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For the usual Laplacian A in Euclidean space R" and its spec­
tral theory, there is a tremendous amount of information avail­
able, largely because of a number of explicit formulas that are 
known. For example, the heat semigroup etA (the operator that 
solves the heat equation du/dt = Au for t > 0 from the ini­
tial value u(x, 0), given certain weak growth conditions) is a 

convolution operator with kernel (4nt)~n^2e~^ ^4t. From the 
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explicit formula for the kernel we can read off certain qualita­
tive properties of the heat semigroup, for example, the estimate 
Ik'Vlloo < (47rO""/2H/lli > o r t h e f a c t t h a t u(x> 0 = **/(*) is 
C°° in t > 0. Are these qualitative properties merely lucky acci­
dents or do they arise from deeper and more robust sources? As 
long as we stick to the usual Laplacian on all of Rn , we have no 
hope of answering this question; indeed it is not even clear that the 
question makes any sense. Fortunately, mathematicians are rarely 
content with sticking to the tried and true, and are forever seeking 
generalizations, and this has been especially true when it comes 
to Laplacians. Nowadays, Laplacians come in more flavors than 
Baskin-Robbins ice cream. For example, consider an operator of 
the form 

on a domain Q ç R " for which there exist positive constants 
a, /? such that ai < ajk(x) < pi as n x n matrices for all 
X E Q , In what follows we use the term generalized Laplacian to 
refer to this example in particular, and in a loose sense to other 
generalizations as well, such as the Laplace-Beltrami operator on 
a complete Riemannian manifold. 

The general problem we have raised is the following: To what 
extent do results about the spectral theory of the usual Laplacian 
extend to the generalized Laplacians? These questions have been 
the subject of intense investigation over a period of many decades 
by a large number of mathematicians using a wide variety of tech­
niques. The accumulated knowledge is quite impressive, but there 
are still many open problems and this area of research remains 
active. 

What do I mean by "spectral theory"? To begin with, we need to 
obtain a self-adjoint realization of the generalized Laplacian. The 
best way to do this is to consider the associated quadratic form 

ÖC/\ 8) = £ I aJk{x)f(x)g(x)dx, 
j , k J Ç Î 

take the closure of this quadratic form on C™m(£l), and pass to 
the associated self-adjoint operator. This is the Friedrichs exten­
sion of L, or the Dirichlet operator. Informally, this realization 
restricts the domain of L to functions vanishing on the boundary, 
and this is exactly what it is if the boundary is regular. But the 
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Friedrichs extension exists regardless of the nature of Q. There 
exist other realizations of L, usually connected with other bound­
ary conditions, but for simplicity we discuss only the Dirichlet 
realization. (The Laplace-Beltrami operator on a complete Rie-
mannian manifold is essentially self-adjoint, which means there is 
a unique self-adjoint realization.) 

Once we have selected the self-adjoint realization of L , the 
von Neumann spectral theorem applies. The first set of questions 
concerns the nature of the spectrum — is it discrete, continuous, 
a mixture of both? If it is discrete, what can be said about the 
eigenvalues and the eigenfunctions? Typically, if the domain Q 
is bounded, we expect a discrete spectrum, with an asymptotic ex­
pression for the eigenvalues, and estimates on the lowest nonzero 
eigenvalue A0 (usually we describe the eigenvalues by the equa­
tion L ƒ + A ƒ = 0 so they are positive) related to the geometry 
of Q. The eigenvalue k0 has multiplicity one, and the associated 
eigenfunction, called the ground state, is positive on Q. 

Along with the spectral theorem comes a functional calculus 
that allows us to define functions of L. We have already men­
tioned the heat semigroup etL. There is also the Poisson semi-

— t(LV^2 itL 

group e y } , the Schrödinger group e , the wave equation 
propagator cos ty/^L, the résolvant {XI + L)~l. Each of these 
particular functions of L has its own interpretation and interest. 
There are many interrelationships between them, so that informa­
tion about one of them can be used to obtain information about 
the others. For example, from the wave equation propagator we 
can synthesize other functions via 

/*oo 

ƒ(-£) = / cos t\T-Lƒ\t)dt 
Jo 

if ƒ is an even function. The Schrödinger operator can be ob­
tained from the heat semigroup by analytic continuation. But there 
is no guarantee that you will get exactly the information you want 
about one of these functions of L even if you know all the most 
intimate secrets about another one. 

In addition to questions about specific functions of L such as 
those listed above, we may also ask about classes of functions, 
for example, if ƒ satisfies the pseudodifferential operator symbol 
conditions 

\/k\x)\<ck(l + \x\)m-k for all/:, 
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then we expect that ƒ(L) should behave like a pseudodifferential 
operator of order 2m . 

In an area with such a diversity of problems, it is not surprising 
that a great diversity of techniques have been explored, and no 
one technique has emerged as dominant (one that usually leads 
first to the best possible result). Ideas from probability theory, 
pseudodifferential operators, Fourier integral operators, abstract 
functional analysis, and differential geometry all have an important 
role to play in penetrating and perfecting this area. 

Among the many points of view, the one presented in the book 
under review may be called the "heat kernel approach." This point 
of view stresses the importance of obtaining the most detailed in­
formation about the heat kernel, and then using this information 
to solve other problems. The heat kernel approach has not always 
been successful in obtaining best possible results, even for study­
ing the heat kernel itself. But a major breakthrough occurred in 
the mid 1980s in the introduction of Log-Sobolev techniques by 
Davies and Simon [DS], and the subsequent development of these 
techniques, largely by Davies and coworkers. As a consequence, 
the heat kernel approach has become a powerful and accurate tech­
nique that can hold its own in comparison with other approaches. 

Log-Sobolev inequalities first arose in quantum field theory in 
the work of Federbush [F] and Gross [G], inspired by Nelson's 
work on hypercontractivity [Ne]. There is now a large amount 
of literature on the subject [DGS]. In the context of generalized 
Laplacians, a Log-Sobolev inequality is an estimate 

(*) f f log fdx<eQ(f, f) + 0(e) 
Ja 

for a suitable class of functions ƒ with || ƒ ||2 = 1 for 0 < a < oo, 
where 0(e) is a specified function. The key idea of Davies and 
Simon is that a Log-Sobolev inequality is almost equivalent to an 
estimate 

(**) \\e'Lf\\oo<eMlt)\\f\\2 

for the heat semigroup, for a specified function M(t). More pre­
cisely, starting with (*) and 0(e) one obtains (**) with M(t) 
derived from 0(e), or starting with (**) and M(t) one obtains 
(*) with 0(e) derived from M(t). There is a small loss involved 
in going from (*) to (**) and back to (*), or vice versa, but for 
many important examples the result is sharp except for a constant. 
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What is the significance of this almost equivalence? The es­
timate (**) gives immediate information about the heat kernel, 
but it depends on the generalized Laplacian in a way that is not 
transparent. The estimate (*), on the other hand, is rather far 
removed from the heat kernel, but it is clearly monotonie in the 
coefficients of the generalized Laplacian. Thus if you know (**) 
for one generalized Laplacian, you can pass to (*), use monotonic-
ity to switch to another generalized Laplacian, and then get back to 
(**) for the new Laplacian. Notice that smoothness of coefficients 
does not really play any role in Log-Sobolev inequalities, so this 
technique allows us to obtain information about heat kernels of 
generalized Laplacians with coefficients that are only measurable 
functions, in a seemingly effortless way! 

The Log-Sobolev technique lies at the heart of many of the 
results given in the book under review. The presentation is clear 
and concise (an amazing amount of information is packed into 
under 200 pages, and it is largely self-contained). The results are 
elegant and often best possible. In addition to presenting his own 
work, Davies includes very readable accounts of two important 
recent results: the parabolic Harnack inequality of Li and Yau 
[LY], and the Gaussian lower bounds for heat kernels of Fabes 
and Stroock [FS] based on the ideas of Nash [Na]. All in all, this 
book provides a lively and timely account of important work, and 
will be a valuable resource for anyone interested in research in this 
area. 

This book is very much a report from the research frontiers. 
Since this is a rapidly developing area, no work can represent the 
last word, and so let me conclude by discussing some work which 
has been done since this book appeared, but which is very relevant 
to its message. For the Laplace-Beltrami operator on a smooth 
compact «-dimensional Riemannian manifold, the estimate 

||M,||00<c(l+A)(n-1,/4 | |MJ|2, 

where Aux = -Xuk, was recently established by Sogge ([S 1, S 2, 
S 3]) using Fourier integral operator techniques. These techniques 
depend heavily on the smoothness of the metric. Using heat kernel 
methods, Davies [D] obtains 

IlKjoo^a+A^IKIk. 
What is the reason for the discrepancy in the power of 1 + X ? 
The heat kernel methods yield a weaker result because they apply 
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to a broader class of examples, where smoothness of the metric is 
not required. In fact Davies [D] shows by example that Sogge's 
estimate does not hold with a constant that is independent of the 
modulus of continuity of the metric, and the heat-kernel-derived 
estimates are close to being best possible in this greater generality. 

Perhaps we can discern a moral here, analogous to the Heisen-
berg uncertainty principle in quantum mechanics — it is impossi­
ble to achieve the ultimate in sharpness and generality simultane­
ously. 
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