On Hermitian Spreads

Ilaria Cardinali

Rocco Trombetti

Abstract

Let \perp be the polarity of PG(5,q) defined by the elliptic quadric $Q^{-}(5,q)$. A locally Hermitian spread S of $Q^{-}(5,q)$, with respect to a line L, is associated in a canonical way with a spread S_{Λ} of the 3-dimensional projective space $L^{\perp} = \Lambda$, and conversely. In this paper we give a geometric characterization of the regular spreads of Λ which induce Hermitian spreads of $Q^{-}(5,q)$.

1 Introduction

Let $Q^{-}(5,q)$ be the elliptic quadric of PG(5,q). A spread S of $Q^{-}(5,q)$ is a partition of the pointset of $Q^{-}(5,q)$ into lines. Let L be a fixed line of S. For each line Mof S, the subspace $\langle L, M \rangle$ has dimension 3 and intersects $Q^{-}(5,q)$ in a non-singular hyperbolic quadric. Let $\mathcal{R}_{L,M}$ be the regulus of $\langle L, M \rangle \cap Q^{-}(5,q)$ containing the lines L and M. The spread S is locally Hermitian with respect to L if $\mathcal{R}_{L,M}$ is contained in S for all lines M of S different from L. If the spread S is locally Hermitian with respect to all the lines of S, then the spread is called Hermitian or regular and is unique up to isomorphism (see [8], Section 8.1).

Let \perp be the polarity of PG(5,q) defined by $Q^{-}(5,q)$. As in [3], it is possible to associate with a locally Hermitian spread with respect to a line L of $Q^{-}(5,q)$, a spread of the 3-dimensional projective space $L^{\perp} = \Lambda$ in the following way. Let Mbe any line of S different from L; then $m_{L,M} = \langle L, M \rangle^{\perp}$ is a line of Λ disjoint from $\langle L, M \rangle$.

Then, $S_{\Lambda} = \{m_{L,M} \mid M \in S, M \neq L\} \cup \{L\}$ is a spread of Λ and in [3] it has been shown that for each spread \mathcal{F} of Λ containing L, there is a locally Hermitian spread

Communicated by J. Thas.

Bull. Belg. Math. Soc. 11 (2004), 63-67

Received by the editors July 2002.

¹⁹⁹¹ Mathematics Subject Classification : 51E20.

Key words and phrases : Hermitian spreads, ovoid.

 $\mathcal{S}(\mathcal{F}, L)$ of $Q^{-}(5, q)$ (with respect to L) such that $\mathcal{S}(\mathcal{F}, L)_{\Lambda} = \mathcal{F}$. This construction is the dual of the one in [8], Section 8.1, Case d (see, e.g., [3]).

By [8], if S is a Hermitian spread of $Q^{-}(5,q)$, then the spread S_{Λ} is regular for each line L of S but, surprisingly, for q > 2, there exists a regular spread \mathcal{F} of Λ containing L such that $S(\mathcal{F}, L)$ is not Hermitian (see [3], Theorem 6). Note that for q = 2 every regular spread induces a Hermitian spread (see [3]). An open problem was the characterization of those regular spreads of Λ inducing Hermitian spreads of $Q^{-}(5,q)$.

Let $Q^+(5,q^2)$ be a non-singular hyperbolic quadric of $PG(5,q^2)$. Choose $\Sigma \simeq PG(5,q)$ in such a way that $Q^-(5,q) = Q^+(5,q^2) \cap \Sigma$, with Σ the set of fixed points with respect to a Baer involution σ of $PG(5,q^2)$ preserving the hyperbolic quadric $Q^+(5,q^2)$.

Denote by Λ^* the 3-dimensional subspace of $PG(5, q^2)$ defined by Λ . Recall that each regular spread of Λ has exactly two transversal lines over $GF(q^2)$ (see, e.g., [1]). Note that Λ^* intersects $Q^+(5, q^2)$ in two conjugate planes with respect to σ meeting Λ in exactly the line L.

In this paper we prove that the only regular spreads (containing L) of Λ which give Hermitian spreads of $Q^{-}(5,q)$ are those whose transversals lie on the two planes of $Q^{+}(5,q^2)$ through L.

2 Regular Spreads of PG(3,q)

Let L_1 , L_2 , L_3 be any three disjoint lines of PG(3, q) and denote by $\mathcal{R}(L_1, L_2, L_3)$ the regulus of PG(3, q) containing L_1 , L_2 and L_3 (see e.g. [2]). A spread \mathcal{F} of PG(3, q)is regular if $\mathcal{R}(L_1, L_2, L_3)$ is contained in \mathcal{F} for all distinct L_1 , L_2 , $L_3 \in \mathcal{F}$. Put $\overline{\Lambda} = PG(3, q^2)$ and let τ be a Baer involution of $\overline{\Lambda}$. The set Λ of the points of $\overline{\Lambda}$ fixed by τ is a 3-dimensional projective space PG(3, q). A line of $\overline{\Lambda}$ contains exactly 0, 1 or q + 1 points of Λ , and a point x of $\overline{\Lambda} \setminus \Lambda$ is incident with the extension of exactly one line of Λ . If m is an imaginary line of $\overline{\Lambda}$ (i.e., a line disjoint from Λ), then also m^{τ} is imaginary. For each point x of m, let L(x) be the line joining the points $x \in m$ and $x^{\tau} \in m^{\tau}$. Then L(x) intersects Λ in exactly q + 1 points and $l(x) = L(x) \cap \Lambda$ is a line of Λ . The lineset $\mathcal{F}_m = \{l(x) : x \in m\}$ is a regular spread of Λ and for each regular spread \mathcal{F} of Λ there are exactly two imaginary lines mand m^{τ} such that $\mathcal{F}_m = \mathcal{F}_{m^{\tau}} = \mathcal{F}$ (see, e.g., [2]). The set \mathcal{R} is a regulus of \mathcal{F}_m if and only if $\{x \in m : l(x) \in \mathcal{R}\}$ is a Baer subline of m (see, e.g., [1]), i.e. a subline isomorphic to PG(1, q). The lines m and m^{τ} are called transversals of \mathcal{F}_m .

3 Hermitian spreads of $Q^{-}(5,q)$

Let $\mathcal{H} = H(3,q^2)$ be the Hermitian variety of $PG(3,q^2)$ with equation $X_0X_3^q + X_1X_2^q + X_2X_1^q + X_3X_0^q = 0$ (for more details see, e.g., [4]). An ovoid of \mathcal{H} is a set of $q^3 + 1$ points of \mathcal{H} such that no two of them are collinear on \mathcal{H} (see e.g. [6]). The incidence structure formed by all points and lines on \mathcal{H} is the dual of the incidence structure formed by all points of the elliptic quadric $Q^-(5,q)$ (see [5]); call this duality ρ . A locally Hermitian spread \mathcal{S} of $Q^-(5,q)$ with respect to a line L is the image under ρ of an ovoid \mathcal{O} of \mathcal{H} whose points lie on q^2 Baer sublines on \mathcal{O}

through the point P, with $P^{\rho} = L$. The spread $S = \mathcal{O}^{\rho}$ is Hermitian if and only if \mathcal{O} is classical (see [8]), i.e., is a non-singular Hermitian curve.

Let $P = (1, 0, 0, 0) \in \mathcal{H}$ and note that the polar plane of P with respect to \mathcal{H} is $\pi_1 : X_3 = 0$. In order to parametrize the ovoid \mathcal{O} , one can fix any plane π_0 of $PG(3, q^2)$ not through P and consider the set \mathcal{P} of the points of π_0 obtained as intersection with the q^2 Baer sublines on \mathcal{O} through P. Since \mathcal{O} is an ovoid, the points of \mathcal{P} have the property that the line joining any two of them intersects π_1 in a non-singular point.

Let π_0 have equation $X_0 = 0$. The points of π_0 not contained in π_1 have coordinates $\{(0, \alpha, \beta, 1) : \alpha, \beta \in GF(q^2)\}$. As the line joining $(0, \alpha, \beta, 1)$ and $(0, \alpha, \beta', 1)$, with $\beta \neq \beta'$, intersects π_1 in a singular point, it follows that for any α there is exactly one β such that $(0, \alpha, \beta, 1) \in \mathcal{P}$. Hence, put $\beta = f(\alpha)$, f a function from $GF(q^2)$ to itself. Then \mathcal{P} is the set of points of π_0 with coordinates $(0, \alpha, f(\alpha), 1), \alpha \in GF(q^2)$. Since the line joining any two points of \mathcal{P} intersects π_1 in a non-singular point, it is easy to verify that:

(*)
$$tr((f(\alpha) - f(\alpha'))^q(\alpha - \alpha')) \neq 0, \quad \forall \alpha, \alpha' \in GF(q^2), \ \alpha \neq \alpha',$$

where tr is the trace function from $GF(q^2)$ to GF(q).

The ovoid \mathcal{O} is the set of points of \mathcal{H} lying on the q^2 lines joining P with any point of \mathcal{P} . So $(c, \alpha, f(\alpha), 1) \in \mathcal{O}$ if and only if $tr(c + \alpha^q f(\alpha)) = 0, \forall \alpha, c \in GF(q^2)$, i.e. if and only if $c = \gamma - \alpha^q f(\alpha), \gamma \in GF(q^2)$ with $tr(\gamma) = 0$. Hence we can write

 $\mathcal{O} = \{ P_{\gamma,\alpha} \mid \gamma, \alpha \in GF(q^2) \text{ with } tr(\gamma) = 0 \} \cup \{ P \}$

where $P_{\gamma,\alpha} = (\gamma - \alpha^q f(\alpha), \alpha, f(\alpha), 1)$. Apply the Klein correspondence ϕ from the lineset of $PG(3, q^2)$ onto the pointset of the hyperbolic quadric $\mathcal{K} = Q^+(5, q^2)$ with equation $X_0X_5 + X_1X_4 + X_2X_3 = 0$. The correspondence ϕ associates to the line of $PG(3, q^2)$ spanned by the points $u = (u_0, u_1, u_2, u_3)$ and $v = (v_0, v_1, v_2, v_3)$, the point of $PG(5, q^2)$ with Plücker coordinates $(p_{01}, p_{02}, p_{03}, p_{12}, -p_{13}, p_{23})$ where $p_{ij} = \begin{vmatrix} u_i & u_j \\ v_i & v_j \end{vmatrix}$, i, j = 0, ..., 3, i < j. To each point $P_{\gamma,\alpha}$ of \mathcal{O} there corresponds the line $L_{\gamma,\alpha} = (\mathfrak{S}(P_{\gamma,\alpha}))^{\phi}$ of \mathcal{K} where $\mathfrak{S}(P_{\gamma,\alpha})$ is the set of lines of \mathcal{H} through $P_{\gamma,\alpha}$. Note that the lines $l_1 = \langle (f(\alpha)^q, -1, 0, 0), (\gamma - \alpha^q f(\alpha), \alpha, f(\alpha), 1) \rangle$ and $l_2 = \langle (\alpha^q, 0, -1, 0), (\gamma - \alpha^q f(\alpha), \alpha, f(\alpha), 1) \rangle$ belong to $\mathfrak{S}(P_{\gamma,\alpha})$. Hence, the ovoid \mathcal{O} can be associated with the partial line-spread $\mathcal{S}^+ = \mathcal{O}^{\phi}$ of \mathcal{K} :

$$\mathcal{S}^+ = \{L_{\gamma,\alpha} : \gamma, \alpha \in GF(q^2)\} \cup \{L^*\}$$

where $L^* = P^{\phi} = \langle (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0) \rangle$ and $L_{\gamma, \alpha} = (\Im(P_{\gamma, \alpha}))^{\phi} = \langle l_1^{\phi}, l_2^{\phi} \rangle = \langle (\gamma - \alpha^q f(\alpha) + \alpha f(\alpha)^q, f(\alpha)^{q+1}, f(\alpha)^q, -f(\alpha), 1, 0), (\alpha^{q+1}, \gamma, \alpha^q, \alpha, 0, -1) \rangle.$

The Hermitian variety \mathcal{H} is the dual of the elliptic quadric $Q^{-}(5,q) = \mathcal{K} \cap \Sigma$ where $\Sigma = \{(x_0, x - x^q, y, y^q, z - z^q, x_5) : x_0, x_5 \in GF(q), x, y, z \in GF(q^2)\}$ is the subgeometry ($\simeq PG(5,q)$) of the points of $PG(5,q^2)$ fixed by the involutorial collineation:

$$(x_0, x_1, x_2, x_3, x_4, x_5)^{\sigma} = (x_0^q, -x_1^q, x_3^q, x_2^q, -x_4^q, x_5^q)$$

(see, e.g., [4], §15.2). Using this duality, the ovoid \mathcal{O} corresponds to the locally Hermitian spread $\mathcal{S}^- = \mathcal{S}^+ \cap \Sigma$ of $Q^-(5,q)$ with respect to the line $L = L^* \cap \Sigma$.

Lemma 3.1. S^- is a Hermitian spread of $Q^-(5,q)$ if and only if $f(\alpha) = a\alpha + b$, with $a, b \in GF(q^2)$ and $tr(a) \neq 0$.

Proof. S^- is Hermitian if and only if \mathcal{O} is a classical ovoid of \mathcal{H} , i.e. if and only if it is contained in a non-singular plane. This implies that $f(\alpha) = a\alpha + b$, with $a, b \in GF(q^2)$ and condition (*) forces $tr(a) \neq 0$. Conversely, assuming $f(\alpha) = a\alpha + b$ and $tr(a) \neq 0$, the ovoid \mathcal{O} is contained in the non-singular plane $aX_1 - X_2 + bX_3 = 0$, hence \mathcal{O} is a classical ovoid and S^- is Hermitian.

In the sequel we use the symbol \perp to refer both to the polarity of $PG(5, q^2)$ induced by \mathcal{K} and to the polarity of PG(5, q) induced by $Q^-(5, q)$. The 3-dimensional projective space $\Lambda^* = L^{*\perp}$ has equations $X_4 = X_5 = 0$. Using the construction of [3], the following partial spread \mathcal{S}^+ of \mathcal{K} induces the partial spread of Λ^* :

$$\mathcal{S}_{\Lambda^*} = \{L_\alpha : \alpha \in GF(q^2)\} \cup \{L^*\}$$

where $L_{\alpha} = \langle L^*, L_{\gamma,\alpha} \rangle^{\perp} = \{ (\alpha X_2 + \alpha^q X_3, f(\alpha) X_2 - f(\alpha)^q X_3, X_2, X_3, 0, 0) : X_2, X_3 \in GF(q^2) \}$. If we intersect S_{Λ^*} with Σ , we obtain a spread S_{Λ} of the 3-dimensional projective space $L^{\perp} = \Lambda = \Lambda^* \cap \Sigma$.

Observe that the singular planes of \mathcal{K} through L are exactly π : $X_2 = X_4 = X_5 = 0$ and π^{σ} : $X_3 = X_4 = X_5 = 0$.

Theorem 3.2. The spread S^- is Hermitian if and only if S_{Λ} is a regular spread whose transversals lie on the two planes of K through L.

Proof. Suppose S^- is Hermitian. By Lemma 3.1, $f(\alpha) = a\alpha + b$ with $tr(a) \neq 0$. Intersecting π with all lines $L_{\alpha} \in S_{\Lambda^*}$ we get $\{(\alpha^q, -f(\alpha)^q, 0, 1, 0, 0), \alpha \in GF(q^2)\}$, which is a line, say m. Similarly, intersecting π^{σ} with all $L_{\alpha} \in S_{\Lambda^*}$, we get a line, say m', with $m' = m^{\sigma}$. Note that the lines of S_{Λ} are precisely those joining each point on m with its conjugate on m^{σ} . Hence S_{Λ} is regular. Conversely, if S_{Λ} is a regular spread whose transversals lie in π and π^{σ} , then $\pi \cap L_{\alpha} = \{(\alpha^q, -f(\alpha)^q, 0, 1, 0, 0), \alpha \in GF(q^2)\}$ and $\pi^{\sigma} \cap L_{\alpha} = \{(\alpha, f(\alpha), 1, 0, 0, 0), \alpha \in GF(q^2)\}$ are lines. This happens only when $f(\alpha) = a\alpha + b$. Finally, condition (*) implies $tr(a) \neq 0$ and, by Lemma 3.1, S^- is Hermitian.

References

- R.H. BRUCK: Construction problems in finite projective spaces, Finite Geometric Structures and their Application, C.I.M.E., Bressanone 18-27 Giugno 1972, Edizioni Cremonese, 105-188.
- [2] A.A. BRUEN: Spreads and a conjecture of Bruck and Bose, J. Algebra, 23 (1972), 519-537.
- [3] I. CARDINALI, G. LUNARDON, O. POLVERINO, R. TROMBETTI: Spreads in H(q) and 1-systems of Q(6,q), European J. Combin.,23 (2002), 367-376.
- [4] J.W.P. HIRSCHFELD: *Finite projective spaces of three dimensions*, Oxford University Press, Oxford,1985.

- [5] S.E. PAYNE and J.A. THAS: *Finite Generalized Quadrangles*, Research Notes in Mathematics, volume 110, Pitman, Boston, 1984.
- [6] S.E. PAYNE and J.A. THAS: Spreads and Ovoids in Finite Generalized Quadrangles, Geom. Dedicata, 52 (1984), 227-253.
- [7] J.A. THAS: Ovoids and spreads of finite classical polar spaces, Geom. Dedicata, 10 (1981), 135-144.
- [8] J.A. THAS: Semi-partial geometries and spreads of classical polar spaces, J. Combin. Theory Ser. A, 35 (1983), 58-66.

Ilaria Cardinali Dipartimento Scienze Matematiche e Informatiche "R. Magari" Universita' degli Studi di Siena Pian dei Mantellini 53100 Siena, Italy e-mail: cardinal@unina.it

Rocco Trombetti Dipartimento di Matematica e Applicazioni Universita' degli Studi di Napoli "Federico II" Complesso di Monte S. Angelo, Edificio T, Via Cintia, I 80126 Napoli, Italy e-mail: rtrombet@unina.it