
which do neither depend on t nor on the initial data. The remainder of this paper is
organized as follows. In section 2 we establish the existence and uniqueness of strong
solutions for the system(1..1)-(1..6). In section 3 we prove the exponential decay and
in section 4, the polynomial decay. Finally in section 5 will make a final comment
on three problems related with the problem in this subject, that is, (1..1)-(1..6), for
which the method explored in this paper can be used to solve.



300 M. L. Santos – J. Ferreira – C. A. Raposo

2. Existence of Solutions

In this section we shall study the existence and regularity of solutions for the coupled
system (1..1)-(1..6). First, we shall use equations (1..4)-(1..5) to estimate the terms
∂u
∂ν

and ∂v
∂ν

on Γ1. Denoting by

(g ∗ ϕ)(t) =
∫ t

0
g(t− s)ϕ(s)ds,

the convolution product operator and differentiating the equations (1..4) and (1..5)
we arrive to the following Volterra equations

∂u

∂ν
+

1

g1(0)
g′1 ∗

∂u

∂ν
= − 1

g1(0)
ut,

∂v

∂ν
+

1

g2(0)
g′2 ∗

∂v

∂ν
= − 1

g2(0)
vt.

Applying the Volterra’s inverse operator, we get

∂u

∂ν
= − 1

g1(0)
{ut + k1 ∗ ut},

∂v

∂ν
= − 1

g2(0)
{vt + k2 ∗ vt},

where the resolvent kernels satisfy

ki +
1

gi(0)
g′i ∗ ki = − 1

gi(0)
g′i for i = 1, 2.

Denoting by τ1 = 1
g1(0)

and τ2 = 1
g2(0)

the normal derivatives of u and v can be
written as

∂u

∂ν
= −τ1{ut + k1(0)u− k1(t)u0 + k′1 ∗ u} (2..1)

∂v

∂ν
= −τ2{vt + k2(0)v − k2(t)v0 + k′2 ∗ v}. (2..2)

Reciprocally, taking initial data such that u0 = v0 = 0 on Γ1, the identities (2..1)-
(2..2) imply (1..4)-(1..5). Since we are interested in relaxation functions of expo-
nential or polynomial type and since the identities (2..1)-(2..2) involve the resolvent
kernels ki, we want to know if ki has the same properties. The following lemma
answers this question. Let h be a relaxation function and k its resolvent kernel, that
is

k(t)− k ∗ h(t) = h(t).

Lemma 2..1. If h is a positive continuous function, then k is also a positive con-
tinuous function. Moreover,
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1. If there exist positive constants c0 and γ with c0 < γ such that

h(t) ≤ c0e
−γt,

then, the function k satisfies

k(t) ≤ c0(γ − ε)

γ − ε− c0
e−εt,

for all 0 < ε < γ − c0.

2. Given p > 1, let us denote by cp := supt∈R+

∫ t
0(1 + t)p(1 + t− s)−p(1 + s)−p ds.

If there exists a positive constant c0 with c0cp < 1 such that

h(t) ≤ c0(1 + t)−p,

then, the function k satisfies

k(t) ≤ c0
1− c0cp

(1 + t)−p.

Proof. See e.g [8]
Remark: The finiteness of the constant cp can be found in [7, Lemma 7.4]. Due
to this Lemma, in the remainder of this paper, we shall use (2..1)-(2..2) instead of
(1..4)-(1..5). Let us denote by

(g�ϕ)(t) :=
∫ t

0
g(t− s)|ϕ(t)− ϕ(s)|2ds.

The next lemma gives a important identity for the convolution product.

Lemma 2..2. For g, ϕ ∈ C1([0,∞[: R) we have

(g ∗ ϕ)ϕt = −1

2
g(t)|ϕ(t)|2 +

1

2
g′�ϕ− 1

2

d

dt

[
g�ϕ− (

∫ t

0
g(s)ds)|ϕ|2

]
.

Proof. Differentiating the term g�ϕ our conclusion follows. �

The first order energy of the coupled system (1..1)-(1..6) is given by

E(t, u, v) :=
1

2

∫
Ω

(
|ut|2 + β1|∇u|2

)
dx+

τ1β1

2

∫
Γ1

(
k1(t)|u|2 − k′1�u

)
dΓ

+
1

2

∫
Ω

(
|vt|2 + β2|∇v|2

)
dx+

τ2β2

2

∫
Γ1

(
k2(t)|v|2 − k′2�v

)
dΓ

+
∫
Ω
F (u− v)dx.

The well-posedness of the system (1..1)-(1..6) is given by the following theorem.
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Theorem 2..1. Let ki ∈ C2(R+) such that

ki,−k′i, k′′i ≥ 0 for i = 1, 2.

If (u0, v0) ∈ (H2(Ω) ∩ V )2 and (u1, v1) ∈ V 2 satisfy the compatibility conditions

∂u0

∂ν
+ τ1u1 = 0 on Γ, (2..3)

∂v0

∂ν
+ τ2v1 = 0 on Γ, (2..4)

then there exists only one strong solution (u, v) for the coupled system (1..1)-(1..6)
satisfying

u, v ∈ L∞(0, T ;H2(Ω) ∩ V ) ∩W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;L2(Ω)).

Proof. To prove this theorem we shall use the Galerkin method. Let {(wj, φj)} be
a complete orthogonal system of V × V such that

{(u0, v0), (u1, v1)} ⊂ Span{(w0, φ0), (w1, φ1)}.

Let us consider the finite approximations

(um(t), vm(t)) :=
m∑

j=0

hj,m(t)(wj, φj),

which are solutions of the following ordinary differential equations∫
Ω
um

ttwjdx+ β1

∫
Ω
∇um · ∇wjdx+

∫
Ω
f(um − vm)wjdx

= −τ1β1

∫
Γ1

{um
t + k1(0)u

m − k1(t)u
m(0) + k′1 ∗ um}wjdx, (2..5)∫

Ω
vm

tt φjdx+ β2

∫
Ω
∇vm · ∇φjdx−

∫
Ω
f(um − vm)φjdx

= −τ2β2

∫
Γ1

{vm
t + k2(0)v

m − k2(t)v
m(0) + k′2 ∗ vm}φjdx, (2..6)

for 0 ≤ j ≤ m, satisfying the initial data

(um(0), vm(0)) = (u0, v0), (um
t (0), vm

t (0)) = (u1, v1).

Standard results about ordinary differential equations guarantee that there exists
only one solution of this approximate system. Our first step is to show that the
approximate solutions remain bounded for any m ∈ N. Indeed, let us multiply
equations (2..5) and (2..6) by h′j,m(t), summing up the product results in j and
using Lemma 2..2 we conclude that

d

dt
E(t, um, vm) ≤ cE(0, um, vm).

Taking into account the definition of the initial data of (um, vm) we conclude that

E(t, um, vm) ≤ c, ∀t ∈ [0, T ], ∀m ∈ N. (2..7)
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Next, we shall find an estimate for the second order energy. First, let us estimate
the initial data um

tt (0) and vm
tt (0) in the L2-norm. Letting t → 0+ in the equations

(2..5)-(2..6), multiplying the result by h′′j,m(0) and using the compatibility conditions
(2..3)-(2..4) we get∫

Ω
|um

tt (0)|2 dx = β1

∫
Ω

∆u0u
m
tt (0)dx−

∫
Ω
f(u0 − v0)u

m
tt (0)dx,∫

Ω
|vm

tt (0)|2 dx = β2

∫
Ω

∆v0v
m
tt (0)dx+

∫
Ω
f(u0 − v0)v

m
tt (0)dx.

Since (u0, v0) ∈ [H2(Ω)]2, the growth hypothesis for the function f together with
the Sobolev’s imbedding imply that f(u0 − v0) ∈ L2(Ω). Hence∫

Ω

(
|um

tt (0)|2 + |vm
tt (0)|2

)
dx ≤M1, ∀m ∈ N. (2..8)

Differentiating equation (2..5) with respect to the time, multiplying by h′′j,m(t) and
summing up the product results in j, we arrive at

1

2

d

dt

{∫
Ω

(
|um

tt |2 + β1|∇um
t |2

)
dx+ τ1β1

∫
Γ1

(
k1(t)|um

t |2 − k′1�u
m
t

)
dΓ

}
= −

∫
Ω
f ′(um − vm)(um

t − vm
t )um

tt dx− τ1β1

∫
Γ1

|um
tt |2dx

+
τ1β1

2

∫
Γ1

(
k′1(t)|um

t |2 − k′′1�u
m
t

)
dΓ.

Similarly we get

1

2

d

dt

{∫
Ω

(
|vm

tt |2 + β2|∇vm
t |2

)
dx+ τ2β2

∫
Γ1

(
k2(t)|vm

t |2 − k′2�v
m
t

)
dΓ

}
=

∫
Ω
f ′(um − vm)(um

t − vm
t )vm

tt dx− τ2β2

∫
Γ1

|vm
tt |2dx

+
τ2β2

2

∫
Γ1

(
k′2(t)|vm

t |2 − k′′2�v
m
t

)
dΓ.

Denoting by

E0(t, u, v) =
1

2

∫
Ω

(
|ut|2 + β1|∇u|2

)
dx+

τ1β1

2

∫
Γ1

(
k1(t)|u|2 − k′1�u

)
dΓ

+
1

2

∫
Ω

(
|vt|2 + β2|∇v|2

)
dx+

τ2β2

2

∫
Γ1

(
k2(t)|v|2 − k′2�v

)
dΓ,

we find that

d

dt
E0(t, u

m
t , v

m
t ) = −τ1β1

∫
Γ1

|um
tt |2dx+

τ1β1

2

∫
Γ1

(
k′1(t)|um

t |2 − k′′1�u
m
t

)
dΓ

−τ2β2

∫
Γ1

|vm
tt |2dx+

τ2β2

2

∫
Γ1

(
k′2(t)|vm

t |2 − k′′2�v
m
t

)
dΓ

−
∫
Ω
f ′(um − vm)(um

t − vm
t )um

tt dx

+
∫
Ω
f ′(um − vm)(um

t − vm
t )vm

tt dx. (2..9)
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Let us take pn = 2n
n−2

. From the growth condition of the functions f and the Sobolev
imbedding we have∫

Ω
f ′(um − vm)um

t u
m
tt dx ≤ c

∫
Ω
(1 + 2|um − vm|ρ−1)|um

t ||um
tt |dx

≤ c
[∫

Ω
(1 + 2|um − vm|ρ−1)ndx

] 1
n

[∫
Ω
|um

t |pndx
] 1

pn
[∫

Ω
|um

tt |2dx
] 1

2

≤ c
[∫

Ω
(1 + |∇um −∇vm|2)dx

] ρ−1
2

[∫
Ω
|∇um

t |2dx
] 1

2
[∫

Ω
|um

tt |2dx
] 1

2

.

Taking into account the first estimate (2..7) we conclude that∫
Ω
f ′1(u

m)um
t u

m
tt dx ≤ c

[∫
Ω
|∇um

t |2dx
] 1

2
[∫

Ω
|um

tt |2dx
] 1

2

≤ c
{∫

Ω
|∇um

t |2dx+
∫
Ω
|um

tt |2dx
}
. (2..10)

Similarly we get

−
∫
Ω
f ′(um − vm)vm

t u
m
tt dx ≤ c

{∫
Ω
|∇vm

t |2dx+
∫
Ω
|um

tt |2dx
}
, (2..11)∫

Ω
f ′(um − vm)um

t v
m
tt dx ≤ c

{∫
Ω
|∇um

t |2dx+
∫
Ω
|vm

tt |2dx
}
, (2..12)

−
∫
Ω
f ′(um − vm)vm

t v
m
tt dx ≤ c

{∫
Ω
|∇vm

t |2dx+
∫
Ω
|vm

tt |2dx
}
. (2..13)

Substitution of the inequalities (2..10)-(2..13) into (2..9) we get

d

dt
E0(t, u

m
t , v

m
t ) ≤ c2

{∫
Ω
|um

tt |2 + |∇um
t |2dx+

∫
Ω
|vm

tt |2 + |∇vm
t |2dx

}
.

Integrating with respect to the time and applying Gronwall’s inequality we conclude
that

E0(t, u
m
t , v

m
t ) ≤ c, ∀t ∈ [0, T ], ∀m ∈ N. (2..14)

Now, from the estimates (2..7) and (2..14) and those of the Lions-Aubin’s compact-
ness Theorem we can pass to the limit in (2..5)-(2..6). The rest of the proof is a
matter of routine. �

3. Exponential Decay

In this section we shall study the asymptotic behavior of the solutions of system
(1..1)-(1..6) when the resolvent kernels k1 and k2 are exponentially decreasing, that
is, there exist positive constants b1, b2 such that

ki(0) > 0, k′i(t) ≤ −b1ki(t), k′′i (t) ≥ −b2k′i(t) for i = 1, 2. (3..1)

Note that this conditions implies that

ki(t) ≤ ki(0)e
−b1t for i = 1, 2.

Our point of departure will be to establish some inequalities for the strong solution
of the coupled system (1..1)- (1..6). Let us denote E(t) = E(t, u, v).
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Lemma 3..1. Any strong solution (u, v) of the system (1..1)-(1..6) satisfies

d

dt
E(t) ≤ −τ1β1

2

∫
Γ1

(
|ut|2 + k′′1�u− k′1(t)|u|2 + |k1(t)u0|2

)
dΓ

−τ2β2

2

∫
Γ1

(
|vt|2 + k′′2�v − k′2(t)|v|2 + |k2(t)v0|2

)
dΓ.

Proof. Multiplying the equation (1..1) by ut and integrating by parts over Ω we get

1

2

d

dt

∫
Ω

(
|ut|2 + β1|∇u|2

)
dx+

∫
Ω
f(u− v)utdx = β1

∫
Γ1

∂u

∂ν
utdΓ.

Similarly we have

1

2

d

dt

∫
Ω

(
|vt|2 + β2|∇v|2

)
dx−

∫
Ω
f(u− v)vtdx = β2

∫
Γ1

∂v

∂ν
vtdΓ.

Summing the above identities, substituting the boundary terms by (2..1)-(2..2) and
using Lemma 2..2 our conclusion follows. �

Let us consider the following binary operator

(k � h)(t) :=
∫ t

0
k(t− s)

(
h(t)− h(s)

)
ds.

Then applying Hölder’s inequality we have, for 0 ≤ µ ≤ 1

|(k � h)(t)|2 ≤
[∫ t

0
|k(s)|2(1−µ) ds

]
(|k|2µ�h)(t). (3..2)

Let us introduce the following functionals

N (t) :=
∫
Ω

(
|ut|2 + β1|∇u|2 + |vt|2 + β2|∇v|2 + F (u− v)

)
dx,

ψ(t) :=
∫
Ω

{
m · ∇u+

(
n

2
− θ

)
u

}
utdx+

∫
Ω

{
m · ∇v +

(
n

2
− θ

)
v
}
vtdx,

where θ is a small positive constant. The following lemma plays an important role
for the construction of the Lyapunov functional desired.

Lemma 3..2. For any strong solution of the system (1..1)-(1..6) we get

d

dt
ψ(t) ≤ −θ

2
N (t) + C

∫
Γ1

(
|ut|2 + |k1(t)u|2 + |k′1 � u|2 + |k1(t)u0|2

)
dΓ

+ C
∫
Γ1

(
|vt|2 + |k2(t)v|2 + |k′2 � v|2 + |k2(t)v0|2

)
dΓ,

for some positive constant C.
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Proof. From equation (1..1) we obtain

d

dt

∫
Ω
ut

{
m · ∇u+

(
n

2
− θ

)
u

}
dx

=
∫
Ω
utm · ∇utdx+

(
n

2
− θ

) ∫
Ω
|ut|2dx

+β1

∫
Ω

∆um · ∇udx+ β1

(
n

2
− θ

) ∫
Ω

∆uudx

−
(
n

2
− θ

) ∫
Ω
f(u− v)udx−

∫
Ω
f(u− v)m · ∇udx.

Performing an integration by parts we get

d

dt

∫
Ω
ut

{
m · ∇u+

(
n

2
− θ

)
u

}
dx

≤ 1

2

∫
Γ1

m · ν|ut|2dΓ− θ
∫
Ω
|ut|2dx

+β1

∫
Γ1

∂u

∂ν

{
m · ∇u+

(
n

2
− θ

)
u

}
dΓ

−β1

2

∫
Γ1

m · ν|∇u|2dΓ− β1(1− θ)
∫
Ω
|∇u|2dx

−
(
n

2
− θ

) ∫
Ω
f(u− v)udx−

∫
Ω
f(u− v)m · ∇udx.

Similarly, using equation (1..2) instead of (1..1) we get

d

dt

∫
Ω
vt

{
m · ∇v +

(
n

2
− θ

)
v
}
dx

≤ 1

2

∫
Γ1

m · ν|vt|2dΓ− θ
∫
Ω
|vt|2dx

+β2

∫
Γ1

∂v

∂ν

{
m · ∇v +

(
n

2
− θ

)
v
}
dΓ

−β2

2

∫
Γ1

m · ν|∇v|2dΓ− β2(1− θ)
∫
Ω
|∇v|2dx

+
(
n

2
− θ

) ∫
Ω
f(u− v)vdx+

∫
Ω
f(u− v)m · ∇vdx.

Adding up these two last inequalities and taking into account that f is superlinear
we arrive at

d

dt
ψ(t) ≤ 1

2

∫
Γ1

m · ν(|ut|2 + |vt|2)dΓ− θ
∫
Ω

(
|ut|2 + |vt|2

)
dx

− (1− θ)
∫
Ω
β1|∇u|2dx− (1− θ)

∫
Ω
β2|∇v|2dx

+ β1

∫
Γ1

∂u

∂ν

{
m · ∇u+

(
n

2
− θ

)
u

}
dΓ

+ β2

∫
Γ1

∂v

∂ν

{
m · ∇v +

(
n

2
− θ

)
v
}
dΓ

− 1

2

∫
Γ1

m · ν
(
β1|∇u|2 + β2|∇v|2

)
dΓ

− (
n

2
− θ)(2 + δ)

∫
Ω
F (u− v)dx+ n

∫
Ω
F (u− v)dx.
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Taking θ small enough we obtain

d

dt
ψ(t) ≤ −θN (t) +

1

2

∫
Γ1

m · ν(|ut|2 + |vt|2)dΓ

− 1

2

∫
Γ1

m · ν
(
β1|∇u|2 + β2|∇v|2

)
dΓ

+ β1

∫
Γ1

∂u

∂ν

{
m · ∇u+

(
n

2
− θ

)
u

}
dΓ

+ β2

∫
Γ1

∂v

∂ν

{
m · ∇v +

(
n

2
− θ

)
v
}
dΓ. (3..3)

Now, we analyze some boundary term of the above inequality. Applying Young’s
and Poincaré’s inequalities we have, for ε > 0

β1

∫
Γ1

∂u

∂ν

{
m · ∇u+

(
n

2
− θ

)
u

}
dΓ

≤ ε
∫
Γ1

{
|m · ∇u|2 +

(
n

2
− θ

)2

|u|2
}
dΓ + Cε

∫
Γ1

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dΓ

≤ εC
{∫

Γ1

m · ν|∇u|2dΓ +N (t)
}

+ Cε

∫
Γ1

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dΓ.

Similarly, we obtain

β2

∫
Γ1

∂v

∂ν

{
m · ∇v +

(
n

2
− θ

)
v
}
dΓ

≤ εC
{∫

Γ1

m · ν|∇v|2dΓ +N (t)
}

+ Cε

∫
Γ1

∣∣∣∣∣∂v∂ν
∣∣∣∣∣
2

dΓ.

By substitution of these last inequalities into (3..3) with ε small and taking into
account that the boundary conditions (2..1)-(2..2) can be written as

∂u

∂ν
= −τ1{ut + k1(t)u− k′1 � u− k1(t)u0},

∂v

∂ν
= −τ2{vt + k2(t)v − k′2 � v − k2(t)v0},

our conclusion follows. �

To show that the energy decays exponentially we shall need the following lemma.

Lemma 3..3. Let f be a real positive function of class C1. If there exist positive
constants γ0, γ1 and c0 such that

f ′(t) ≤ −γ0f(t) + c0e
−γ1t,

then there exist positive constants γ and c such that

f(t) ≤ (f(0) + c)e−γt.
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Proof. See e. g. [10].
Finally, we shall show the main result of this section.

Theorem 3..1. Let us take (u0, v0) ∈ V 2 and (u1, v1) ∈ [L2(Ω)]2. If the resolvent
kernels k1, k2 satisfy (3..1), then there exist positive constants C and γ such that

E(t) ≤ CE(0)e−γt,

for all t ≥ 0.

Proof. We shall prove this result for strong solutions, that is, for solutions with
initial data (u0, v0) ∈ (H2(Ω) ∩ V )

2
and (u1, v1) ∈ V 2 satisfying the compatibility

conditions (2..3)- (2..4). Our conclusion follows from standard density arguments.
Using hypothesis (3..1) in Lemma 3..1 we get

d

dt
E(t) ≤ −τ1β1

2

∫
Γ1

(
|ut|2 − b2k

′
1�u+ b1k1(t)|u|2 + |k1(t)u0|2

)
dΓ

−τ2β2

2

∫
Γ1

(
|vt|2 − b2k

′
2�v + b1k2(t)|v|2 + |k2(t)v0|2

)
dΓ.

On the other hand applying inequality (3..2) with µ = 1/2 in Lemma 3..2 we obtain

d

dt
ψ(t) ≤ −θ

2
N (t) + C

∫
Γ1

(
|ut|2 + k1(t)|u|2 − k′1�u+ |k1(t)u0|2

)
dΓ

+ C
∫
Γ1

(
|vt|2 + k2(t)|v|2 − k′2�v + |k2(t)v0|2

)
dΓ.

Let us introduce the Lyapunov functional

L(t) := NE(t) + ψ(t), (3..4)

with N > 0. Taking N large, the previous inequalities imply that

d

dt
L(t) ≤ −θ

2
E(t) + 2NR2(t)E(0),

where R(t) = k1(t) + k2(t). Moreover, using Young’s inequality and taking N large
we find that

N

2
E(t) ≤ L(t) ≤ 2NE(t). (3..5)

From this inequality we conclude that

d

dt
L(t) ≤ −θ

2
L(t) + 2NR2(t)E(0),

from which follows, in view of Lemma 3..3 and the exponential decay of k1, k2, that

L(t) ≤ {L(0) + c}e−γ1t,

for some positive constants c, γ. From the inequality (3..5) our conclusion follows.
�
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4. Polynomial decay

Here our attention will be focused on the uniform rate of decay when the resolvent
kernels k1 and k2 decays polynomially like (1 + t)−p. In this case we will show that
the solution also decays polynomially with the same rate. Therefore, we will assume
that the resolvent kernels k1, k2 satisfy

ki(0) > 0, k′i(t) ≤ −b1ki(t)
1+ 1

p , k′′i (t) ≥ b2[−k′i(t)]
1+ 1

p+1 for i = 1, 2, (4..1)

for some p > 1 and some positive constants b1, b2. The following lemma will play
an important role in the sequel.

Lemma 4..1. Let (u, v) be a solution of system (1..1)-(1..6) and let us denote
(φ1, φ2) = (u, v). Then, for p > 1, 0 < r < 1 and t ≥ 0, we have

(∫
Γ1

|k′i|�φidΓ
) 1+(1−r)(p+1)

(1−r)(p+1)

≤ 2
(∫ t

0
|k′i(s)|rds||φi||2L∞(0,t;L2(Γ1))

) 1
(1−r)(p+1)

∫
Γ1

|k′i|
1+ 1

p+1 �φidΓ,

while for r = 0 we get

(∫
Γ1
|k′i|�φidΓ

) p+2
p+1

≤ 2
(∫ t

0
||φi(s, .)||2L2(Γ1)ds+ t||φi(s, .)||2L2(Γ1)

) 1
p+1

∫
Γ1

|k′i|
1+ 1

p+1 �φidΓ,

for i = 1, 2.

Proof. See e. g. [9].

Lemma 4..2. Let f ≥ 0 be a differentiable function satisfying

f ′(t) ≤ − c1

f(0)
1
α

f(t)1+ 1
α +

c2
(1 + t)β

f(0) for t ≥ 0,

for some positive constants c1, c2, α and β such that

β ≥ α+ 1.

Then there exists a constant c > 0 such that

f(t) ≤ c

(1 + t)α
f(0) for t ≥ 0.

Proof. See e. g. [10].
The polynomial decay of the energy is given by the following theorem.

Theorem 4..1. Let us take (u0, v0) ∈ V 2 and (u1, v1) ∈ [L2(Ω)]2. If the resolvent
kernels k1, k2 satisfy the conditions (4..1), then there exists a positive constant c
such that

E(t) ≤ c

(1 + t)p+1
E(0).
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Proof. We shall prove this result for strong solutions, that is, for solutions with
initial data (u0, v0) ∈ (H2(Ω) ∩ V )

2
and (u1, v1) ∈ V 2 satisfying the compatibility

conditions (2..3)- (2..4). Our conclusion will follow by standard density arguments.
We use some estimates of the previous section which are independent of the behavior
of the resolvent kernels k1, k2. Using hypothesis (4..1) in Lemma 3..1 yields

d

dt
E(t) ≤ −τ1β1

2

∫
Γ1

(
|ut|2 + b2[−k′1]

1+ 1
p+1 �u+ b1k

1+ 1
p

1 (t)|u|2 + |k1(t)u0|2
)
dΓ

−τ2β2

2

∫
Γ1

(
|vt|2 + b2[−k′2]

1+ 1
p+1 �v + b1k

1+ 1
p

2 (t)|v|2 + |k2(t)v0|2
)
dΓ.

Applying inequality (3..2) with µ = p+2
2(p+1)

and using hypothesis (4..1) we obtain the
following estimates

|k′1 � u|2 ≤ C[−k′1]
1+ 1

p+1 �u, |k′2 � v|2 ≤ C[−k′2]
1+ 1

p+1 �v.

Using the above inequalities in Lemma 3..2 yields

d

dt
ψ(t) ≤ −θ

2
N (t) + C

∫
Γ1

(
|ut|2 + k

1+ 1
p

1 (t)|u|2 + [−k′1]
1+ 1

p+1 �u+ |k1(t)u0|2
)
dΓ

+ C
∫
Γ1

(
|vt|2 + k

1+ 1
p

2 (t)|v|2 + [−k′2]
1+ 1

p+1 �v + |k2(t)v0|2
)
dΓ.

In these conditions, takingN large, the Lyapunov functional defined in (3..4) satisfies

d

dt
L(t) ≤ −θ

2
N (t) + 2NR2(t)E(0)

−Nc2
2

{∫
Γ1

[−k′1]
1+ 1

p+1 �udΓ +
∫
Γ1

[−k′2]
1+ 1

p+1 �vdΓ
}
. (4..2)

Let us fix 0 < r < 1 such that 1
p+1

< r < p
p+1

. From (4..1) we have that∫ ∞

0
|k′i|r ≤ c

∫ ∞

0

1

(1 + t)r(p+1)
<∞ for i = 1, 2.

Using this estimate in Lemma 4..1 we get∫
Γ1

[−k′1]
1+ 1

p+1 �udΓ ≥ cE(0)−
1

(1−r)(p+1)

(∫
Γ1

[−k′1]�udΓ
)1+ 1

(1−r)(p+1)

, (4..3)∫
Γ1

[−k′2]
1+ 1

p+1 �v dΓ ≥ cE(0)−
1

(1−r)(p+1)

(∫
Γ1

[−k′2]�vdΓ
)1+ 1

(1−r)(p+1)

. (4..4)

On the other hand, from the Trace Theorem we have

E(t)1+ 1
(1−r)(p+1) ≤ cE(0)

1
(1−r)(p+1)N (t). (4..5)

Substitution of (4..3)-(4..5) into (4..2) we obtain

d

dt
L(t) ≤ −cE(0)−

1
(1−r)(p+1)E(t)1+ 1

(1−r)(p+1) + 2NR2(t)E(0)

− cE(0)−
1

(1−r)(p+1)

{(∫
Γ1

[−k′1]�udΓ
)1+ 1

(1−r)(p+1)

+
(∫

Γ1

[−k′2]�vdΓ
)1+ 1

(1−r)(p+1)

}
.
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Taking into account the inequality (3..5) we conclude that

d

dt
L(t) ≤ − c

L(0)
1

(1−r)(p+1)

L(t)1+ 1
(1−r)(p+1) + 2NR2(t)E(0),

for some c > 0, from which follows, applying Lemma 4..2, that

L(t) ≤ c

(1 + t)(1−r)(p+1)
L(0).

Since (1− r)(p+ 1) > 1 we get, for t ≥ 0, the following bounds

t||u||2L2(Γ1) + t||v||2L2(Γ1) ≤ tL(t) < ∞,∫ t

0

(
||u||2L2(Γ1) + ||v||2L2(Γ1)

)
ds ≤ c

∫ t

0
L(t) ds < ∞.

Using the above estimates in Lemma 4..1 with r = 0 we get

∫
Γ1

[−k′1]
1+ 1

p+1 �udΓ ≥ c

E(0)
1

p+1

(∫
Γ1

[−k′1]�udΓ
)1+ 1

p+1

,

∫
Γ1

[−k′2]
1+ 1

p+1 �vdΓ ≥ c

E(0)
1

p+1

(∫
Γ1

[−k′2]�vdΓ
)1+ 1

p+1

.

Using these inequalities instead of (4..3)-(4..4) and reasoning in the same way as
above we conclude that

d

dt
L(t) ≤ − c

L(0)
1

p+1

L(t)1+ 1
p+1 + 2NR2(t)E(0).

Applying Lemma 4..2 again, we obtain

L(t) ≤ c

(1 + t)p+1
L(0).

Finally, from (3..5) we conclude

E(t) ≤ c

(1 + t)p+1
E(0),

which completes the proof. �

5. Final Comments

The methods explored in this paper can be used to solve the following nonlinear
coupled systems:


utt −∆u+

∫ t
0 g1(t− s)∆u(s)ds+ f(u− v) = 0 in Ω× (0,∞),

vtt −∆v +
∫ t
0 g2(t− s)∆v(s)ds− f(u− v) = 0 in Ω× (0,∞),

u = v = 0 on Γ× (0,∞),
(u(0, x), v(0, x)) = (u0(x), v0(x)), (ut(0, x), vt(0, x)) = (u1(x), v1(x)) in Ω.

(5..1)
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

utt + ∆2u−M
(
‖∇u‖2

2 + ‖∇v‖2
2

)
∆u−∆ut + f(u− v) = 0

in Ω× (0,∞)

vtt + ∆2v −M
(
‖∇u‖2

2 + ‖∇v‖2
2

)
∆v −∆vt − f(u− v) = 0

in Ω× (0,∞)
u = v = ∂u

∂ν
= ∂v

∂ν
= 0,

on Γ0 × (0,∞)

∆u+
∫ t
0 g1(t− s)((M

(
‖∇u(s)‖2

2 + ‖∇v(s)‖2
2

)
∂u
∂ν

(s) + ∂ut

∂ν
(s))ds = 0

on Γ1 × (0,∞)

∆v +
∫ t
0 g2(t− s)((M

(
‖∇u(s)‖2

2 + ‖∇v(s)‖2
2

)
∂v
∂ν

(s) + ∂vt

∂ν
(s))ds = 0

on Γ1 × (0,∞)
(u(0, x), v(0, x)) = (u0(x), v0(x)) in Ω
(ut(0, x), vt(0, x)) = (u1(x), v1(x)) in Ω

(5..2)



K1(x, t)utt −M
(
‖∇u‖2

2 + ‖∇v‖2
2

)
∆u+K3(x, t)ut −∆ut + f(u− v) = 0,

in Ω× (0,∞),

K2(x, t)vtt −M
(
‖∇u‖2

2 + ‖∇v‖2
2

)
∆v +K4(x, t)vt −∆vt − f(u− v) = 0,

in Ω× (0,∞),
u = v = 0 on Γ0 × (0,∞),

u+
∫ t
0 g1(t− s)((M

(
‖∇u(s)‖2

2 + ‖∇v(s)‖2
2

)
∂u
∂ν

(s) + ∂ut

∂ν
(s))ds = 0,

on Γ1 × (0,∞),

v +
∫ t
0 g2(t− s)((M

(
‖∇u(s)‖2

2 + ‖∇v(s)‖2
2

)
∂v
∂ν

(s) + ∂vt

∂ν
(s))ds = 0,

on Γ1 × (0,∞),
(u(0, x), v(0, x)) = (u0(x), v0(x)) in Ω,
(ut(0, x), vt(0, x)) = (u1(x), v1(x)) in Ω

(5..3)

where Ki(x, t) ≥ 0 and Kj(x, 0) ≥ d > 0 a.e in Ω × (0,∞) for all i = 1, 2 and
j = 3, 4 respectively. With regard to the problems (5..1), (5..2) and (5..3,) it is
important to observe, however, that, as far as we are aware of, nonlinear memory
terms acting in the boundary have never been considered in the literature. Problem
(5.3) concerns a system of equations, degenerate nonlinear and nonlinear boundary
feedback combined with a nonlinear memory source term which requires new argu-
ments to overcome the difficulties. The authors of the paper already obtained the
results of global existence, uniqueness and the exponential and polynomial declines
respectively for the problems (5.1), (5.2) and (5..3). Three papers are in their final
phase and will shortly be submitted for publication.

Now we would like to mention that the problem (1..1)-(1..6) as well as the cor-
responding problem for the systems (5..1), (5..2) and (5..3) in a bounded domain
with moving boundary are interesting open problems.
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Email address: jferreira@bs2.com.br

C. A. Raposo
Departamento de Matemática
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