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Abstract

In this paper quadratic sets of a 3-dimensional locally projective regular
planar space (S,L,P) of order n are studied and classified. It is proved that if
in (S,L,P) there is a non-degenerate quadratic set H, then the planar space
is either PG(3, n) or AG(3, n). Moreover in the first case H is either an ovoid
or an hyperbolic quadric, in the latter case H is either a cylinder with base
an oval or a pair of parallel planes.

1 Introduction

A linear space is a pair (S,L), where S is a non-empty set of points and L is a
non-empty set of proper subsets of S called lines, such that through every pair of
distinct points there is a unique line and every line has at least two points.

Let (S,L) be a finite linear space. For every point P of S, the degree of P is the
number [P ] of lines through P ; for every line l, the length of l is its cardinality. The
integer n defined by n + 1 = max{[P ] : P ∈ S} is the order of the linear space. A
subset T of the point set S of a linear space (S,L) is a subspace if it contains the
line through any two of its points.

A planar space is a triple (S,L,P), where (S,L) is a linear space and P is a non-
empty family of proper subspaces of (S,L), called planes, satisfying the following
properties:
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(p1) through any three non-collinear points there is a unique plane containing them;

(p2) every plane contains at least three non-collinear points.

Let (S,L,P) be a finite planar space. In this paper v is the number of points, b
is the number of lines and c is the number of planes of the planar space (S,L,P).

For every plane π of P , denote by Lπ the set of the lines of L contained in π and
by nπ the order of the linear space (π,Lπ). The integer n = max{nπ : π ∈ P} is the
order of the planar space.

For any point X of S, the star of lines with center X is the set of all lines through
X.
Let π be a plane of (S,L,P) and let X be a point of π: the pencil of lines with
center X in π is the set of all lines through X contained in π. If every pencil of
lines has at least three lines we have a thick planar space. Two skew lines are two
non-coplanar lines of a planar space. Two parallel lines are two lines ` and `′ such
that either ` = `′ or ` and `′ are coplanar and ` ∩ `′ = ∅.

A planar space (S,L,P) is embeddable in a projective space P if there is an
injection of S into the point set of P preserving collinearities and coplanarities as
well as non-collinearities and non-coplanarities.

A planar space (S,L,P) is 3-dimensional locally projective if its proper subspaces
are points, lines and planes and for every point P of S, the linear space (LP ,PP )
whose points are the lines through P and whose lines are the pencils of lines with
center P , is a (non-degenerate) projective plane.

If (S,L,P) is a thick planar space of order n, it is easy to see that the property
of being 3-dimensional locally projective is equivalent to the property that its planes
pairwise intersect either in the empty set or in a line.

A finite planar space (S,L,P) is a k-regular planar space if all lines have the
same length k + 1. We will sometimes simply say that the planar space is regular.

Observe that, if (S,L,P) is a regular locally projective planar space of order n,
then in every plane the pencils have n+1 lines and hence every plane has (n+1)k+1
points.

Throughout this paper (S,L,P) is a 3-dimensional locally projective regular
planar space of order n.

It is not difficult to see that (S,L,P) satisfies the following properties.

(a) Through every point there are n2 + n + 1 lines and n2 + n + 1 planes.

(b) In every plane the pencils of lines have cardinality n + 1.

(c) Through every line there are n + 1 planes.

(d) In every plane there are
(nk + k + 1)(n + 1)

k + 1
lines.

(e) The number of lines is b =
((n2 + n + 1)k + 1)(n2 + n + 1)

k + 1
.

(f) The number of point is (n2 + n + 1)k + 1 ≤ n3 + n2 + n + 1.
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The finite regular locally projective planar spaces have been studied by J. Doyen
and X. Hubaut in [4]. They proved the following result.

Theorem 1.1. Let (S,L,P) be a 3-dimensional regular locally projective planar
space of order n, then three cases are possible.

(C1) (S,L,P) is isomorphic to PG(3, n).

(C2) (S,L,P) is isomorphic to AG(3, n).

(C3) The order n of (S,L,P) satisfies n = k + s with either s = k2 + k + 1 or
s = (k + 1)3 + 1.

Remark. The spaces of type (C3) are called Lobachevsky spaces. If s = k2 +
k+1, then the smallest case k = 1 gives the unique 3−(22, 6, 1) design, i.e. the Witt
design on 22 points. It has been proved in [6] that there cannot exist an example
for k = 2. For k ≥ 3 no example is known either. If s = (k + 1)3 + 1, then the
smallest case k = 1 would give a 3− (112, 12, 1) design that should be the extension
of a projective plane of order 10. It is known that such a design cannot exists since
there are no projective planes of order 10.

2 Quadratic sets

Let K be a set of points of S. A line ` is tangent to K if either it is contained in K
or it has exactly a point in common with K. In the first case the line ` will be called
a K-line, in the latter case ` will be called a 1-tangent line to K. A non-tangent
line to K will be called external to K if it has empty intersection with K, secant to
K otherwise.

A plane π is tangent to K at a point P if each line through P in π is tangent to
K. A non-tangent plane to K will be called external to K if it has empty intersection
with K, secant to K otherwise.

For each point P ∈ K we can define the tangent subset KP of K at P as the
union of all tangent lines to K at P .

A quadratic set of (S,L,P) is a non-empty subset H of points of S such that
each line that meets H in more than two points, is contained in H, and such that
for each point P ∈ H the tangent subset HP is either a plane of (S,L,P) or the full
point set S.

A point P of H is singular if HP = S. A quadratic set H of (S,L,P) is called
non-degenerate if it has no singular points.

Let (S,L,P) be a non-degenerate planar space of order n and let π be a plane
of (S,L,P). A k-arc in π is a set Γ of k points of π no three collinear. It is easy to
see that k ≤ n + 2 and k = n + 2 if and only if n is even. Every (n + 1)-arc in π is
called an oval of π.

A set C of points meeting every line in at most two points is a cap of (S,L,P).
Planar spaces containing special types of caps have been studied by G. Tallini

in [7]. He proved the following theorem.

Theorem 2.1. Let (S,L,P) be a thick finite planar space with all lines of the same
cardinality k + 1 and such that all planes have the same number of points. Let Ω be
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a cap of (S,L,P) such that for every point P of Ω, the union of the tangent lines
at P is a subspace τP meeting every plane through P , but not in τP , in a line. Then
k is a prime power, (S,L,P) is PG(3, k) and Ω is one of its ovoids.

In the sequel we will also need the following result that follows immediately from
a theorem of M. Hall Jr. [5].

Theorem 2.2. Let (S,L,P) be a planar space of order n and suppose that every
plane of P is an affine plane. If the parallelism between lines is transitive, then n is
a prime power and (S,L,P) is AG(d, n).

From this theorem follows easily the following lemma that will be useful for us.

Lemma 2.1. Let (S,L,P) be a 3-dimensional locally projective planar space of
order n. If every plane of P is an affine plane, then (S,L,P) = AG(3, n).

Proof. Let `, `′, `′′ be three lines with `‖`′ and `‖`′′. By the previous theorem,
we only need to prove that `′‖`′′. We also may assume that the lines `, `′, `′′ do
not lie in a common plane (hence they are also pairwise distinct lines), otherwise
the theorem is proved. Suppose, by way of contradiction, that `′ ∩ `′′ 6= ∅. Then
the lines `′ and `′′ meet in a point P . It follows that π = 〈`′, `′′〉 is a plane. Let
π′ = 〈`′, `〉 and π′′ = 〈`′′, `〉, then π′ ∩ π′′ = `. But P ∈ `′ ∩ `′′ hence P ∈ π′ ∩ π′′ and
so P ∈ `, that is a contradiction since `‖`′ and `‖`′′. Hence `′ ∩ `′′ = ∅. It remains
to prove that `′ and `′′ are coplanar. Let P ′ be a point on `′ and let π∗ = 〈P ′, `′′〉,
then P ′ ∈ π∗ ∩ π′. Hence π∗ ∩ π′ is a line through P ′ with no common points with
`. But the unique line through P ′ contained in π′ and with no common points with
` is `′. Hence π′ ∩ π′′ = `′ and so `′ and `′′ are in a common plane. �

Note that, if |`| ≥ 4 for every line `, the previous result also follows from the
following theorem of F. Buekenhout [1].

Theorem 2.3. Let (S,L,P) be a planar space of order n and suppose that every
plane of P is an affine plane. If |`| ≥ 4 for every line `, then n is a prime power
and (S,L,P) is AG(d, n).

In AG(3, n) let π be a plane and Γ be an oval of π. A cylinder with base Γ is a
set of n + 1 parallel lines each of them intersecting Γ in just one point.

In this paper we prove the following theorem.
Main Theorem. Let (S,L,P) be a 3-dimensional locally projective regular

planar space of order n and let H be a non-degenerate quadratic set of S. Then the
following cases are possible:

(a) (S,L,P) is PG(3, n) and H is either one of its ovoids or one of its hyperbolic
quadrics;

(b) (S,L,P) is AG(3, n) and H is either the union of two disjoint planes or a
cylinder with base an oval.
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Remarks.

1. This theorem shows that the definition of a quadratic set is good for projective
spaces but not for the other 3-dimensional locally projective regular planar
spaces as for instance non-singular quadrics in affine spaces do not survive
here.

2. An unsuccessful attempt to give an axiomatic definition for non-degenerate
quadrics in an affine space was given by F. Buekenhout in [2].

3 Proof of the main theorem

Throughout the rest of the paper H will be a non-degenerate quadratic set of
(S,LP ). Moreover we can assume that in H there is an H-line, otherwise we
are in the hypothesis of Theorem 2.1 of Tallini and hence (S,L,P) is PG(3, n) and
H is one of its ovoids.

We start with the following observation.

Observation 3.1. Let P be a point of H and let h be the number of lines through
P contained in H. Then |H| = n2 + hk + 1 and hence h is independent on the point
P .

Lemma 3.1. If there are two points P and Q in H such that HP = HQ, then
HP = HR for each R ∈ HP

⋂
H. Moreover HP ∩H is either a line or a plane.

Proof. Let P and Q be two points of H such that HP = HQ. If HP
⋂

H is
the line joining P and Q, then for every point X on the line PQ holds HX = HP .
Assume HP ∩H 6= PQ and let R be a point of HP

⋂
H, not on the line PQ, then the

lines RP and RQ are contained in H and hence HR = HP . For any point Y ∈ PQ,
Y 6= P, Y 6= Q, there holds that HY = HP since Y P and Y Q are contained in HY .
We prove that in this case HP

⋂
H is a plane. Indeed let A, B be two points of

HP
⋂

H, then the line AB is contained in H since HA = HB and hence HP
⋂

H is
a proper subspace containing PQ and R and hence it is a plane. �

From Lemma 3.1, since HP
⋂

H is either a line or a plane of H and since h is the
number of H-lines through P , we have either h = 1 or h = n + 1. We first consider
the case h = 1.

Proposition 3.1. Let H be a quadratic set such that HP = HQ for all points
Q ∈ HP ∩H and let h = 1, then (S,L,P) is AG(3, n) and H is a cylinder with base
an oval.

Proof. Since through every point of H there are n 1-tangent lines and through
each one of these lines there are n planes different from HP that meet H in an
(n+1)-arc, then counting in two ways the pairs (P, π) with H

⋂
π an (n+1)-arc we

have:

n2|H| = (n + 1)α (1)
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where α is the number of planes that meet H in an (n + 1)-arc. Counting |H| from
lines through P we have |H| = n2 + k + 1 and so from Equation (1) it follows that
n+1 divides n2(n2 +k +1) = (n2−1+1)(n2−1+k +2). Hence n+1 divides k +2,
so n ≤ k + 1. Since k ≤ n we have either k + 1 = n or k + 1 = n + 1. If k = n we
have that all planes of the planar space are projective planes hence the planar space
is PG(3, n) and we get a contradiction since in PG(3, n) non-degenerate quadratic
sets are only the hyperbolic quadrics ([3]), in which case however HP 6= HQ for any
pair of distinct points P, Q ∈ H.
Hence k + 1 = n and so all planes are affine planes. Moreover since (S,L,P) is
a 3−dimensional locally projective planar space it follows from Lemma 2.1 that
(S,L,P) is AG(3, n). Since h = 1 counting the points of H we have |H| = n2 + n.
Every secant plane π containing no H-lines meets H in an oval. Let Ω be one of
these ovals. Through every point of Ω there is a unique H-line. Since h = 1, those
n + 1 lines do not have common points and so they cover n2 + n points of H. Let
`1, . . . , `n+1 be those n + 1 lines, we will prove that these lines are pairwise parallel.
Let P ∈ `1, since HP

⋂
H = `1, then the other n H-lines through the points of Ω

are parallel to HP . It follows that each one of these lines is contained in one of
the n − 1 planes parallel to HP and different from HP and so at least one of these
planes π contains two of those lines `i and `j that are parallel. Let P ′ be a point of
`j, HP ′ 6= π since HP ′ contains only one H-line `j. Then HP ′ meets HP in a line
disjoint from H and so parallel to `1 and `j. It follows that `1 is parallel to `j so
it is also parallel to `i. Using the same argument for all H-lines through the points
of Ω, since parallelism is transitive, it follows that the lines `1, . . . , `n+1 are pairwise
parallel and H is a cylinder with base Ω. �

Next we study the case h = n + 1.

Proposition 3.2. Let H be a quadratic set of (S,L,P) such that HP = HQ for
every Q ∈ HP ∩H and let h = n+1. Then n is a prime power, (S,L,P) is AG(3, n)
and H is a pair of parallel planes.

Proof. We first prove that there is an external line ` to H. Indeed let P be a point
of H and let HP be the tangent plane to H at P . Every plane π through P , different
from HP , is a secant plane to H and |π ⋂

H| = n+k +1. For every point R ∈ π \H
there are (n+k+1)/2 2-secant lines contained in π. Since (n+k+1)/2 < n+1, there
is at least one external line ` through R in π. All planes through ` are either external
to H or meet H in n + k + 1 points. Hence |H| = n2 + (n + 1)k + 1 = a(n + k + 1),
where a denotes the number of secant planes through `. It follows that n + k + 1
divides n2 + (n + 1)k + 1 and hence n + k + 1 divides 2k + 2. So n + k + 1 ≤ 2k + 2,
hence n ≤ k + 1. So k + 1 = n, hence all planes are affine planes and as above the
planar space is AG(3, n). Since |H| = n2 + (n + 1)(n − 1) + 1 = 2n2, the set H is
the union of two parallel planes. �

We can now assume that there exists a point P in H and a point Q ∈ HP
⋂

H
such that HP 6= HQ. Then, from Lemma 3.1 it follows that HR 6= HP for every
R ∈ HP

⋂
H. In this case we can prove the following proposition.

Proposition 3.3. Let (S,L,P) be a 3-dimensional regular locally projective planar
space of order n, let H be a non-degenerate quadratic set of S such that there exists
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a point P in H and a point Q in HP
⋂

H with HP 6= HQ. Then n is a prime power,
(S,L,P) is PG(3, n) and H is one of its hyperbolic quadrics.

Proof. We will prove that (S,L,P) is PG(3, n). Suppose by way of contradiction
that (S,L,P) is not PG(3, n), then k < n. Let ` be the line through P and Q. The
line ` is an H-line since it is contained in HP . Moreover through ` there are at
most k + 1 tangent planes (one for each point of `) and since k < n, there is at
least one secant plane π through `. If we count the points of π

⋂
H from the lines

through P in π we have |π ⋂
H| = n+ k +1 since all lines through P , different from

`, are two-secant lines (otherwise π would be HP ). Counting |π ⋂
H| from any point

P ′ ∈ π
⋂

H\{P} we see that through P ′ there is a unique line `′ contained in π
⋂

H.
Hence π

⋂
H is partitioned into H-lines.

Furthermore in π there are no 1-tangent lines to H and so through each point P ′ ∈
π \H (such a point exists since π is a secant plane) there are precisely (n+ k +1)/2
two-secant lines to H. From this follows that n + k + 1 is even. Next consider the
point Q in HP . Since HP 6= HQ, the unique tangent line through Q contained in
HP is the line `, the other n lines through Q in HP are all 2-secants lines. Hence
|HP ∩H| = n + k + 1. Let now T be a point of HP not on H, then the line TP is
the unique tangent line through T contained in HP and hence there are (n + k)/2
2-secant lines through T in HP . It follows that n+k is even, a contradiction. Hence
k = n, so all planes are projective planes and hence S is PG(3, n). From [3] follows
that the only quadratic set containing lines in a 3-dimensional projective space is
the hyperbolic quadric. �
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