Quadratic sets of a 3-dimensional locally projective regular planar space

Roberta Di Gennaro

Nicola Durante *

Abstract

In this paper quadratic sets of a 3-dimensional locally projective regular planar space $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ of order n are studied and classified. It is proved that if in $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ there is a non-degenerate quadratic set **H**, then the planar space is either PG(3, n) or AG(3, n). Moreover in the first case **H** is either an ovoid or an hyperbolic quadric, in the latter case **H** is either a cylinder with base an oval or a pair of parallel planes.

1 Introduction

A *linear space* is a pair (S, \mathcal{L}) , where S is a non-empty set of *points* and \mathcal{L} is a non-empty set of proper subsets of S called *lines*, such that through every pair of distinct points there is a unique line and every line has at least two points.

Let $(\mathcal{S}, \mathcal{L})$ be a finite linear space. For every point P of \mathcal{S} , the *degree* of P is the number [P] of lines through P; for every line l, the *length* of l is its cardinality. The integer n defined by $n + 1 = \max\{[P] : P \in \mathcal{S}\}$ is the *order* of the linear space. A subset T of the point set \mathcal{S} of a linear space $(\mathcal{S}, \mathcal{L})$ is a *subspace* if it contains the line through any two of its points.

A *planar space* is a triple $(\mathcal{S}, \mathcal{L}, \mathcal{P})$, where $(\mathcal{S}, \mathcal{L})$ is a linear space and \mathcal{P} is a nonempty family of proper subspaces of $(\mathcal{S}, \mathcal{L})$, called *planes*, satisfying the following properties:

Bull. Belg. Math. Soc. 10 (2003), 281–288

^{*}Work done within the project "Strutture geometriche, Combinatoria e loro applicazioni" of M.U.R.S.T. Partially supported also from University "Federico II" of Naples.

Received by the editors October 2002.

Communicated by H. Van Maldeghem.

 $^{1991 \} Mathematics \ Subject \ Classification \ :$

Key words and phrases :

- (p_1) through any three non-collinear points there is a unique plane containing them;
- (p_2) every plane contains at least three non-collinear points.

Let $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ be a finite planar space. In this paper v is the number of points, b is the number of lines and c is the number of planes of the planar space $(\mathcal{S}, \mathcal{L}, \mathcal{P})$.

For every plane π of \mathcal{P} , denote by \mathcal{L}_{π} the set of the lines of \mathcal{L} contained in π and by n_{π} the order of the linear space (π, \mathcal{L}_{π}) . The integer $n = \max\{n_{\pi} : \pi \in \mathcal{P}\}$ is the *order* of the planar space.

For any point X of S, the *star of lines* with center X is the set of all lines through X.

Let π be a plane of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ and let X be a point of π : the *pencil of lines* with center X in π is the set of all lines through X contained in π . If every pencil of lines has at least three lines we have a *thick* planar space. Two *skew* lines are two non-coplanar lines of a planar space. Two *parallel* lines are two lines ℓ and ℓ' such that either $\ell = \ell'$ or ℓ and ℓ' are coplanar and $\ell \cap \ell' = \emptyset$.

A planar space $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is *embeddable* in a projective space **P** if there is an injection of \mathcal{S} into the point set of **P** preserving collinearities and coplanarities as well as non-collinearities and non-coplanarities.

A planar space $(S, \mathcal{L}, \mathcal{P})$ is 3-dimensional locally projective if its proper subspaces are points, lines and planes and for every point P of S, the linear space $(\mathcal{L}_P, \mathcal{P}_P)$ whose points are the lines through P and whose lines are the pencils of lines with center P, is a (non-degenerate) projective plane.

If $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is a thick planar space of order n, it is easy to see that the property of being 3-dimensional locally projective is equivalent to the property that its planes pairwise intersect either in the empty set or in a line.

A finite planar space $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is a *k*-regular planar space if all lines have the same length k + 1. We will sometimes simply say that the planar space is regular.

Observe that, if $(S, \mathcal{L}, \mathcal{P})$ is a regular locally projective planar space of order n, then in every plane the pencils have n+1 lines and hence every plane has (n+1)k+1 points.

Throughout this paper $(S, \mathcal{L}, \mathcal{P})$ is a 3-dimensional locally projective regular planar space of order n.

It is not difficult to see that $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ satisfies the following properties.

- (a) Through every point there are $n^2 + n + 1$ lines and $n^2 + n + 1$ planes.
- (b) In every plane the pencils of lines have cardinality n + 1.
- (c) Through every line there are n + 1 planes.

(d) In every plane there are $\frac{(nk+k+1)(n+1)}{k+1}$ lines.

(e) The number of lines is $b = \frac{((n^2 + n + 1)k + 1)(n^2 + n + 1)}{k + 1}$.

(f) The number of point is $(n^2 + n + 1)k + 1 \le n^3 + n^2 + n + 1$.

The finite regular locally projective planar spaces have been studied by J. Doyen and X. Hubaut in [4]. They proved the following result.

Theorem 1.1. Let $(S, \mathcal{L}, \mathcal{P})$ be a 3-dimensional regular locally projective planar space of order n, then three cases are possible.

- (C1) $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is isomorphic to PG(3, n).
- (C2) $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is isomorphic to AG(3, n).
- (C3) The order n of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ satisfies n = k + s with either $s = k^2 + k + 1$ or $s = (k+1)^3 + 1$.

Remark. The spaces of type (C3) are called Lobachevsky spaces. If $s = k^2 + k+1$, then the smallest case k = 1 gives the unique 3-(22, 6, 1) design, i.e. the Witt design on 22 points. It has been proved in [6] that there cannot exist an example for k = 2. For $k \ge 3$ no example is known either. If $s = (k+1)^3 + 1$, then the smallest case k = 1 would give a 3-(112, 12, 1) design that should be the extension of a projective plane of order 10. It is known that such a design cannot exists since there are no projective planes of order 10.

2 Quadratic sets

Let **K** be a set of points of S. A line ℓ is *tangent* to **K** if either it is contained in **K** or it has exactly a point in common with **K**. In the first case the line ℓ will be called a **K**-*line*, in the latter case ℓ will be called a 1-*tangent* line to **K**. A non-tangent line to **K** will be called *external* to **K** if it has empty intersection with **K**, *secant* to **K** otherwise.

A plane π is *tangent* to **K** at a point *P* if each line through *P* in π is tangent to **K**. A non-tangent plane to **K** will be called *external* to **K** if it has empty intersection with **K**, *secant* to **K** otherwise.

For each point $P \in \mathbf{K}$ we can define the *tangent subset* \mathbf{K}_P of \mathbf{K} at P as the union of all tangent lines to \mathbf{K} at P.

A quadratic set of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is a non-empty subset **H** of points of \mathcal{S} such that each line that meets **H** in more than two points, is contained in **H**, and such that for each point $P \in \mathbf{H}$ the tangent subset \mathbf{H}_P is either a plane of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ or the full point set \mathcal{S} .

A point P of \mathbf{H} is singular if $\mathbf{H}_P = \mathcal{S}$. A quadratic set \mathbf{H} of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is called non-degenerate if it has no singular points.

Let $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ be a non-degenerate planar space of order n and let π be a plane of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$. A k-arc in π is a set Γ of k points of π no three collinear. It is easy to see that $k \leq n+2$ and k = n+2 if and only if n is even. Every (n+1)-arc in π is called an *oval* of π .

A set C of points meeting every line in at most two points is a cap of $(\mathcal{S}, \mathcal{L}, \mathcal{P})$.

Planar spaces containing special types of caps have been studied by G. Tallini in [7]. He proved the following theorem.

Theorem 2.1. Let $(S, \mathcal{L}, \mathcal{P})$ be a thick finite planar space with all lines of the same cardinality k + 1 and such that all planes have the same number of points. Let Ω be

a cap of $(S, \mathcal{L}, \mathcal{P})$ such that for every point P of Ω , the union of the tangent lines at P is a subspace τ_P meeting every plane through P, but not in τ_P , in a line. Then k is a prime power, $(S, \mathcal{L}, \mathcal{P})$ is PG(3, k) and Ω is one of its ovoids.

In the sequel we will also need the following result that follows immediately from a theorem of M. Hall Jr. [5].

Theorem 2.2. Let $(S, \mathcal{L}, \mathcal{P})$ be a planar space of order n and suppose that every plane of \mathcal{P} is an affine plane. If the parallelism between lines is transitive, then n is a prime power and $(S, \mathcal{L}, \mathcal{P})$ is AG(d, n).

From this theorem follows easily the following lemma that will be useful for us.

Lemma 2.1. Let $(S, \mathcal{L}, \mathcal{P})$ be a 3-dimensional locally projective planar space of order n. If every plane of \mathcal{P} is an affine plane, then $(S, \mathcal{L}, \mathcal{P}) = AG(3, n)$.

Proof. Let ℓ, ℓ', ℓ'' be three lines with $\ell || \ell'$ and $\ell || \ell''$. By the previous theorem, we only need to prove that $\ell' || \ell''$. We also may assume that the lines ℓ, ℓ', ℓ'' do not lie in a common plane (hence they are also pairwise distinct lines), otherwise the theorem is proved. Suppose, by way of contradiction, that $\ell' \cap \ell'' \neq \emptyset$. Then the lines ℓ' and ℓ'' meet in a point P. It follows that $\pi = \langle \ell', \ell'' \rangle$ is a plane. Let $\pi' = \langle \ell', \ell \rangle$ and $\pi'' = \langle \ell'', \ell \rangle$, then $\pi' \cap \pi'' = \ell$. But $P \in \ell' \cap \ell''$ hence $P \in \pi' \cap \pi''$ and so $P \in \ell$, that is a contradiction since $\ell || \ell'$ and $\ell || \ell''$. Hence $\ell' \cap \ell'' = \emptyset$. It remains to prove that ℓ' and ℓ'' are coplanar. Let P' be a point on ℓ' and let $\pi^* = \langle P', \ell'' \rangle$, then $P' \in \pi^* \cap \pi'$. Hence $\pi^* \cap \pi'$ is a line through P' with no common points with ℓ . But the unique line through P' contained in π' and with no common points with ℓ is ℓ' . Hence $\pi' \cap \pi'' = \ell'$ and so ℓ' and ℓ'' are in a common plane.

Note that, if $|\ell| \ge 4$ for every line ℓ , the previous result also follows from the following theorem of F. Buekenhout [1].

Theorem 2.3. Let $(S, \mathcal{L}, \mathcal{P})$ be a planar space of order n and suppose that every plane of \mathcal{P} is an affine plane. If $|\ell| \ge 4$ for every line ℓ , then n is a prime power and $(S, \mathcal{L}, \mathcal{P})$ is AG(d, n).

In AG(3, n) let π be a plane and Γ be an oval of π . A cylinder with base Γ is a set of n + 1 parallel lines each of them intersecting Γ in just one point.

In this paper we prove the following theorem.

Main Theorem. Let $(S, \mathcal{L}, \mathcal{P})$ be a 3-dimensional locally projective regular planar space of order n and let **H** be a non-degenerate quadratic set of S. Then the following cases are possible:

- (a) $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is PG(3, n) and **H** is either one of its ovoids or one of its hyperbolic quadrics;
- (b) $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is AG(3, n) and **H** is either the union of two disjoint planes or a cylinder with base an oval.

Remarks.

- 1. This theorem shows that the definition of a quadratic set is good for projective spaces but not for the other 3-dimensional locally projective regular planar spaces as for instance non-singular quadrics in affine spaces do not survive here.
- 2. An unsuccessful attempt to give an axiomatic definition for non-degenerate quadrics in an affine space was given by F. Buekenhout in [2].

3 Proof of the main theorem

Throughout the rest of the paper **H** will be a non-degenerate quadratic set of $(S, \mathcal{L}P)$. Moreover we can assume that in **H** there is an **H**-line, otherwise we are in the hypothesis of Theorem 2.1 of Tallini and hence $(S, \mathcal{L}, \mathcal{P})$ is PG(3, n) and **H** is one of its ovoids.

We start with the following observation.

Observation 3.1. Let P be a point of **H** and let h be the number of lines through P contained in **H**. Then $|\mathbf{H}| = n^2 + hk + 1$ and hence h is independent on the point P.

Lemma 3.1. If there are two points P and Q in \mathbf{H} such that $\mathbf{H}_P = \mathbf{H}_Q$, then $\mathbf{H}_P = \mathbf{H}_R$ for each $R \in \mathbf{H}_P \cap \mathbf{H}$. Moreover $\mathbf{H}_P \cap \mathbf{H}$ is either a line or a plane.

Proof. Let P and Q be two points of \mathbf{H} such that $\mathbf{H}_P = \mathbf{H}_Q$. If $\mathbf{H}_P \cap \mathbf{H}$ is the line joining P and Q, then for every point X on the line PQ holds $\mathbf{H}_X = \mathbf{H}_P$. Assume $\mathbf{H}_P \cap \mathbf{H} \neq PQ$ and let R be a point of $\mathbf{H}_P \cap \mathbf{H}$, not on the line PQ, then the lines RP and RQ are contained in \mathbf{H} and hence $\mathbf{H}_R = \mathbf{H}_P$. For any point $Y \in PQ$, $Y \neq P, Y \neq Q$, there holds that $\mathbf{H}_Y = \mathbf{H}_P$ since YP and YQ are contained in \mathbf{H}_Y . We prove that in this case $\mathbf{H}_P \cap \mathbf{H}$ is a plane. Indeed let A, B be two points of $\mathbf{H}_P \cap \mathbf{H}$, then the line AB is contained in \mathbf{H} since $\mathbf{H}_A = \mathbf{H}_B$ and hence $\mathbf{H}_P \cap \mathbf{H}$ is a proper subspace containing PQ and R and hence it is a plane.

From Lemma 3.1, since $\mathbf{H}_P \cap \mathbf{H}$ is either a line or a plane of \mathbf{H} and since h is the number of \mathbf{H} -lines through P, we have either h = 1 or h = n + 1. We first consider the case h = 1.

Proposition 3.1. Let \mathbf{H} be a quadratic set such that $\mathbf{H}_P = \mathbf{H}_Q$ for all points $Q \in \mathbf{H}_P \cap \mathbf{H}$ and let h = 1, then $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is $\operatorname{AG}(3, n)$ and \mathbf{H} is a cylinder with base an oval.

Proof. Since through every point of **H** there are n 1-tangent lines and through each one of these lines there are n planes different from \mathbf{H}_P that meet **H** in an (n+1)-arc, then counting in two ways the pairs (P, π) with $\mathbf{H} \cap \pi$ an (n+1)-arc we have:

$$n^2|\mathbf{H}| = (n+1)\alpha\tag{1}$$

where α is the number of planes that meet **H** in an (n + 1)-arc. Counting $|\mathbf{H}|$ from lines through P we have $|\mathbf{H}| = n^2 + k + 1$ and so from Equation (1) it follows that n+1 divides $n^2(n^2+k+1) = (n^2-1+1)(n^2-1+k+2)$. Hence n+1 divides k+2, so $n \leq k+1$. Since $k \leq n$ we have either k+1 = n or k+1 = n+1. If k = n we have that all planes of the planar space are projective planes hence the planar space is PG(3, n) and we get a contradiction since in PG(3, n) non-degenerate quadratic sets are only the hyperbolic quadrics ([3]), in which case however $\mathbf{H}_P \neq \mathbf{H}_Q$ for any pair of distinct points $P, Q \in \mathbf{H}$.

Hence k + 1 = n and so all planes are affine planes. Moreover since $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is a 3-dimensional locally projective planar space it follows from Lemma 2.1 that $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is AG(3, n). Since h = 1 counting the points of **H** we have $|\mathbf{H}| = n^2 + n$. Every secant plane π containing no **H**-lines meets **H** in an oval. Let Ω be one of these ovals. Through every point of Ω there is a unique **H**-line. Since h = 1, those n+1 lines do not have common points and so they cover $n^2 + n$ points of **H**. Let $\ell_1, \ldots, \ell_{n+1}$ be those n+1 lines, we will prove that these lines are pairwise parallel. Let $P \in \ell_1$, since $\mathbf{H}_P \cap \mathbf{H} = \ell_1$, then the other *n* **H**-lines through the points of Ω are parallel to \mathbf{H}_{P} . It follows that each one of these lines is contained in one of the n-1 planes parallel to \mathbf{H}_{P} and different from \mathbf{H}_{P} and so at least one of these planes π contains two of those lines ℓ_i and ℓ_j that are parallel. Let P' be a point of $\ell_j, \mathbf{H}_{P'} \neq \pi$ since $H_{P'}$ contains only one **H**-line ℓ_j . Then $\mathbf{H}_{P'}$ meets \mathbf{H}_P in a line disjoint from **H** and so parallel to ℓ_1 and ℓ_j . It follows that ℓ_1 is parallel to ℓ_j so it is also parallel to ℓ_i . Using the same argument for all **H**-lines through the points of Ω , since parallelism is transitive, it follows that the lines $\ell_1, \ldots, \ell_{n+1}$ are pairwise parallel and **H** is a cylinder with base Ω .

Next we study the case h = n + 1.

Proposition 3.2. Let **H** be a quadratic set of $(S, \mathcal{L}, \mathcal{P})$ such that $\mathbf{H}_P = \mathbf{H}_Q$ for every $Q \in \mathbf{H}_P \cap \mathbf{H}$ and let h = n+1. Then n is a prime power, $(S, \mathcal{L}, \mathcal{P})$ is AG(3, n) and **H** is a pair of parallel planes.

Proof. We first prove that there is an external line ℓ to **H**. Indeed let P be a point of **H** and let \mathbf{H}_P be the tangent plane to **H** at P. Every plane π through P, different from \mathbf{H}_P , is a secant plane to **H** and $|\pi \cap \mathbf{H}| = n + k + 1$. For every point $R \in \pi \setminus \mathbf{H}$ there are (n+k+1)/2 2-secant lines contained in π . Since (n+k+1)/2 < n+1, there is at least one external line ℓ through R in π . All planes through ℓ are either external to **H** or meet **H** in n + k + 1 points. Hence $|\mathbf{H}| = n^2 + (n+1)k + 1 = a(n+k+1)$, where a denotes the number of secant planes through ℓ . It follows that n + k + 1 divides $n^2 + (n+1)k + 1$ and hence n + k + 1 divides 2k + 2. So $n + k + 1 \leq 2k + 2$, hence $n \leq k + 1$. So k + 1 = n, hence all planes are affine planes and as above the planar space is AG(3, n). Since $|\mathbf{H}| = n^2 + (n+1)(n-1) + 1 = 2n^2$, the set **H** is the union of two parallel planes.

We can now assume that there exists a point P in \mathbf{H} and a point $Q \in \mathbf{H}_P \cap \mathbf{H}$ such that $\mathbf{H}_P \neq \mathbf{H}_Q$. Then, from Lemma 3.1 it follows that $\mathbf{H}_R \neq \mathbf{H}_P$ for every $R \in \mathbf{H}_P \cap \mathbf{H}$. In this case we can prove the following proposition.

Proposition 3.3. Let $(S, \mathcal{L}, \mathcal{P})$ be a 3-dimensional regular locally projective planar space of order n, let **H** be a non-degenerate quadratic set of S such that there exists

a point P in **H** and a point Q in $\mathbf{H}_P \cap \mathbf{H}$ with $\mathbf{H}_P \neq \mathbf{H}_Q$. Then n is a prime power, $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is PG(3, n) and **H** is one of its hyperbolic quadrics.

Proof. We will prove that $(S, \mathcal{L}, \mathcal{P})$ is PG(3, n). Suppose by way of contradiction that $(S, \mathcal{L}, \mathcal{P})$ is not PG(3, n), then k < n. Let ℓ be the line through P and Q. The line ℓ is an **H**-line since it is contained in \mathbf{H}_P . Moreover through ℓ there are at most k + 1 tangent planes (one for each point of ℓ) and since k < n, there is at least one secant plane π through ℓ . If we count the points of $\pi \cap \mathbf{H}$ from the lines through P in π we have $|\pi \cap \mathbf{H}| = n + k + 1$ since all lines through P, different from ℓ , are two-secant lines (otherwise π would be \mathbf{H}_P). Counting $|\pi \cap \mathbf{H}|$ from any point $P' \in \pi \cap \mathbf{H} \setminus \{P\}$ we see that through P' there is a unique line ℓ' contained in $\pi \cap \mathbf{H}$. Hence $\pi \cap \mathbf{H}$ is partitioned into **H**-lines.

Furthermore in π there are no 1-tangent lines to **H** and so through each point $P' \in \pi \setminus \mathbf{H}$ (such a point exists since π is a secant plane) there are precisely (n+k+1)/2 two-secant lines to **H**. From this follows that n+k+1 is even. Next consider the point Q in \mathbf{H}_P . Since $\mathbf{H}_P \neq \mathbf{H}_Q$, the unique tangent line through Q contained in \mathbf{H}_P is the line ℓ , the other n lines through Q in \mathbf{H}_P are all 2-secants lines. Hence $|\mathbf{H}_P \cap \mathbf{H}| = n+k+1$. Let now T be a point of \mathbf{H}_P not on \mathbf{H} , then the line TP is the unique tangent line through T contained in \mathbf{H}_P and hence there are (n+k)/2 2-secant lines through T in \mathbf{H}_P . It follows that n+k is even, a contradiction. Hence k = n, so all planes are projective planes and hence S is $\mathrm{PG}(3, n)$. From [3] follows that the only quadratic set containing lines in a 3-dimensional projective space is the hyperbolic quadric.

References

- F. Buekenhout, Ensembles quadratiques des espaces projectifs. Math. Z. 110, 306-318 (1969).
- [2] F. Buekenhout, Une caractérisation des espaces affins basée sur la notion de droite. Math. Z. 111, 367-371 (1969).
- [3] F. Buekenhout, On affine quadratic sets. Atti del Sem. Mat. Fis. Univ. Modena XXXV, 71-76 (1987).
- [4] J. Doyen and X. Hubaut, Finite regular locally projective spaces. Math. Z. 119, 82-88 (1971).
- [5] M. Hall Jr., Incidence axioms for affine geometry. J. of Algebra. 21, 535-547 (1972).
- [6] C. Huybrechts, The non-existence of 3-dimensional locally projective spaces of orders (2,9), J. Combin. Theory Ser. A 71 no. 2, 340-342 (1995).
- [7] G. Tallini, Ovoids and caps in planar spaces. Atti Conv. Combinatorics 1984, 347-353 North Holland (1986).

Dipartimento di Matematica e Applicazioni, Università di Napoli "Federico II", Complesso di Monte S. Angelo - via Cintia, 80126 Napoli, Italy. e-mail: rdigenna@unina.it, ndurante@unina.it.