On generalized topological function algebra
bundles

Athanasios Kyriazis

Abstract

We consider function algebras whose elements are functions taking values
from topological algebra bundles and study section algebras and their spectra
of the topological algebra bundles involved. This naturally extends the so far
standard theory of vector-valued function algebras to an appropriate varying
set-up.

Introduction

Topological algebra bundles have been considered in [3,4]. By this we mean a triple
¢ = (E,m,X), with 7 : E — X a continuous map between the corresponding
topological spaces, whose fibre is a topological algebra, while the appropriate local
triviality conditions are also in force. Our aim is to transfer standard results of
vector-valued functions to the framework of topological algebra bundles (cf. §5),
this being achieved as an application of tensor product topological algebra bundles.
Yet, our main technique is to consider vector-valued function spaces, in terms of
topological tensor products (cf. for instance, [6 : Chapter XI]), always within topo-
logical algebra bundle theory. Thus, for appropriate topological algebra bundles,
we examine the analysis of the section algebra of a tensor product algebra bundle,
as the C.(X)-tensor product of the section algebras of the factor bundles (Theorem
3.1).
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On the other hand, the spectrum bundle of a given topological algebra bundle
(Definition 4.1), is realized as the spectrum (Gel’fand space) of the algebra of sections
of the given algebra bundle. Thus, the spectrum (bundle) of a tensor product algebra
bundle, appears as the “Whitney sum” of the factor spectrum bundles (Theorem
4.2). As applications we consider in the last section the tensor product algebra
bundle of a topological algebra (the latter viewed as a constant topological algebra
bundle) and a topological algebra bundle, in general (cf. (5.1)), and further examine
the form of the sections and that of the corresponding spectrum bundle at issue
(Theorems 5.1, 5.2). In this connection, we consider the sections and spectra of
the bundle of continuous (holomorphic, C*°-) &-valued functions on X, for a given
algebra bundle ¢ over X (cf. 5.(1), 5.(2), 5.(3)), as well as, the group algebra bundle
(cf. 5.(4)) of a locally compact group G, relative to €.

I wish to express my sincere thanks to Professor A. Mallios for several valuable
discussions during the writing of this work. I am also indebted to the referee for his
critic and suggestions that led to the present form of the paper.

1 Preliminaries

In [3: § 1] we have given the notion of a topological algebra bundle over a topological
space X. This is a triple £ = (E,n, X) with 7 : E — X continuous, whose fibre
(& = 7 !(x) is a topological (C-)algebra, whereas the standard “local triviality”
conditions are satisfied [3: Definition 1.1]. More generally, one can replace the
(structure) group Aut(M) of C-automorphisms of the fibre M = 7 !(z),z € X, of &
with a topological group acting continuously and effectively on M (: G < Aut(M)).
We denote such a bundle, by

(1.1) €= (B,mX,MG) .

Locally (m—)convex, unital, commutative, nuclear, algebra bundles etc. will have
the obvious meaning, referring to the pertinent class of topological algebras for the
fibres.

Now, by a system of transition functions of a topological space X we mean a set

(1'2) A= {(UZ)7 (hw) ) M> G}ieJ

consisted of an open covering (U;) of X, a topological algebra M and a G-cocycle
(hi;) , associated to (U;), with G a topological group as above.

Thus, a characterization of topological algebra bundles, in terms of a system of
transition functions, can be given, as was also the case in [3 : Theorem 1.1] (see also
[8 :Theorem 1.1]). Namely, let @ (X) be the set of isomorphism classes of topological
algebra bundles over X (cf. (1.1)), having locally equicontinuous structure group,
say G, and let H'(X,G) be the set of equivalence classes of systems of transition
functions on X (cf.(1.2)). Then, one has

(1.3) d(X) = H'(X,G)

within a bijection (ibid.).
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2 Tensor product topological algebra bundles

In this section we consider tensor product algebra bundles, providing also a charac-
terization for it (Theorem 2.2). First some useful preliminary remarks are necessary.

Let G, H be topological groups acting continuously and effectively on the unital
locally convex algebras M, N respectively. If Il : GXxM — M, lg: HxN — N
are the corresponding (continuous) actions, the map

™

(2.1) lGXH:(GXH)X(M®N)—>M<%N2((g,m,i%@yi)

— Y g1 ® hy;

i=1
is an algebra representation of the group G x H on M ® N (:projective tensor
product algebra, [6: Chapter X, Lemma 3.1]), such that one gets the next result.

Lemma 2.1. Let G, H be topological groups acting continuously and effectively
on the unital locally convex algebras M, N respectively. Then, the group G x H acts
continuously and effectively on M @ N.

Proof. let g € G with g # eg (neutral element of G). Then there exists x € M
with gx # x, such that ma ® ey # = ® ey for any m € G x H (ey the neutral
element of H), with m # (eg,ey). Moreover, if ¢ : M x N — M ® N is the

canonical continuous map of the relative tensor product, one has
(60 (o x 1) ((g. ), (x,9)) = dlgz, hy) = gz @ hy =

laxr ((9:1), (@) = (Ioxn © (idawr 0 0)) ((9,1), (x,9)) ,

such that the linearity of the relative maps led us to

(2.2) po(le xlg)=laxm o (idoxm © P)

The corresponding topologies on G x H (cartesian product) and M ® N (:pro-
jective tensor product) give the continuity of (2.1). n

Now, let GG be a topological group acting continuously and effectively on a topo-
logical algebra M having continuous multiplication and consider Aut(M ) the group
of automorphism of M (:completion of M) endowed with the relative topology from
Homg (M, M) (: continuous endomorphisms of M with the simple convergence topol-
ogy on M, cf. [6: Chapter V, 8(1)]). Under suitable conditions (e.g., if G is locally
compact), G acts continuously on M. Moreover, if G is locally equicontinuous and
G is the subgroup of Aut(M ) consisting of g € G, extended to the completion of M,
then G is also locally equicontinuous (cf. [6: Chapter V, Theorem 8.1]), such that G
acts continuously and effectively on M. In this regard, consider M & N the complete
locally convex algebra, completion of the projective tensor produgt algebra of two
given unital locally convex algebras with continuous multiplications M, N. From
[6: Chapter XIII, (8.44)] and subsequent remarks therein, if any automorphism of
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M®& N leaves either one of the factor algebras M, N invariant one has the following
decomposition

(2.3) Aut(M&N) = Aut(M) x Aut(N).

As an immediate result of the last relation and the above comments (cf. also [6:
Chapter V, Theorem 8.1]) one has the next.

Proposition 2.1. Let M, N be two unital locally convex algebras with continuous
multiplications and M , N their corresponding completions. Moreover, consider G, H
two locally compact groups acting continuously and effectively on M, N respectively.
Then GxH s locally equicontinuous subgroup of Aut(M® N) if and only if this is
the case for G, H. ! ]

In the sequel we will define the tensor product of two locally convex algebra
bundles and study some characteristic properties of it.

So, let ¢ = (E, 7, X, M,G) and n = (F,m, X, N, H) be two unital locally convex
algebra bundles with continuous multiplications and locally equicontinuous structure
groups. Moreover, let A = {(U;), (Nij), M, G}, A, = {(U;), (rij), N, H} be the
corresponding transition systems, such that for any pair (i, j) we consider the map

This is a continuous map, since continuity of A;;, i1;; implies that one of the relative
tensor product map, while the next conditions are also satisfied:

(25) ()\” (059 M“)(SE) = ’idM®N , for each z € U;

(2.6) (A\ij @ pij) (@) o (N @ i) (x) = (i @ par) (), for each z € U;NU; NUy .

The last assertion is an immediate consequence of the very definitions (cf. also
[3:(1.10), (1.11)] and [6: Chapter X, § 3]. Thus, considering the corresponding
completions, one gets the map

(2.7) Ni®pij 2 Ui MUy — GxH (< Aut(M&N))

which is continuous and moreover satisfies the relative conditions (2.5), (2.6). So
(Nij®ni;) (i) defines a Gx H-cocycle on (U;);, such that one gets the corresponding

bundle (cf. (1.3)) having bundle space EQF EU(UZ X M& N)/ ~ (cf. [3: Theorem
1.2 ] ), which is also isomorphic to the direct sum Z(?T_l(m)@p_l(l‘)), projection

map (denoted by) 7®p : EQF — X, base space X, fibre M@ N and group G'x H.

Definition 2.1.. Let ¢ = (E, 7, X, M,G), n = (F,p, X, N, H) be two unital
locally convex algebra bundles with continuous multiplications and locally equicon-
tinuous structure groups. The bundle

(2.8) £&n = (EQF, m&p, X, M&N,GxH)



On generalized topological function algebra bundles 25

as above, is the tensor product topological algebra bundle of &, .

Now, we give a converse-like statement of the above. That is, suppose we have
two unital locally convex algebras with continuous multiplications M, N, a topo-
logical space X and an open covering (U;) of X. Moreover, let K be a topological

group, acting continuously and effectively on M@ N(: K < Aut(M& N )) and (hy;)
a K-cocycle of (U;). The question which arises is the following:

(2.9) Under the above hypotheses, can we define two locally
convex algebra bundles having M, N as fibres ¢
The answer is in the positive: The map

(2.10) p:M— MRN :m+— u(m) =me ly

(1y is the unit of V), is a continuous one-to-one map, such that M is embedded in
M&N (: ML M&N). Thus, for any « € U; N U;, we consider the automorphism
hij(z) € K(< Aut(M&N)) and define

(2.11) hij() == hij () s -

The map (2.11) is, of course, an automorphism of M, i.e, h;;(z) € Aut(M), while
we also set, by definition

(2.12) G = {hi(x), hi(x) = hy(@)|ar, hij(x) € K, x€UnNU;}

The set (2.12) is a topological group (subgroup of Aut(M)) acting continuously and
effectively on M. Moreover, the relation (2.11) and the hypotheses for (h;;) prove
that (h;;) satisfy the relations

(214) h”(x) o h]k(SC) = hlk<$>, S Uz N Uj N Uk .
Moreover, the continuity of
(2.15) hij - UiNU; — G 2 x> hyj(x) = hij(z)|p

follows from the continuity of the maps

(2.16) UnU; MK G

since (2.15) is expressed as the composition of p (: canonical projection map
Aut(M@N) — Aut(M) , cf. (2.3), restricted in K ) and h;; as in (2.11). Thus, one
gets the following set of transition functions

(2.17) A= {U,), (hij), M,G}icy

(cf. (2.11), (2.13), (2.15) ).
Similarly, we can also define a H-cocycle

(2.18) Ly UNU; — H(< Aut(N)) : @ — () := hi;(2)|x
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with H .= {lw<$) : lZ]([L’) = }Nlij(l’)|N7 ilzj(l’) eK, zeUn U]}

a topological group, acting continuously and effectively on N (cf (2.12)), such that
the following system of transition functions

(2.19) AN =A{(U:), (lij), N, H}ies

is well defined. Now, for any x € U; N Uj, one gets the following decomposition
(2.20) hij(x) = hij(z) @ l(z), 2 €UNU;

under suitable conditions (cf. for instance [6: Chapter XIII, (8.24)] and also (2.3)).

Theorem 2.1. Let M, N be unital locally convex algebras with continuous mul-
tiplications and (U;) an open covering of a topological space X. Moreover, let K
be a locally equicontinuous topological group, acting continuously and effectively on
M&N and (hi;) a K- cocycle on (U;), such that (2.3) be valid. Then, there exist two

locglly convex algebra bundles on X of fibre type M, N, respectively, whose tensor
product 1s exactly the bundle defined by the given K -cocycle.

Proof. The hypotheses imply the existence of a system of transition functions

from which one defines the transition systems (2.17), (2.19).
Thus, from (1.3) one gets the corresponding locally convex algebra bundles

¢ = (E,mX,M,G),n = (F,p,X,N,H), with E =J{U; x M)/ ~, 7 : E —>
X (canonical projection), F =(J(U; x N)/ ~,p : F — X. Moreover, let ¢ be the
locally convex algebra bundle defined through (2.21). Then, (2.20) gives

(2.22) £ =¢tdm
(cf. Definition 2.1), such that the assertion is proven . (]

An immediate consequence of the above Theorem (cf. (2.21) and also (2.20)) is
given by the following.

Corollary 2.1 . Let M, N be unital locally convex algebras with continuous
multiplications and K a locally equicontinuous topological group acting continuously
and effectively on M@ N such that (2.3) be valid. Then, each topological algebra

bundle on X of fibre type M@ N is expressed as a tensor product of locally convex
algebra bundles on X having M, N as fibres, respectively. [

Theorem 2.1 and Corollary 2.1 give us the next characterization of tensor product
algebra bundles in terms of tensor product algebras.

Theorem 2.2. Let M, N be unital locally convex algebras with continuous mul-
tiplications, such that (2.3) is valid, and let X be a topological space. Then, the two
following assertions are equivalent:
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1) There exist locally convex algebra bundles on X of fibre type M, N, respectively,
with locally equicontinuous structure groups.

2) There ezists a locally convexr algebra bundle on X of fibre type M@ N and
locally equicontinuous structure group.

The previous result can still be expressed in the following succinct form (I am
indebted to A. Mallios for this):

A locally convex tensor product algebra bundle is “decomposable”,
in the sense of (2.3), if and only if this happens for the respective
“structure group” of the bundle at issue.

Scholium 2.1. Concerning the above results, we can still make analogous con-
siderations using more “algebraic hypotheses”, in the sense that the topological
space X can be replaced by the spectrum (Gel’fand space [6:Chapter V, Definition
1.1]) M(A) of alocally convex algebra A or the spectrum of one of the given algebras
M, N. Thus, we can take a form of a fibre tensor product bundle as in [5: § 1],

(2.23) A= (A, M, N,K)

with K a topological group, acting continuously and effectively on M & N, satisfying
the next two conditions:
First,

(2.24) There exists an arbitrary family (I;) of closed 2-sided ideals of A
with compact hulls (h(I;)) and non-empty interiors, say
U; = (h(I;))°, such that M(A) ={-JU; (: topological sum)

and second,

(2.25) There ezists a K-cocycle associated to U = (U;);, viz.

an element (h;;) € Z'(U, K).

Condition (2.25) is weaker than the corresponding one in [5: (1.2)]. In this case
we can repeat the above technique, taking analogous results.

3 The algebra of sections

In this section we mainly examine the relation between the algebra of sections of
£®n and those of the factor bundles &, 7 as above ( cf. (2.8)).

First we recall that given a locally convex algebra bundle £ on X of fibre type
M and structure group G, the corresponding locally convex algebra of sections, say
I'(€) (cf. [3:(2.4)]), is isomorphic to the locally convex algebra

(3.1) B={r=(n):n(x)=h;)r), 2 €U NU;}

this being a subalgebra of HCC(Ui, M), with (U;); an open covering of X and (h;;)
the corresponding G—cocyclei on (U;) (cf. [4: (3.1)] and also (1.3)). That is one has
(3.2) I'(¢) =58
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within an isomorphism of locally convex algebras (cf. [3: Theorem |). Moreover,
['(€) is a locally convex C.(X)-algebra, where C.(X) denotes the (locally m-convex)
algebra of C-valued continuous functions on X, endowed with the compact open
topology (cf. [3: p. 406]). Now, let & n be locally convex algebra bundles and
I'(€),'(n) the corresponding locally convex C.(X)-algebras of sections. Thus, one
considers the projective C.(X)-tensor product algebra

(3.3) L'(€) ® c.col'(n)

(cf. [1: Proposition 5.1]). Moreover, if the fibres of £, n have continuous multiplica-
tions, the algebra (3.3) has the same condition such that its completion

(3.4) L&) Be.x)T'(n)

™

is a complete locally convex C.(X)-algebra (cf. [1: Proposition 5.1 (5.6)]).

Theorem 3.1. Let £, 1 be unital commutative nuclear complete locally m-convex
algebra bundles with locally equicontinuous structure groups over a locally compact
base space, having an open covering of o-compact subsets. Then,

(35) D(€&n) = D(€)e, . T(n)
(1 =7 = ¢) within an isomorphism of locally convez C.(X)-algebras.

Proof. Let M, N be the fibres of £, n respectively and (U;); the open covering of
X. For any U; one has

(36) Cc(Uia M®N) = CC(Uz XUZ' Uia M®N) - CC(Uiv M)®CC(U¢)CC(UZ'7 N)

within locally m-convex C.(U;)-algebras (cf. [2:Theorem], [6: p.391, (1.16)]).
Then, considering the corresponding cartesian products we have the next iso-
morphisms of locally m-convex HCC(UZ-)— algebras

(2

[LCo(U, MEN) = [(Co(Us, M)@e, ) ColUs, V)

i

= ([4: 60, (5.6))] [Cc(Us, M)@1 ¢ [T CelUs, N)

such that the assertion follows from (3.1), (3.2) (cf. also [6: Chapter XI, Theorem
1.1]). ]

The isomorphism (3.5) is also an immediate consequence of [4: Theorem 3.1],
setting « the complex line bundle C, since in this case I'(C) = C.(X).
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4 The spectrum bundle

In [3: § 4] we have introduced the notion of the spectrum bundle of a topological
algebra bundle, as a fibre bundle over a topological space, of fibre type the spectrum
of the fibre of the given algebra bundle. More precisely, given a topological group
(G, acting continuously and effectively on a topological algebra M, we consider the
set

(4.1) 'G={'g: g € G} C Aut(M(M))

such that 'g(x) := xog, x € M(M). The set ‘G becomes a topological group
acting continuously and effectively on M(M), taking, for instance, M semi-simple
and M (M) locally equicontinuous (cf. [3: (3.2)]). Thus, given a system of transition
functions on X, say A = {(U;);, (\ij), M, G}, one has a system of transition functions
on X

(4.2) A =A{(Ui)i, (\), M(M),'G}
with
(4.3) Ni(x) =" (M), = €UinU; .

Now, given a topological algebra bundle £ = (E,m, X, M, G), we consider (h;;),
its corresponding G-cocycle on X and (h};) the relative “dual” functions given by
(4.3). We take the set

(4.4) SEU<U1‘XM<M))/N )

where the equivalence relation “~” on the disjoint union is given by

v, =xj=x€UNU;

(4.5) (i, xi) ~ (xj,x;) iff .
7o X :<hgl(l’)>(X1>

(cf. [3: (3.4),(3.5)]). Moreover, one gets the canonical projection map p : S — X

such that we set the following.

Definition 4.1. Let ¢ = (E, 7, X, M, G) be a topological algebra bundle, such
that the set 'G (cf. (4.1)) is a topological group acting continuously on M(M). The
bundle, say M(§), defined through the transition functions (h};) as above is called
the spectrum bundle of £. That is

(4.6) M(&) = (S,p, X, M(M), G) .

In order to examine the decomposition of M(£®n) we recall the following basic
result.
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Theorem 4.1./3: Theorem 4.1]. Let £ = (E,7,X,M,G) be a commutative
complete Gel’fand-Mazur Waelbroeck algebra bundle, whose base is locally compact,
having an open relatively compact covering (U;). Then, one has

(4.7) M(E) (Ui x M(M))/ ~= M(T(9))
within a homeomorphism. . [ |

The interest of the homeomorphism (4.7) lies in the “algebraization” of the notion
of the spectrum bundle, in the sense that the study of the last notion is equivalent
to that one of the spectrum of the corresponding algebra of sections. An application
of the last comments gives the next.

Theorem 4.2. Let £, be two topological algebra bundles over X, such that the
conditions of Theorem 3.1 be valid. Moreover, suppose that the spectra of T'(§),T'(n)
are locally equicontinuous. Then,

(4.8) M(E&n) = M(&) & M(n) = M(E) xx M(n)
within an isomorphism of fibre bundles. (The second member of (4.8) means “Whit-

ney sum”).

Proof. Theorem 4.1 gives the homeomorphism
(4.9) M(&&n) = M(T(¢én))

while [1: Theorem 2.1] implies the next homeomorphism
(4.10) M(T ()&, 0T ()= M(T(€)) X mic.xpM(T(n)) -

But [6: Chapter VII, Theorem 1.2]) entails the homeomorphism M(C.(X)) = X,
such that the relation (4.10) gives

(4.11) M(T()&¢, x0T ()= M(T(€)) xxM(T(n)) -

within a homeomorphism.Thus (3.5),(4.9),(4.11) and (4.6) establish the assertion.
"

5 Applications

In this section we consider applications of the above, concerning standard function
algebras (continuous, holomorphic, differentiable etc), replacing algebra-valued with
bundle-valued functions.

First, some more terminology is needed. Thus, we consider tensor product
algebra bundles (Definition 2.1), with one of the factors being a constant bun-
dle. That is, let A be a locally convex algebra with continuous multiplication and
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¢ = (E,m, X, M,G) abundle of locally convex algebras with continuous multiplica-
tion. The algebra A can be considered as a locally convex algebra bundle, having
bundle space X x A, base space X, p: X x A — X the projection map, fibre A and
group {idy}, the identity map of A. That is, we consider A = (X x A, p, A, {idx}).
Definition 2.1 gives the next locally convex algebra bundle

(5.1) ARE = (ARE, 7, X, A M, A®G)

with AQE = Y a®@r (z) = J(U; x (A&M))/ ~, (e € A) and 7 : AQE — X
zeX 7 T
the canonical projection map. This is the so called tensor product algebra bundle of

A and &. The bundle (5.1) is constructed through the A®G-cocycle
(5 2) Bij = ZdA®hw Ul N Uj — A@G .
' x> hyj(x) = idy®hy; ()

with (h;;) being the G-cocycle defined via the bundle £ (cf. (1.2)).
Theorem 3.1 and relation (5.1) (cf. also [6:Chapter XI, Theorem 1.1]) give the
following

Theorem 5.1. Let A be a unital commutative complete nuclear locally m-convex
Q- algebra and & a unital commutative complete locally m-convex Q-algebra bundle
over a locally compact base space, having an open covering of o-compact subsets with
locally equicontinuous structure group. Then,

(5.3) P(A®E) = ART(¢)

(1 =7 =€) within an isomorphism of locally convez algebras. ]

Moreover the spectrum of the bundle (5.1) is given from the next Theorem. The
proof is an immediate consequence of (5.1), (5.3) and Theorem 4.2.

Theorem 5.2. Under the hypotheses of Theorem 5.1 and the local equicontinuity
of the spectra of A, T'(€), one has

(5.4) M(A®E) = M(A) x M() ,
within an isomorphism of fibre bundles. ]

The second member of (5.4) is the bundle space of the
fibre bundle M(&) defined on (the base space) M(A) .

In this regard, the results of §§2,3 can also be considered for the bundle (5.1).
So, under the hypotheses of Theorem 2.2, any locally convex algebra bundle £ on X
as in (2) of Theorem 2.2 has the decomposition

for £ a locally convex algebra on X like (1) of Theorem 2.2.
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Moreover, we consider a fibre tensor product bundle
(5.6) A= (A M, G)

(cf. Scholium 2.1 for G = K, M = N = M), with A, M unital locally convex algebra
bundles, satisfying (2.24), (2.25). Thus, one defines a locally convex algebra bundle
&y on M(A), of fibre type M, having G as structure group. The relation between
the last bundle and é , defined through Theorem 2.1, is given by the next bundle
isomorphism

(5.7) £ = A,

(cf. (5.5)).

Now, we will give the forms of some generalized function algebra bundles: Thus,
given a suitable locally convex algebra A, the algebra of A-valued continuous func-
tions on X, i.e C.(X,A), can be expressed as a tensor product C.(X)®A, with

Ce(X) = C(X,C) (cf. [6:Chapter XI, Theorem 1.1] ). The same situation is also
valid for the algebras C2°(X, A) (: differentiable functions, [6: Chapter XI, Theorem
2.1]), O(X,A) (: holomorphic functions, [6: Chapter XI, Lemma 4.1])), L}(G, A)
(: group algebra of a locally compact group G relative to A, cf. [6: Chapter XI,
(5.14)]). So, through the above analysis and the relation (5.1) (cf. also Theorems
5.1, 5.2) we have the following results:

5.(1). The bundle C.(X,§). Let X be a locally compact space and C.(X) = Cx
the locally m-convex algebra, as above. For a locally m-convex algebra bundle & one
gets (cf (5.1)),

(5.8) C(X, &) = Cx®E

the so called bundle of continuous &-valued functions on X. In this regard, under
the hypotheses of Theorem 5.1, the corresponding algebra of sections is given by

(5.9) D(C.(X, ) = CxBI(E) = C(X,T(©))

(1 = m = &), within isomorphisms of locally m-convez algebras. Moreover, under
the hypotheses of Theorem 5.2, the spectrum bundle of (5.8) is given by

(5.10) M(C(X,§)) = X x M(¢)
within a fibre bundle isomorphism (cf. also Theorem 4.1).

5.(2). The bundle C*(X,€£) . Let X be a C*°- manifold and C*(X) = C¥ the
locally m-convex algebra of C-valued differentiable functions on X in the “Schwartz

topology” (cf. [6: Chapter IV, 4.(2)]). For a locally m-convex algebra bundle & on
X we have

(5.11) C®(X,€) == CFRE

the so called bundle of C*- functions on X with values in . The algebra of sections
of (5.11), under the hypotheses of Theorem 5.1, is given by

(5.12) D(C¥(X,¢)) =T(CT®E) = CXAI(S)
= C2(X,T(€))
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(1 = 7 = ¢) within isomorphisms of locally m-convex algebras (cf. also [6: Chapter
XI, Theorem 2.1] and Theorem 5.1). Moreover, under the hypotheses of Theorem
5.2, the spectrum bundle of (5.11) is given by

(5.13) M(CZ(X,§)) = X x M(¢)

within an isomorphism of fibre bundles. Indeed, Theorem 5.2 and relation (5.12)
give the next homeomorphisms

M(C=(X,€)) = M(TD(C(X,¢)) = M(CFRI(S)))

(5.14)
= M(C=(X) x M(T(€)) = X x M(€)

5.(3). The bundle O(X,§). If X is a Stein space and O(X) = Ox the locally m-
convez algebra of C-valued holomorphic functions on X (cf. [6: Chapter IV, 4.(3))]),
for a locally m- convex algebra bundle &, one defines

(5.15) O(X,€) == Ox®¢

the bundle of holomorphic &-valued functions on X. Then, for suitable conditions
(cf. Theorem 5.1 and also [6: Chapter X, Lemma 4.1]), one has the following
1somorphisms of locally m-convex algebras

(5.16) P(O(X,€)) =T (0x®¢) = Ox®I'(§) = O(X,I(€))

(1 = m = ¢), concerning the global section functor “I'” and “O” (holomorphic
functions). Thus the corresponding spectrum bundle of (5.15) is given by

(5.17) M(O(X,§)) = X x M(&),

within a fibre bundle isomorphism (cf. remarks after Theorem 5.2). This is valid for
suitable complex manifolds and locally m-convex algebra bundles, in order to take
the next homeomorphisms (cf. (5.16), [6: Chapter VII, Lemma 3.1]). Indeed, one
has

M(O(X,€)) = M(Ox &) = M(Ox) x M(§)

(5.18) XXM

(cf. Theorem 5.2)

5.(4). The bundle L'(G,€). Let G be a locally compact (abelian) group and
LY(G) the group algebra of G (cf. [6: Chapter VII, § 4] ). If £ is a locally convex
algebra bundle, then

(5.19) LYG,¢) = LN (G)®¢

(cf. (5.1)) is the group algebra bundle of G, relative to €. In this case one gets the
corresponding algebra of sections.

(5.20) D(LY(G,€) = LY(G)@T(€) = L'(G,T(9)),
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(1 = 7 = ¢) under suitable conditions (cf. the hypotheses of Theorem 5.1, relation
(5.2) and also [6: Chapter XI, (5.14)]). Here the equalities mean isomorphisms of
locally convex algebras. Moreover, the corresponding spectrum bundle of (5.19) is of
the form

(5.21) M(LNG,€) =G x M(¢)

within a fibre bundle isomorphism, with G the character group of G (cf [6: Chapter
VII, (4.11)]). Indeed, the last relation is valid under suitable conditions (cf., for
instance, the hypotheses of Theorem 5.2, relations (5.2),(5.3) and also [6: Chapter

VII, Theorem 4.1 ] ), since
(5.22) M(LY(G,€)) = M(LY(G)BI(E)) = M(LY(G)) x M(T'(§))
| =G x M)

within homeomorphisms of the topological spaces concerned.
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