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THREE RIGIDITY CRITERIA FOR PSL(2, R) 

CHRISTOPHER BISHOP AND TIM STEGER 

STATEMENT OF RESULTS 

Let G be PSL(2, R), the quotient of the group of 2 x 2 real 
matrices with determinant one by its two element center, {±1} . 
By a lattice subgroup of G we mean a discrete subgroup such that 
the space of cosets G/T has finite volume. A familiar example 
of a lattice subgroup is PSL(2, Z) , the subgroup of matrices in 
PSL(2, R) with integer entries. Let T be an abstract group and 
let i{ and i2 be two inclusions of T in G, each having a lattice 
subgroup as its image. We say ix and i2 are equivalent if there is 
some (continuous) automorphism a of G so that i2 = aoi{. This 
paper describes three closely related criteria for the equivalence of 
i{ and 12 : one analytic, one representation theoretic, and one 
geometric. 

If G were PSL(n, R) for some n > 2, or indeed if it were 
any connected simple Lie group with trivial center except for 
PSL(2, R), then the Mostow rigidity theorem (see [Ml, M2, Ma, 
P]) would assert that ix and i2, as described above, are necessar­
ily equivalent: a given abstract group T could be embedded in G 
as a lattice subgroup in at most one way (up to automorphisms of 
G). This remarkable theorem is false for PSL(2, R). Indeed, the 
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study of the set of equivalence classes of embeddings of a given T 
as a lattice subgroup of PSL(2, R) is the main focus of the highly 
developed Teichmüller theory (see, [Ah, Ga, L, N]). The following 
results are rigidity theorems for PSL(2, R), although they have 
additional hypotheses, as they must. 

We say ix and i2 are topological^ conjugate if there is some 
(orientation-preserving) homeomorphism /? of H such that i2(y) 
— P' ° ' i00 ° P~X • Such a /? will extend uniquely to a homeomor­
phism of R U oo, the boundary of H . Moreover, the boundary 
homeomorphism is completely determined by ix and i2, even 
though the interior homeomorphism is not. If T is the funda­
mental group of a surface, the equivalence classes of embeddings 
topologically conjugate to a given one, i, can be identified with 
points of the Teichmüller space of the surface R = H/i(T). If R 
is a Riemann surface of genus g with k punctures, then the asso­
ciated Teichmüller space can be given the structure of a 3g - 3 + fc 
dimensional complex manifold; in particular, it is uncountable. 

PSL(2, R) acts on the upper half-space, H , by the well-known 
recipe 

(* b
dyz = (az + b)/(cz + d). 

1 1 1 1 

The action preserves the hyperbolic metric ds = (dx +dy )/y , 
and in fact G is the full group of orientation-preserving isometries 
of H+ . The analytic criterion uses the function h : G —• R+ given 
by h(g) = Qxp(-d(g • /, /)), where rf(-, •) is hyperbolic distance 
on H . This function belongs to Ll+e(G) for any e > 0 but not 
to Ll(G). Similarly, if A. : T —• R+ is the composition of h with 
ij, then hj belongs to ll+€(T) for any e > 0 but not to ll(T). 

Theorem 1. Fix s, 0 < s < 1. The inclusions i{ and i2 are 
equivalent if and only if 

J2h\(Y)h{
2~\y) = +oc. 

yer 

For the representation theoretic criterion, we let n{ and n2 be 
nontrivial irreducible unitary representations of G (see [K]) which 
don't belong to the discrete series. (That is n{ and n2 belong to 
the principal or complementary spherical series.) According to 
[C-S], 7tj o i is an irreducible representation of T for j = I or 
2. As usual, two irreducible unitary representations of a group are 
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called equivalent if there is a unitary equivalence between the two 
representation spaces which intertwines the two group actions. 

Theorem 2. The representations nxoix and n2oi2 of F are equiv­
alent if and only if the representations nx and n2 of G are equiv­
alent and the inclusions ix and i2 are equivalent. 

This is not stated as a criterion for the equivalence of ix and i2 , 
but we obtain one by setting nx = n2. Theorem 2 fails for discrete 
series representations. If nx and n2 are in the discrete series, then 
nx oix and n2oi2 are square integrable representations of T, hence 
continuously reducible. Any square integrable representation of T 
is characterized up to unitary equivalence by a single real number, 
its continuous dimension, and the continuous dimension of n. o /. 
is the product of the formal dimension of n. and the volume 
of G/ij(T) (see [G-H-J, Theorem 3.3.2].) If T is torsion free, 
then it determines the Euler characteristic and thus the volume of 
G/ijQT). One can always find a finite index, torsion free subgroup 
of T, so G/ix(T) and G/i2(T) have equal volumes. The two 
representations nxoix and n2oi2 are equivalent if and only if nx 

and n2 have the same formal dimension. 
For the final criterion we assume ix and i2 are topologically 

conjugate and that /? is the conjugating homeomorphism. It is 
known that /? is either Möbius or singular depending on whether 
or not ix and i2 are equivalent (e.g., [Ml]). See [Ag] for a survey 
of related results. Let dim(i?) denote the Hausdorff dimension of 
E. 

Theorem 3. Suppose that ix and i2 are topologically conjugate. 
Then ix and i2 are inequivalent if and only if there exists ô > 0 
and E c R such that dim(£) < 1 -ô and dim(£(R\£)) < 1 -Ô. 

The complete proofs of these results are contained in [B-S]. We 
thank the referees for their comments and suggestions. 

OUTLINE OF THE PROOFS 

Theorems 1 and 3 are easy to verify under the hypothesis that 
ix and i2 are equivalent, as is Theorem 2 if we assume also that 
n x and n2 are equivalent. The case of equivalent i. and inequiv­
alent Ttj is contained in [C-S]. Thus, in the following discussion 
we assume that ix and i2 are inequivalent. Given that, Theorem 
2 is a consequence of Theorem 1 and Theorem 3 is a rather direct 
consequence of the following sharper version of Theorem 1. 
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Theorem l' . If i{ and i2 are inequivalent and 0 < s < 1, then 
there is some ô > 0 so that 

ECV^OO1"')1"'< +oo. 
yer 

In sketching the proof of Theorem 2, we treat only the case when 
n { and n2 are in the principal series but not at its endpoint. Let 
%?. be the Hubert space on which n. acts, and let U \%?1-+ %\ 
be a presumed unitary equivalence between n2 o i2 and n{ o i{. 
From [C-S] we use the fact that there is a t{ > 0, characteristic of 
7Tj, so that 

weak-lim(7r1 oi )(ehJ ~N'l+e) = Qy 
e-*0+ 

where Q is a nonzero operator on ^ . (In fact Q is some multiple 
of orthogonal projection onto the one-dimensional subspace of ^ 
fixed by 50(2 , R).) On the other hand, for y/ and y/f chosen 
from a dense class of vectors in ^ 

\(n2(g)y/,y/f)\<Ch(g)l/2. 

For such vectors 

\{QUv, U¥')\ = | lim ((nloil)(ehl
l
/2+"'+i)Uw, Uy/')\ 

e—•()+ 

= \lim+((7t2oi2)(ehl/2+it'+e)¥,y/')\ 

<- e5+
+ C eEi*.w1 / 2 + i ' l + £^w l / 2 i 

< lim+CeJ2h{(y)l/2h2(y)l/\ 

According to Theorem 1, this limit is zero, so Q is zero, contra­
dicting the original hypothesis that ix and i2 were inequivalent. 

To demonstrate Theorem 1 we must again suppose that ix and 
i2 are inequivalent and prove that 

yer 

Let ET be the vertex of a combinatorial tree and fix a root vertex 
v0 e 3T. For any v G «^, let Z>(tO, the daughters of i;, consist 
of vertices adjacent to v but further away from the root vertex 
than v is. A function ƒ : J7~ -+ R+ is additive if 

y ^ / (w) = ƒ(*;) for each t; G y . 
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Lemma 1. Let fx and f2 be additive functions on !T. If for some 
P<1, 

£ fx{w)sf2(w)x-s<p[ Y, /i(™)) f E te*) 
weD(v) \web(v) J \w€D{v) 

for each v e F, then 

Yf{(v)sf2(v)l-s<+œ. 

Indeed, the sum over the nth generation, that is the sum over the 
vertices at distance n from v0 , is less than or equal to 

Pnfi(v0)
sf2(v0)

l's. 

The hypothesis of Lemma 1 is (in a certain quantitative sense) 
that the vectors {fx(w))w^D(v) and {f2{w))weD{v) are uniformly 
nonproportional as v varies. 

One may, it turns out, replace T with any subgroup of finite 
index. Therefore [S] we may assume T is either a free group (case 
of noncompact G/T) or the fundamental group of a closed Rie-
mann surface (case of compact G/T). Assume for this discussion 
that T is a free group and fix a (necessarily finite) set of generators 
(ai)f=\ • Give T the usual tree structure, saying that y and / are 
adjacent if and only if y = yafx for some / . 

To first approximation this is the tree to which Lemma 1 applies. 
What are the additive functions? For any y e T, let D+(y) be the 
set containing the daughters of y, the daughters of the daughters 
of y, and so on. Let the segments of y be 

Sj(y) = {!//) • i ; / € Z)+(y)} n (R U {oo}) forj = l o r 2 . 

Each segment S.(y) is a finite union of intervals on R U {oo}. 
By choosing the basis of T correctly, we may assume that each 
Sx(y) is a single interval; if ix and i2 are topologically conjugate, 
then we may assume as well that each S2(y) is a single interval. 
Except for endpoints S-(y) is the disjoint union of (Sj(yf))y>eD,y,. 
Define the additive function Lj(y) as the total length of 5-(y). 
Then LAy)> CHj(y) and it suffices to prove 

J2L{(y)sL2(y)l-s <+oo. 
yer 

The first modification to the tree is necessary because Sj(y) 
sometimes contains infinite intervals and so LAy) is sometimes 
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infinite. We divide the tree up into finitely many subtrees. Then 
for each subtree we conjugate ix and i2 by elements of G so 
as to relocate the points at infinity and make all the L-(y) fi­
nite. Next we eliminate certain of the vertices y of the tree in 
order to avoid the situation where one of the entries of the vec­
tor (Lx(y')) ieD,^ is much greater than the others. This situation 
occurs near parabolic fixed points. Finally, for a certain N (de­
pendent only on the topological situation) we include the vertices 
in every Nth generation but exclude the rest. Given any two of 
the remaining vertices we put an edge between them if the path 
in the original tree from the one to the other passes only through 
excluded vertices. 

Let T^ be the set of words of length less than N/2 in T. Now 
suppose the series above diverges. Then by Lemma 1 we can find 
elements y e T such that 
(i) 

Y: Li{y')sL2(y')l-s and ( £ L,(/)) ( £ L2(/) 
y'eD(y) \y'€D(y) J \y'eD(y) 

are as close are desired. Near equality in Holder's inequality im­
plies near proportionality of the two vectors involved, which im­
plies in this case that the tuples (L\(YY'))y'eY and (L2(y/)) / € r 

are nearly proportional. From each such y we construct an isom-
etry (orientation-preserving or orientation-reversing) of H which 
nearly conjugates ix to i2. Indeed this isometry is the compo­
sition of i2(y~l) with an affine transformation and with i{(y). 
Now consider a sequence of y, which gives better and better agree­
ment in (1). The corresponding sequence of isometries has a limit 
and this limit conjugates i{ to i2. Thus, the two inclusions are 
equivalent. 

If r is the fundamental group of a closed Riemann surface, 
then the proof is not very different. The one added difficulty is 
that of finding a useful tree structure on the group. This done, 
several other technical difficulties disappear, firstly because there 
are no parabolic elements in F and secondly because by the Dehn-
Nielsen lemma the two inclusions are topologically conjugate a 
priori. We use our own (possibly original) solution to the word 
problem to establish the tree structure. However, any reasonable 
solution to the word problem might be equally effective. 

i —^ 
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