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Abstract

Let A be an O-algebra with positive squares and F (X1, ..., Xn) ∈
R+ [X1, ..., Xn] be a homogeneous polynomial of degree p (p ∈ N∗, p 6= 2).
It is shown that for all 0 ≤ a1, ..., an ∈ A there exists 0 ≤ a ∈ A such that
F (a1, ..., an) = ap .

As an application we show that every algebra homomorphism T from an
O-algebra A with positive squares into an Archimedean semiprime f-algebra
B is positive. This improves a result of Render [14, Theorem 4.1], who proved
it for the case of order bounded multiplicative functional T from an O-algebra
A with positive squares into R.

1 Introduction

In this paper we are going to discuss lattice-ordered algebras (briefly, `-algebras) A
with the property

|a| ∧ |b| = 0 ⇒ ab ∈ N (A) , (O′)

so called O′-algebras, where N (A) is the set of all nilpotent elements in A. This class
of algebras generalizes the class of almost f-algebras (here the set N (A) in (O′) is
replaced by the trivial ideal {0}) and d-algebras. We give examples showing that
these algebras are in general not commutative. In section 2, we give a description
of the set N (A) of an Archimedean O′-algebra in which the square of every element
is positive. It is shown among other things that N (A) is an `-ideal.

Received by the editors January 2002 - In revised form in July 2002.
Communicated by F. Bastin.
1991 Mathematics Subject Classification : 06F25, 46A40.
Key words and phrases : Almost f-algebra, d -algebra, f-algebra, positive square algebra, lattice

homomorphism, O-algebra, O′-algebra.

Bull. Belg. Math. Soc. 11 (2004), 1–13



2 M.A. Toumi

In section 3, we give a generalization of a theorem about homogeneous poly-
nomials on f -algebras (due to Beukers and Huijsmans) to the case of positive
square O′-algebras. The theorem in question is the following : if A is a rela-
tively uniformly completeO′-algebra in which squares are positive and F (X1, ..., Xn)
∈ R+ [X1, ..., Xn] is a homogeneous polynomial of degree p (p ∈ N∗, p 6= 2) then
there exists 0 ≤ a ∈ A such that F (a1, ..., an) = a for every 0 ≤ a1, ..., an ∈ A.

A consequence of this theorem will be the fact that every algebra homomorphism
T from a relatively uniformly complete O′-algebra A in which squares are positive
into an Archimedean semiprime f-algebra B is positive and by the way it becomes a
lattice homomorphism. This improves Theorem 4.1 in [14] by Render, who proved it
for the case of order bounded multiplicative functional T from a Banach O′-algebra
A in which squares are positive into R.

We point out that all proofs are purely order theoretical and algebraic in nature
and furthermore do not involve any analytical means.

For the terminology and the concepts on vector lattices and `-algebras that are
not explained or proved in this paper we refer to [1,2 and 3]. To avoid unnecessary
repetition we assume throughout this paper that all vector lattices and `-algebras
under consideration are Archimedean.

Acknowledgment: The author is grateful to the referee for his valuable suggestions
and improvements. Also, the author would like to thank Professor Egon Scheffold
for providing the bibliographic information for [14]. Many thanks are due to Anissa
Bouaicha for helping me in fixing some English irregularities.

2 Set of all nilpotent elements of positive squares O′-algebras

Let A be a vector lattice. Recall that a vector subspace I of A is called order ideal
(or o-ideal) whenever |a| ≤ |b| and b ∈ I imply a ∈ I. Every o-ideal is a vector
sublattice of A. The principal o-ideal generated by 0 ≤ e ∈ A is denoted by Ae.

In the next lines, we recall some definitions and basic facts about `-algebras. For
more informations about this field, the reader can consult [1,2 and 5]. The (real)
algebra A which is simultaneously a vector lattice is called lattice ordered algebra
(briefly, `-algebra) whenever a, b ∈ A+ implies ab ∈ A+(equivalently, |ab| ≤ |a| |b|
for all a, b ∈ A). A subset I of an `-algebra A, is called an `-ideal, whenever I is
an o-ideal and a ring ideal of A. For an `-algebra A we denote the collection of all
nilpotent elements of A by N(A). An `-algebra A is called semiprime if N(A) = {0}.
An `-algebra A in which the square of every element is positive will be called positive
square algebra. This kind of algebras received its name by Vismanthan in [19]. In
[16], Scheffold introduced the following condition for a Banach `-algebra A

|a| ∧ |b| = 0 implies r (ab) = 0 for all a, b ∈ A (O)

where r(.) denotes the spectral radius calculated in the complexification of A. There-
fore any Banach `-algebra which satisfies the condition (O) is called an O-algebra.

Render proved in [13, Theorem 1] that in a positive square Banach algebra A,
the Condition (O) is equivalent to the following:

|a| ∧ |b| = 0 implies ab ∈ N (A) for all a, b ∈ A. (O′)
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Similarly, we say that an `-algebra A is an O′-algebra, whenever A satisfies condition
(O′) .

Next we focus on almost f-algebras, d -algebras and f-algebras. Our references
are [2, 3, 8 and 12]. An `-algebra A is called an f-algebra if a ∧ b = 0 and c ≥ 0
imply ac ∧ b = ca ∧ b = 0. An `-algebra A is called an almost f-algebra if ab = 0
as soon as a ∧ b = 0. An `-algebra A is called a d-algebra if ac ∧ bc = ca ∧ cb = 0
whenever a ∧ b = 0 and c ≥ 0.

Obviously, any almost f-algebra and any f-algebra is a positive square O′-algebra
and every d-algebra is an O′-algebra. Whereas, the converse is false. We illustrate
this by the following examples.

Example 1. Take A = R4 with the coordinatewise vector space operations and the
cone
A+ = {a = (a1, a2, a3, a4) ∈ R4; a1 ≥ 0, |a2| ≤ a1, a3 ≥ 0 and |a4| ≤ a3},
supplied with the following multiplication:
a.b = (0, 0, a1b1, 0) for a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4).
A straightforward calculation shows that A is a commutative positive square O′-
algebra. However, A is not an almost f-algebra (hence it is not an f–algebra). Indeed,
if e1 = (1, 0, 0, 0) , e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) are the
basis vectors, then (e1 + e2) ∧ (e1 − e2) = 0, but (e1 + e2) . (e1 − e2) = e3. Moreover,
e1 (e1 + e2) ∧ e1 (e1 − e2) = e3 and consequently A is not a d-algebra.

Example 2. Take A = R4 be ordered as in Example 1 but the multiplication be
given by:
a.b = (0, 0, 3 a1b1 − a1b2 + a2b2, a1b2) for a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4).
It is not hard to see that A is a non-commutative positive square O′-algebra. It
follows that A cannot be an almost f-algebra. On the other hand, A is not a d-
algebra because (e1 + e2) ∧ (e1 − e2) = 0 and e1 (e1 + e2) ∧ e1 (e1 − e2) = 2e3 + e4.

Examples 1 and 2 above show that the class of O′-algebras is larger then the
class of almost f -algebras.

It is shown by Render in [13, Theorem 1] that in every real Banach `-algebra
with closed cone C containing all squares (or positive square Banach `-algebra) we
have actually more, rad (A) = N(A) = {x ∈ A, x3 = 0}. Moreover, Diem proved in
[6, Theorem 3.9.(ii)] that the index of a positive nilpotent element in an `-algebra
with positive squares does not exceed 3. Recently, Lavric showed in [9] that for any
`-ring A with positive squares, N (A) = {x ∈ A; x4 = 0} = {x ∈ A; 2x3 = 0}.

Remark 1. In general, for an arbitrary positive square algebra A, N(A) need not
be an o-ideal of A, as it is shown in the following example which is due to Bernau
and Huijsmans.

Example 3. ([2], Example 1.6) Take A be the plane R2 with the coordinatewise
vector space operations and cone
A+ = {(a1, a2) ∈ R2; a1 ≥ 0 and |a2| ≤ a1} ,
provided with the following multiplication:
ab = (a1, a2) (b1, b2) = (a1b1, 0) for a = (a1, a2) and b = (b1, b2) .
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A straightforward calculation shows that A is a positive square algebra. Let e1 =
(1, 0) and e2 = (0, 1). Since (e1 + e2)∧(e1 − e2) = 0, then ((e1 + e2) (e1 − e2))

2 = e1.
Put a = (e1 + e2) − (e1 − e2) , then a ∈ N (A) , but a+ = (e1 + e2) /∈ N (A) and
a− = (e1 − e2) /∈ N (A) . Then N(A) is not an o-ideal of A.

It is proven by Lavric in [9, Theorem 1.5] that if A is a positive square ring, then
N(A) is order convex (that means that if 0 ≤ x ≤ y, y ∈ N (A) then x ∈ N (A)). If
in addition A is a positive square O′-algebra, then the result can be improved. More
precisely, N(A) becomes an `-ideal.

We need the following result.

Proposition 1. Let A be an algebra ordered by a multiplicative cone A+. If A+

contains all squares then x3 = 0 for x ∈ A+ implies that cxd = cdx = 0 for all
c, d ∈ A+.

Proof. The assumption implies that 0 ≤ (nx2 − c)
2

for all natural numbers n and
for all c ∈ A+. Hence 0 ≤ nx2c + ncx2 ≤ c2. It follows that x2c = cx2 = 0. Similarly
0 ≤ (nx− d)2 implies that 0 ≤ nxd + ndx ≤ n2x2 + d2. Multiplication of the last
inequality with c ≥ 0 yields 0 ≤ ncxd + ncdx ≤ cd2. The Archimedean property
leads to the result cxd = cdx = 0. The proof is complete. �

Now we state the main result of this section.

Theorem 1. Let A be a positive square O′-algebra. Then N(A) = {x ∈ A; x3 = 0}
is an `-ideal of A.

Proof. First N(A) = {x ∈ A; x3 = 0} by a result of Lavric (see [9] , Theorem 1.5).
Let y ∈ N(A). We claim that y+, y− ∈ N(A). Then y2 = (y+ − y−)

2
= (y+)

2
+

(y−)
2 − y+y− − y−y+ ∈ N(A). It follows from the fact that A is an O′-algebra

that y+y−, y−y+ ∈ N(A). In particular, according to [6, Theorem 3.9.(i)], y+y−a =
ay+y− = 0 and by−y+ = y−y+b = 0, for all a, b ∈ A. Hence

y4 =
(
y+ − y−

)4
=
(
y+
)4

+
(
y−
)4

.

Since y4 = 0, it follows (y+)
4

= (y−)
4

= 0. This implies that y+, y− ∈ N(A).
According to the previous proposition, we deduce that |y| = y+ + y− ∈ N (A) .
Let x, y ∈ A such as |x| ≤ |y| and y ∈ N(A). As |x| ≤ |y| , we have that |x| ∈ N(A)
and x ∈ N(A).

Let us prove, that N(A) is a subspace of A. Let x, y ∈ N (A) then |x| , |y| , x+, x−, y+, y− ∈
N (A) . A simple combination between [6, Theorem 3.9.(i)] and the previous propo-
sition yields

(x + y)3 = xyx + yxy = xy+x− xy−x + yx+y + yx−y = 0

Hence N(A) is an o-ideal of A.
Now let 0 ≤ x ∈ N(A), and 0 ≤ y ∈ A. We want to show that xy and yx ∈ N(A).
It follows from [6, Theorem3.9. (i)] that x2y = yx2 = 0. Since 0 ≤ (nx− y)2 , we
deduce that

n (xy + yx) ≤ y2 + nx2 (n = 1, 2....) .
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Multiplying in both sides the previous inequality by y, we get

n (yxy + yyx) ≤ y3 (n = 1, 2....) ,

and
n (xyy + yxy) ≤ y3 (n = 1, 2....) .

Since A is an Archimedean vector lattice, this implies that yxy = yyx = xyy =
yxy = 0, and hence (xy)2 = (yx)2 = 0. From the fact that A is a vector lattice, it
follows that (xy)2 = (yx)2 = 0 for all (x, y) ∈ N (A)× A, which shows that xy and
yx ∈ N(A). �

Remark 2. In general, for an arbitrary O′-algebra A, N(A) need not be equal to
{x ∈ A; x3 = 0}, as it is shown in the following example.

Example 4. Let A be the set of all (n× n)-matrices of the form

M =


a1,1 a1,2 ... a1,n

0 a2,2 .... a2,n

.

.
0 0 an,n

 with the usual addition, scalar multiplication and

partial ordering. Moreover, it is not hard to prove that, under composition, A is
an O-algebra. In addition, it is obvious that N (A) ! {M ∈ A; M3 = 0}, whenever
n > 3.

The next corollary turns out to be useful later.

Corollary 1. Let A be a positive square O′-algebra. Then (ab)2 = 0 as soon as
|a| ∧ |b| = 0.

Proof. Let a, b ∈ A such that |a| ∧ |b| = 0. As A is an O′-algebra, it follows that
|a| |b| ∈ N(A). By Proposition 1 and Theorem 1,

c |a| |b| d = cd |a| |b| = 0

for all 0 ≤ c, d ∈ A. In particular, if c = |a| and d = |b| , then

(|a| |b|)2 = 0.

Now since
0 ≤ (ab)2 ≤ (|a| |b|)2 = 0,

one can easily deduced that (ab)2 = 0. This completes the proof. �

Remark 3. It is obvious that every positive square algebra A is a positive square
O′-algebra if and only if A satisfies the following condition:

a ∧ b = 0 then (ab)2 = 0 for all a, b ∈ A
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We next present two other corollaries.

Corollary 2. Let A be a positive square O′-algebra, then
(i) A/N(A) is a semiprime f-algebra.
(ii) If either a ∧ b ∈ N(A) or a ∨ b ∈ N(A), then ab ∈ N(A).

Proof. (i) Suppose that a ∧ b = 0 in the `−algebra A/N(A) (here a denotes the
coset a + N(A)). It follows from a ∧ b ∈ N(A) that a = a− a ∧ b and b = b− a ∧ b.

Hence , ab =
(
a− a ∧ b

) (
b− a ∧ b

)
= 0, as A/N(A) is an almost f-algebra. Beside

this suppose that a ∈ A; an = 0 for n ∈ N∗, so an ∈ N(A) this yields a ∈ N(A).
Then A/N(A) is a semiprime f-algebra.

(ii) This is a direct consequence of (i). �

Corollary 3. Let A be a positive square O′-algebra. Then cab = abc = 0 whenever
a ∧ b = 0 and c ∈ A.

Proof. Let a, b ∈ A such as a ∧b = 0. In view of Corollary 1, we have (ab)2 = 0
Let c ∈ A+. It follows from the fact that A is a positive square algebra that

0 ≤ (nab− c)2

and

n (abc + cab) ≤ c2.

By the Archimedean property, abc + cab = 0. Hence

abc = cab = 0 for all 0 ≤ c ∈ A.

And consequently, abc = cab = 0 for all c ∈ A, since every element of A is the
difference of two positive elements. �

It is well-known that almost f-algebras are commutative. But it was shown in the
previous examples that arbitrary positive square O′-algebras need not to be commu-
tative. Moreover, Lavric proved in [9, Theorem 3.2.] that in every partially ordered
ring A which is f-decomposable (that is: every element a ∈ A can be expressed as
a = a1 − a2 with a1, a2 ∈ A+ and a1a2 = a2a1 = 0) then all triples of elements of A
commute. In what follows, we improve the preceding result in an elementary way.

Theorem 2. Let A be a positive square O′-algebra. Then all triples elements of A,
commute, that is

a1a2a3 = aσ(1)aσ(2)aσ(3) for any permutation σ of {1, 2, 3} .
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Proof. Let 0 ≤ a, b, c ∈ A. Take B = A × A with the coordinatewise vector space
operations and partial ordering inherited from A and with the following product :

X ∗ Y =

(
x
y

)
∗
(

x′

y′

)
=

(
0

xx′a

)
for all x, x′,y, y′ ∈ A.
According to Corollary 3, we conclude that (B, ∗) is an almost f- algebra. Then
(B, ∗) is a commutative algebra and so

xx′a = x′xa.

In particular, if x = b and x′ = c we have bca = cba for all 0 ≤ a, b, c ∈ A. Also, if
B is equipped with the following multiplication

X ∗̂Y =

(
x
y

)
∗̂
(

x′

y′

)
=

(
0

axx′

)
,

then we deduce that
abc = acb

for all 0 ≤ a, b, c ∈ A. Analogously, it is not hard to prove the desired assertion,
since every element of A is the difference of two positive elements. �

As a consequence, we obtain the following.

Corollary 4. Let A be a positive square O-algebra. Then
(i) zxy = z (x ∧ y) (x ∨ y) for all x, y, z ∈ A,
(ii) (xy)2 = (x ∧ y)2 (x ∨ y)2for all x, y,∈ A.

Proof. (i) Let x, y, z ∈ A. It is known that (x− x ∧ y) ∧ (y − x ∧ y) = 0. From the
previous Corollary z (x− x ∧ y) (y − x ∧ y) = 0.

So z
[
xy − x (x ∧ y)− (x ∧ y) y + (x ∧ y)2

]
= 0. Now by Theorem 2

zxy = z ((x ∧ y) (x + y − (x ∧ y))) = z (x ∧ y) (x ∨ y)

This gives the desired result .
The second assertion is obtained in a similar way. �

3 The main results

Let us recall that some of the relevant notions in this section. Let A be a vector
lattice and let u ∈ A+. The sequence {xn}∞n=1 in A is said to converge u-uniformly
to x ∈ A, whenever, for every ε > 0, there exists a natural number Nε > 0 such that
|xn − x| < εu for all n > Nε. This is denoted by xn → x (u) . The element u is called
the regulator of convergence. The sequence {xn}∞n=1 is said to converge relatively
uniformly to x ∈ A, if xn → x (u) for some u ∈ A+. We shall write xn → x (r.u.) .
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The notion of relatively uniform Cauchy sequence is defined in the obvious way.
The vector lattice A is called relatively uniformly complete whenever every relatively
uniform Cauchy sequence has a unique limit. For any non empty subset D of A we
define the pseudoclosure D′ of D to be the set of all a ∈ A for which there exists
an ∈ D (n = 1, 2...) such that an → a (r.u.). Furthermore, D is called relatively
uniformly closed whenever D = D′. If Â is the Dedekind completion of the vector
lattice A, then A, the closure of A in Â with respect to the relatively uniform
topology, is a relatively uniformly completion of A.

It is proved by Beukers and Huijsmans [4, Theorem 5 ] that if A is a relatively
uniformly complete semiprime f- algebra and F ∈ R+ [X1, ..., Xn] a homogeneous
polynomial of degree p ∈ N, then for all 0 ≤ a1, ..., an ∈ A, there exists (unique)
0 ≤ a ∈ A such that

ap = F (a1, ..., an) .

In this section we show that this result subsists in the case of a positive square
O′-algebra (evidently, we lose uniqueness). In order to reach this aim, we need the
following proposition.

Proposition 2. Let A be a relatively uniformly complete positive square O′-algebra
and p > 2 a natural number. Then
(i) for every 0 ≤ a1, ..., ap ∈ A, there exists 0 ≤ a ∈ A such that

ap = a1...ap,

(ii) for every 0 ≤ a, b ∈ A, there exists 0 ≤ c ∈ A such that

cp = ap + bp.

Proof. (i) Let 0 ≤ a1, ..., ap ∈ A and put e = a1 + ... + ap. It is well known that
the principal order ideal Ae, generated by e in A, can be equipped by a multiplica-
tion denoted by (×) in such a manner that (Ae,×) becomes a relatively uniformly
complete f-algebra with e as unit (see [12], Remark 19.5).
Consider B = Ae× Aep with the coordinatewise vector space operations and partial
ordering inherited from A×A and with the following multiplication: for fixed 0 ≤ b ∈
Ae

X ∗ Y =

(
x
y

)
∗
(

x′

y′

)
=

(
0

(b×x) .x′.a3...ap

)
for all x, x′ ∈ Ae and y, y′ ∈ Aep . By Corollary 3, we deduce that (B, ∗) is an almost
f- algebra. Then (B, ∗) is a commutative `-algebra. So

(b× x) .x′.a3...ap = (b× x′) .x.a3...ap.

In particular, if b = a1, x = e and x′ = a2, we have

a1a2.a3...ap = (a1 × a2) ea3...ap.
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Analogously, we conclude that

a1a2a3...ap = (a1 × a2 × a3 × ..× ap) e...e︷ ︸︸ ︷
(p-1 )times

Now, applying [4, Theorem 5] to Ae which is a relatively uniformly complete
f-algebra with unit e, there exists a positive element a in Ae such that

a1 × a2 × a3 × ..× ap = a×p,

therefore

a1a2a3...ap = (a×p)e...e = ap.

This gives the desired result.
(ii) Let 0 ≤ a, b ∈ A and take e = a + b. Using the same argument and notation of
(i), we deduce that

ap + bp = (a×p)e...e + (b×p)e...e =
(
a×p + b×p

)
e...e.

Since the property (ii) is valid for relatively uniformly complete f-algebra (see [4,
Theorem 5]), there exists 0 ≤ c ∈ Ae such that(

a×p + b×p
)

= c×p,

and finally
ap + bp =

(
c×p

)
e...e = cp

and we are done. �

Now, the following main result of this section is a simple inference of the previous
proposition.

Theorem 3. Let A be a relatively uniformly complete positive square O′–algebra
and let F be a homogeneous polynomial of degree p ∈ N∗, p 6= 2 in R+ [X1, ..., Xn].
Then for all 0 ≤ a1, .., an ∈ A, there exists 0 ≤ a ∈ A such that

ap = F (a1, ..., an) .

Since any O–algebra in which squares are positive is a relatively uniformly com-
plete positive square O′–algebra, we deduce the following.

Corollary 5. Let A be an O–algebra in which squares are positive and let F be a
homogeneous polynomial of degree p ∈ N∗, p 6= 2 in R+ [X1, ..., Xn]. Then for all
0 ≤ a1, .., an ∈ A, there exists 0 ≤ a ∈ A such that

ap = F (a1, ..., an) .

The next example shows that the preceding theorem (and evidently the previous
corollary) need not to be true in the case p = 2.
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Example 5. Take A = R4 with the coordinatewise vector space operations and the
cone
A+ = {a = (a1, a2, a3, a4) ∈ R4; a1 ≥ 0, |a2| ≤ a1, a3 ≥ 0 and |a4| ≤ a3},
equipped with the following multiplication: a.b = (0, 0, 2a1b1 + a2b2, a2b2) for a =
(a1, a2, a3, a4) and b = (b1, b2, b3, b4) .
A straightforward calculation shows that A is a positive square O′–algebra (also an
O–algebra). However Theorem 3 and Corollary 5 fail to hold if p = 2. Indeed, let
a = (2,−2, 0, 0) and b = (1, 1, 0, 0) .
Assume now that there exists 0 ≤ c ∈ A such that a.b = c2 then we obtain the
following:
(0, 0, 2,−2) = (0, 0, 2 c2

1 + c2
2, c

2
2) , then c2

2 = −2, a contradiction.

Remark 4. The previous theorem and corollary do not hold if the O′-algebra (or the
O-algebra) A is not a positive square algebra. We illustrate this with the following
counterexample.

Example 6. Take A = {f : [−1, 1] → R} with the usual operations and order, and
define α ∈ A by

α (x) =

 0 if x ∈
{
−1,−1

2
, 0, 1

2
, 1
}

1 if x /∈
{
−1,−1

2
, 0, 1

2
, 1
} .

For all f, g ∈ A define

f ∗ g (x) =


α (x) f (x) g (x) if − 1 ≤ x ≤ −1

2

α (x) f (x) g
(
x− 1

2

)
if − 1

2
≤ x ≤ 0

α (x) f (x) g (x) if 0 ≤ x ≤ 1
2

α (x) f
(
x− 3

2

)
g (x) if 1

2
≤ x ≤ 1

.

It not hard to prove that A is a positive square O′-algebra (and O-algebra) under
the multiplication (∗) .
Let f1, f2, f3, defined by

f1 (x) =


0 if − 1 ≤ x < −1

2

1 if − 1
2
≤ x < 0

2 if 0 ≤ x < 1
2

0 if 1
2
≤ x ≤ 1

, f2 (x) =


1 if − 1 ≤ x < −1

2

1 if − 1
2
≤ x < 0

0 if 0 ≤ x < 1
2

0 if 1
2
≤ x ≤ 1

and f3 (x) =


2 if − 1 ≤ x < −1

2

0 if − 1
2
≤ x < 0

1 if 0 ≤ x < 1
2

0 if 1
2
≤ x ≤ 1

.

Assume now that there exists f ∈ A such that f1 ∗ f2 ∗ f3 = f ∗3. We obtain the
following system:

f 3 (x) = 0 if − 1 < x < −1
2

f (x) f 2
(
x− 1

2

)
= 2 if − 1

2
< x < 0

f 3 (x) = 0 if 0 < x < 1
2

f 2
(
x− 3

2

)
f (x) = 0 if 1

2
< x < 1

.
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The first equation implies that f (x) = 0
(
−1 < x < −1

2

)
and the second equation

becomes f (x) f 2
(
x− 1

2

)
= 0

(
−1

2
< x < 0

)
, a contradiction.

Recall that a linear mapping T defined on the vector lattice A with values in the
vector lattice B is called positive if T (A+) ⊂ B+ ( notation T ∈ L+ (A, B) or T
∈ L+(A) if A = B ). The linear mapping T ∈ L+ (A, B) is called lattice (or Riesz
) homomorphism ( notation T ∈ Hom(A, B) or T ∈ Hom(A) if A = B ) whenever
a ∧ b = 0 implies T (a) ∧ T (b) = 0. The linear mapping T defined on the vector
lattice A with values in the vector lattice B is called order bounded whenever for
each order interval [x, y] of A, the set T ([x, y]) is included in an order interval in B.

In the sequel, we intend to generalize Theorem 4.1 in [14] by Render. Our proof
is identical in concept with the proof of [8, Theorem 5.1].

Theorem 4. Let A be a relatively uniformly complete positive square O′-algebra and
B be a semiprime f-algebra. If T : A → B is an algebra homomorphism then T is
positive, hence T is a lattice homomorphism.

Proof. Let 0 ≤ u ∈ A. Since A is a relatively uniformly complete O′-algebra, it
follows from the previous theorem that there exists v ∈ A+ which satisfies u5 = v4.
Consequently, (T (u))5 = (T (v))4 ≥ 0. On the other hand,

(T (u))5 =
(
T (u)+ − T (u)−

)5
= (T (u)+)5 − (T (u)−)5,

because T (u)+ T (u)− = 0. Moreover, since (T (u)+)5 ∧ (T (u)−)5 = 0, we deduce
that (T (u)−)5 = ((T (u))5)−. Hence (T (u)−)5 = 0.
Since B is a semiprime f-algebra, it follows that T (u)− = 0, i.e., T (u) ≥ 0.
Let now a, b ∈ A such that a ∧ b = 0. Then

0 ≤ (T (a) ∧ T (b))2 ≤ T (a) T (b) = T (ab) = 0

as ab ∈ N (A) . Since B is a semiprime f-algebra, it follows that

T (a) ∧ T (b) = 0.

The proof is complete. �

Since R is a semiprime f -algebra, the following corollary is straightforwardly
deduced from the previous theorem, also the result of Render [14, Theorem 4.1]
follows.

Corollary 6. Let A be an O-algebra. If the positive cone contains all squares then
every multiplicative functional T : A → R is a positive lattice homomorphism.

Remark 5. We note that, in the result of Render [14, Theorem 4.1], the assumption
that T is order bounded is superfluous as it is shown in the previous corollary.
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The assumption that A is relatively uniformly complete in Theorem 4 is not
redundant (see [8, Example 5.2]). But there exists a variant of the theorem in
question. In fact, one may assume that T is order bounded instead of imposing
relatively uniform completeness on A. To reach this we need the following.
Triki advocated in [18] that for any `-algebra A, the multiplication in A can be
extended in a unique way into an `-algebra multiplication on A (the closure of A in
Â with respect to the relatively uniform topology) in such a manner that A becomes
a subalgebra of A. Moreover, A is an f-algebra (respect almost f-algebra, d-algebra)
whenever A is an f-algebra (respect almost f-algebra, d-algebra). Our following
result shows that it is true for every positive square O′-algebra. The proof is left to
the reader, because it is identical in concept with the proof of [18, Theorem 4].

Theorem 5. Let A be a positive square O′-algebra. Then the multiplication in A
can be extended in a unique way into a positive square O′-algebra multiplication on
A in such a manner that A becomes a subalgebra of A.

Also we need the following result, which is a direct consequence of ( [10], Theorem
3.3).

Lemma 1. Let A be a vector lattice. If α = 0, we set A0 = A, and for every
countable ordinal α, we set Aα = (Aβ)′ , the pseudo closure of Aβ in A, whenever
β + 1 = α and we set Aα = ∪{Aβ; β < α} otherwise. Then A = ∪{Aα; α < N1} ,
the relatively uniform closure of A in Â.

As a consequence we deduce a result about the extension of order bounded
algebra homomorphism.

Proposition 3. Let A and B be two `-algebras and T be an order bounded algebra
homomorphism from A into B. Then T has a unique extension T defined from A
into B and T is an algebra homomorphism.

Proof. It is well known that T has a unique order bounded extension T defined from
A into B. This is a classical result due to L.V.Kantorovic̃ (see [1], Theorem 2.8).
It remains to prove that T is an algebra homomorphism.

On account of the transfinite induction principle it suffices to prove that T/A′

is multiplicative. To this end, let a, b ∈ A′ arbitrary and let (an) and (bn) be
sequences in A with a, b as (r.u) limits respectively. Then we have T (anbn) = T (an)
T (bn) = T (an) T (bn) . But since T is order bounded, it follows that T is (r.u)
continuous and hence
lim T (anbn) = T (ab) = lim T (an) lim T (bn) = T (a) T (b) and we are done. �

Thus now, we have gathered all ingredients for our aim.

Theorem 6. Let A be a positive square O′-algebra and B be a semiprime f-algebra.
If T : A → B is an order bounded algebra homomorphism then T is positive, and
hence T is a lattice homomorphism.

Proof. Since T has an extension T defined from A into B, which is an algebra
homomorphism, we deduce that, according to Theorem 4, that T is positive. Hence
T is a lattice homomorphism and so is T. This completes the proof. �
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