On Hermitian Spreads

Ilaria Cardinali Rocco Trombetti

Abstract

Let \perp be the polarity of $P G(5, q)$ defined by the elliptic quadric $Q^{-}(5, q)$. A locally Hermitian spread \mathcal{S} of $Q^{-}(5, q)$, with respect to a line L, is associated in a canonical way with a spread \mathcal{S}_{Λ} of the 3 -dimensional projective space $L^{\perp}=\Lambda$, and conversely. In this paper we give a geometric characterization of the regular spreads of Λ which induce Hermitian spreads of $Q^{-}(5, q)$.

1 Introduction

Let $Q^{-}(5, q)$ be the elliptic quadric of $P G(5, q)$. A spread \mathcal{S} of $Q^{-}(5, q)$ is a partition of the pointset of $Q^{-}(5, q)$ into lines. Let L be a fixed line of \mathcal{S}. For each line M of \mathcal{S}, the subspace $\langle L, M\rangle$ has dimension 3 and intersects $Q^{-}(5, q)$ in a non-singular hyperbolic quadric. Let $\mathcal{R}_{L, M}$ be the regulus of $\langle L, M\rangle \cap Q^{-}(5, q)$ containing the lines L and M. The spread \mathcal{S} is locally Hermitian with respect to L if $\mathcal{R}_{L, M}$ is contained in \mathcal{S} for all lines M of \mathcal{S} different from L. If the spread \mathcal{S} is locally Hermitian with respect to all the lines of \mathcal{S}, then the spread is called Hermitian or regular and is unique up to isomorphism (see [8], Section 8.1).

Let \perp be the polarity of $\operatorname{PG}(5, q)$ defined by $Q^{-}(5, q)$. As in [3], it is possible to associate with a locally Hermitian spread with respect to a line L of $Q^{-}(5, q)$, a spread of the 3-dimensional projective space $L^{\perp}=\Lambda$ in the following way. Let M be any line of \mathcal{S} different from L; then $m_{L, M}=\langle L, M\rangle^{\perp}$ is a line of Λ disjoint from $\langle L, M\rangle$.
Then, $\mathcal{S}_{\Lambda}=\left\{m_{L, M} \mid M \in \mathcal{S}, M \neq L\right\} \cup\{L\}$ is a spread of Λ and in [3] it has been shown that for each spread \mathcal{F} of Λ containing L, there is a locally Hermitian spread
$\mathcal{S}(\mathcal{F}, L)$ of $Q^{-}(5, q)$ (with respect to L) such that $\mathcal{S}(\mathcal{F}, L)_{\Lambda}=\mathcal{F}$. This construction is the dual of the one in [8], Section 8.1, Case d (see, e.g., [3]).

By [8], if \mathcal{S} is a Hermitian spread of $Q^{-}(5, q)$, then the spread \mathcal{S}_{Λ} is regular for each line L of \mathcal{S} but, surprisingly, for $q>2$, there exists a regular spread \mathcal{F} of Λ containing L such that $\mathcal{S}(\mathcal{F}, L)$ is not Hermitian (see [3], Theorem 6). Note that for $q=2$ every regular spread induces a Hermitian spread (see [3]). An open problem was the characterization of those regular spreads of Λ inducing Hermitian spreads of $Q^{-}(5, q)$.

Let $Q^{+}\left(5, q^{2}\right)$ be a non-singular hyperbolic quadric of $P G\left(5, q^{2}\right)$. Choose $\Sigma \simeq$ $P G(5, q)$ in such a way that $Q^{-}(5, q)=Q^{+}\left(5, q^{2}\right) \cap \Sigma$, with Σ the set of fixed points with respect to a Baer involution σ of $P G\left(5, q^{2}\right)$ preserving the hyperbolic quadric $Q^{+}\left(5, q^{2}\right)$.

Denote by Λ^{*} the 3 -dimensional subspace of $P G\left(5, q^{2}\right)$ defined by Λ. Recall that each regular spread of Λ has exactly two transversal lines over $G F\left(q^{2}\right)$ (see, e.g., [1]). Note that Λ^{*} intersects $Q^{+}\left(5, q^{2}\right)$ in two conjugate planes with respect to σ meeting Λ in exactly the line L.

In this paper we prove that the only regular spreads (containing L) of Λ which give Hermitian spreads of $Q^{-}(5, q)$ are those whose transversals lie on the two planes of $Q^{+}\left(5, q^{2}\right)$ through L.

2 Regular Spreads of $P G(3, q)$

Let L_{1}, L_{2}, L_{3} be any three disjoint lines of $P G(3, q)$ and denote by $\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right)$ the regulus of $P G(3, q)$ containing L_{1}, L_{2} and L_{3} (see e.g. [2]). A spread \mathcal{F} of $P G(3, q)$ is regular if $\mathcal{R}\left(L_{1}, L_{2}, L_{3}\right)$ is contained in \mathcal{F} for all distinct $L_{1}, L_{2}, L_{3} \in \mathcal{F}$. Put $\bar{\Lambda}=P G\left(3, q^{2}\right)$ and let τ be a Baer involution of $\bar{\Lambda}$. The set Λ of the points of $\bar{\Lambda}$ fixed by τ is a 3 -dimensional projective space $P G(3, q)$. A line of $\bar{\Lambda}$ contains exactly 0,1 or $q+1$ points of Λ, and a point x of $\bar{\Lambda} \backslash \Lambda$ is incident with the extension of exactly one line of Λ. If m is an imaginary line of $\bar{\Lambda}$ (i.e., a line disjoint from Λ), then also m^{τ} is imaginary. For each point x of m, let $L(x)$ be the line joining the points $x \in m$ and $x^{\tau} \in m^{\tau}$. Then $L(x)$ intersects Λ in exactly $q+1$ points and $l(x)=L(x) \cap \Lambda$ is a line of Λ. The lineset $\mathcal{F}_{m}=\{l(x): x \in m\}$ is a regular spread of Λ and for each regular spread \mathcal{F} of Λ there are exactly two imaginary lines m and m^{τ} such that $\mathcal{F}_{m}=\mathcal{F}_{m^{\tau}}=\mathcal{F}$ (see, e.g., [2]). The set \mathcal{R} is a regulus of \mathcal{F}_{m} if and only if $\{x \in m: l(x) \in \mathcal{R}\}$ is a Baer subline of m (see, e.g., [1]), i.e. a subline isomorphic to $\operatorname{PG}(1, q)$. The lines m and m^{τ} are called transversals of \mathcal{F}_{m}.

3 Hermitian spreads of $Q^{-}(5, q)$

Let $\mathcal{H}=H\left(3, q^{2}\right)$ be the Hermitian variety of $P G\left(3, q^{2}\right)$ with equation $X_{0} X_{3}^{q}+$ $X_{1} X_{2}^{q}+X_{2} X_{1}^{q}+X_{3} X_{0}^{q}=0$ (for more details see, e.g., [4]). An ovoid of \mathcal{H} is a set of $q^{3}+1$ points of \mathcal{H} such that no two of them are collinear on \mathcal{H} (see e.g. [6]). The incidence structure formed by all points and lines on \mathcal{H} is the dual of the incidence structure formed by all points and lines of the elliptic quadric $Q^{-}(5, q)$ (see [5]); call this duality ρ. A locally Hermitian spread \mathcal{S} of $Q^{-}(5, q)$ with respect to a line L is the image under ρ of an ovoid \mathcal{O} of \mathcal{H} whose points lie on q^{2} Baer sublines on \mathcal{O}
through the point P, with $P^{\rho}=L$. The spread $\mathcal{S}=\mathcal{O}^{\rho}$ is Hermitian if and only if \mathcal{O} is classical (see [8]), i.e., is a non-singular Hermitian curve.

Let $P=(1,0,0,0) \in \mathcal{H}$ and note that the polar plane of P with respect to \mathcal{H} is $\pi_{1}: X_{3}=0$. In order to parametrize the ovoid \mathcal{O}, one can fix any plane π_{0} of $P G\left(3, q^{2}\right)$ not through P and consider the set \mathcal{P} of the points of π_{0} obtained as intersection with the q^{2} Baer sublines on \mathcal{O} through P. Since \mathcal{O} is an ovoid, the points of \mathcal{P} have the property that the line joining any two of them intersects π_{1} in a non-singular point.

Let π_{0} have equation $X_{0}=0$. The points of π_{0} not contained in π_{1} have coordinates $\left\{(0, \alpha, \beta, 1): \alpha, \beta \in G F\left(q^{2}\right)\right\}$. As the line joining $(0, \alpha, \beta, 1)$ and $\left(0, \alpha, \beta^{\prime}, 1\right)$, with $\beta \neq \beta^{\prime}$, intersects π_{1} in a singular point, it follows that for any α there is exactly one β such that $(0, \alpha, \beta, 1) \in \mathcal{P}$. Hence, put $\beta=f(\alpha), f$ a function from $G F\left(q^{2}\right)$ to itself. Then \mathcal{P} is the set of points of π_{0} with coordinates ($\left.0, \alpha, f(\alpha), 1\right), \alpha \in G F\left(q^{2}\right)$. Since the line joining any two points of \mathcal{P} intersects π_{1} in a non-singular point, it is easy to verify that:

$$
(*) \quad \operatorname{tr}\left(\left(f(\alpha)-f\left(\alpha^{\prime}\right)\right)^{q}\left(\alpha-\alpha^{\prime}\right)\right) \neq 0, \quad \forall \alpha, \alpha^{\prime} \in G F\left(q^{2}\right), \alpha \neq \alpha^{\prime}
$$

where $t r$ is the trace function from $G F\left(q^{2}\right)$ to $G F(q)$.
The ovoid \mathcal{O} is the set of points of \mathcal{H} lying on the q^{2} lines joining P with any point of \mathcal{P}. So $(c, \alpha, f(\alpha), 1) \in \mathcal{O}$ if and only if $\operatorname{tr}\left(c+\alpha^{q} f(\alpha)\right)=0, \forall \alpha, c \in G F\left(q^{2}\right)$, i.e. if and only if $c=\gamma-\alpha^{q} f(\alpha), \gamma \in G F\left(q^{2}\right)$ with $\operatorname{tr}(\gamma)=0$. Hence we can write

$$
\mathcal{O}=\left\{P_{\gamma, \alpha} \mid \gamma, \alpha \in G F\left(q^{2}\right) \text { with } \operatorname{tr}(\gamma)=0\right\} \cup\{P\}
$$

where $P_{\gamma, \alpha}=\left(\gamma-\alpha^{q} f(\alpha), \alpha, f(\alpha), 1\right)$. Apply the Klein correspondence ϕ from the lineset of $\operatorname{PG}\left(3, q^{2}\right)$ onto the pointset of the hyperbolic quadric $\mathcal{K}=Q^{+}\left(5, q^{2}\right)$ with equation $X_{0} X_{5}+X_{1} X_{4}+X_{2} X_{3}=0$. The correspondence ϕ associates to the line of $P G\left(3, q^{2}\right)$ spanned by the points $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$, the point of $\operatorname{PG}\left(5, q^{2}\right)$ with Plücker coordinates ($p_{01}, p_{02}, p_{03}, p_{12},-p_{13}, p_{23}$) where $p_{i j}=\left|\begin{array}{cc}u_{i} & u_{j} \\ v_{i} & v_{j}\end{array}\right|, i, j=0, \ldots, 3, i<j$. To each point $P_{\gamma, \alpha}$ of \mathcal{O} there corresponds the line $L_{\gamma, \alpha}=\left(\Im\left(P_{\gamma, \alpha}\right)\right)^{\phi}$ of \mathcal{K} where $\Im\left(P_{\gamma, \alpha}\right)$ is the set of lines of \mathcal{H} through $P_{\gamma, \alpha}$. Note that the lines $l_{1}=\left\langle\left(f(\alpha)^{q},-1,0,0\right),\left(\gamma-\alpha^{q} f(\alpha), \alpha, f(\alpha), 1\right)\right\rangle$ and $l_{2}=$ $\left\langle\left(\alpha^{q}, 0,-1,0\right),\left(\gamma-\alpha^{q} f(\alpha), \alpha, f(\alpha), 1\right)\right\rangle$ belong to $\Im\left(P_{\gamma, \alpha}\right)$. Hence, the ovoid \mathcal{O} can be associated with the partial line-spread $\mathcal{S}^{+}=\mathcal{O}^{\phi}$ of \mathcal{K} :

$$
\mathcal{S}^{+}=\left\{L_{\gamma, \alpha}: \gamma, \alpha \in G F\left(q^{2}\right)\right\} \cup\left\{L^{*}\right\}
$$

where $L^{*}=P^{\phi}=\langle(1,0,0,0,0,0),(0,1,0,0,0,0)\rangle$ and
$L_{\gamma, \alpha}=\left(\Im\left(P_{\gamma, \alpha}\right)\right)^{\phi}=\left\langle l_{1}^{\phi}, l_{2}{ }^{\phi}\right\rangle=\left\langle\left(\gamma-\alpha^{q} f(\alpha)+\alpha f(\alpha)^{q}, f(\alpha)^{q+1}, f(\alpha)^{q},-f(\alpha), 1,0\right)\right.$, $\left.\left(\alpha^{q+1}, \gamma, \alpha^{q}, \alpha, 0,-1\right)\right\rangle$.
The Hermitian variety \mathcal{H} is the dual of the elliptic quadric $Q^{-}(5, q)=\mathcal{K} \cap \Sigma$ where $\Sigma=\left\{\left(x_{0}, x-x^{q}, y, y^{q}, z-z^{q}, x_{5}\right): x_{0}, x_{5} \in G F(q), x, y, z \in G F\left(q^{2}\right)\right\}$ is the subgeometry $(\simeq P G(5, q))$ of the points of $P G\left(5, q^{2}\right)$ fixed by the involutorial collineation:

$$
\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\sigma}=\left(x_{0}^{q},-x_{1}^{q}, x_{3}^{q}, x_{2}^{q},-x_{4}^{q}, x_{5}^{q}\right)
$$

(see, e.g., [4], §15.2). Using this duality, the ovoid \mathcal{O} corresponds to the locally Hermitian spread $\mathcal{S}^{-}=\mathcal{S}^{+} \cap \Sigma$ of $Q^{-}(5, q)$ with respect to the line $L=L^{*} \cap \Sigma$.

Lemma 3.1. \mathcal{S}^{-}is a Hermitian spread of $Q^{-}(5, q)$ if and only if $f(\alpha)=a \alpha+b$, with $a, b \in G F\left(q^{2}\right)$ and $\operatorname{tr}(a) \neq 0$.

Proof. \mathcal{S}^{-}is Hermitian if and only if \mathcal{O} is a classical ovoid of \mathcal{H}, i.e. if and only if it is contained in a non-singular plane. This implies that $f(\alpha)=a \alpha+b$, with $a, b \in G F\left(q^{2}\right)$ and condition (*) forces $\operatorname{tr}(a) \neq 0$. Conversely, assuming $f(\alpha)=a \alpha+b$ and $\operatorname{tr}(a) \neq 0$, the ovoid \mathcal{O} is contained in the non-singular plane $a X_{1}-X_{2}+b X_{3}=0$, hence \mathcal{O} is a classical ovoid and \mathcal{S}^{-}is Hermitian.

In the sequel we use the symbol \perp to refer both to the polarity of $\operatorname{PG}\left(5, q^{2}\right)$ induced by \mathcal{K} and to the polarity of $P G(5, q)$ induced by $Q^{-}(5, q)$. The 3-dimensional projective space $\Lambda^{*}=L^{* \perp}$ has equations $X_{4}=X_{5}=0$. Using the construction of [3], the following partial spread \mathcal{S}^{+}of \mathcal{K} induces the partial spread of Λ^{*} :

$$
\mathcal{S}_{\Lambda^{*}}=\left\{L_{\alpha}: \alpha \in G F\left(q^{2}\right)\right\} \cup\left\{L^{*}\right\}
$$

where $L_{\alpha}=\left\langle L^{*}, L_{\gamma, \alpha}\right\rangle^{\perp}=\left\{\left(\alpha X_{2}+\alpha^{q} X_{3}, f(\alpha) X_{2}-f(\alpha)^{q} X_{3}, X_{2}, X_{3}, 0,0\right): X_{2}, X_{3} \in\right.$ $\left.G F\left(q^{2}\right)\right\}$. If we intersect $\mathcal{S}_{\Lambda^{*}}$ with Σ, we obtain a spread \mathcal{S}_{Λ} of the 3 -dimensional projective space $L^{\perp}=\Lambda=\Lambda^{*} \cap \Sigma$.

Observe that the singular planes of \mathcal{K} through L are exactly π : $X_{2}=X_{4}=$ $X_{5}=0$ and $\pi^{\sigma}: X_{3}=X_{4}=X_{5}=0$.

Theorem 3.2. The spread \mathcal{S}^{-}is Hermitian if and only if \mathcal{S}_{Λ} is a regular spread whose transversals lie on the two planes of \mathcal{K} through L.

Proof. Suppose \mathcal{S}^{-}is Hermitian. By Lemma 3.1, $f(\alpha)=a \alpha+b$ with $\operatorname{tr}(a) \neq 0$. Intersecting π with all lines $L_{\alpha} \in \mathcal{S}_{\Lambda^{*}}$ we get $\left\{\left(\alpha^{q},-f(\alpha)^{q}, 0,1,0,0\right), \alpha \in G F\left(q^{2}\right)\right\}$, which is a line, say m. Similarly, intersecting π^{σ} with all $L_{\alpha} \in \mathcal{S}_{\Lambda^{*}}$, we get a line, say m^{\prime}, with $m^{\prime}=m^{\sigma}$. Note that the lines of \mathcal{S}_{Λ} are precisely those joining each point on m with its conjugate on m^{σ}. Hence \mathcal{S}_{Λ} is regular. Conversely, if \mathcal{S}_{Λ} is a regular spread whose transversals lie in π and π^{σ}, then $\pi \cap L_{\alpha}=\left\{\left(\alpha^{q},-f(\alpha)^{q}, 0,1,0,0\right), \alpha \in\right.$ $\left.G F\left(q^{2}\right)\right\}$ and $\pi^{\sigma} \cap L_{\alpha}=\left\{(\alpha, f(\alpha), 1,0,0,0), \alpha \in G F\left(q^{2}\right)\right\}$ are lines. This happens only when $f(\alpha)=a \alpha+b$. Finally, condition $(*)$ implies $\operatorname{tr}(a) \neq 0$ and, by Lemma 3.1, \mathcal{S}^{-}is Hermitian.

References

[1] R.H. Bruck: Construction problems in finite projective spaces, Finite Geometric Structures and their Application, C.I.M.E., Bressanone 18-27 Giugno 1972, Edizioni Cremonese, 105-188.
[2] A.A. Bruen: Spreads and a conjecture of Bruck and Bose, J. Algebra, 23 (1972), 519-537.
[3] I. Cardinali, G. Lunardon, O. Polverino, R. Trombetti: Spreads in $H(q)$ and 1-systems of $Q(6, q)$, European J. Combin., 23 (2002), 367-376.
[4] J.W.P. Hirschfeld: Finite projective spaces of three dimensions, Oxford University Press, Oxford,1985.
[5] S.E. Payne and J.A. Thas: Finite Generalized Quadrangles, Research Notes in Mathematics, volume 110, Pitman, Boston,1984.
[6] S.E. Payne and J.A. Thas: Spreads and Ovoids in Finite Generalized Quadrangles, Geom. Dedicata, 52 (1984), 227-253.
[7] J.A. Thas: Ovoids and spreads of finite classical polar spaces, Geom. Dedicata, 10 (1981), 135-144.
[8] J.A. Thas: Semi-partial geometries and spreads of classical polar spaces, J. Combin. Theory Ser. A, 35 (1983), 58-66.

Ilaria Cardinali
Dipartimento Scienze Matematiche e Informatiche "R. Magari"
Universita’ degli Studi di Siena
Pian dei Mantellini
53100 Siena, Italy
e-mail: cardinal@unina.it

Rocco Trombetti
Dipartimento di Matematica e Applicazioni
Universita' degli Studi di Napoli "Federico II"
Complesso di Monte S. Angelo, Edificio T,
Via Cintia,
I 80126 Napoli, Italy
e-mail: rtrombet@unina.it

