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Let us start with two if spaces, if0 and LPl . A function ƒ e 
if , p0 < p < px can be written as a sum of two functions ƒ = f0+ 
fx with f0 G Lp° and f{ e LPl . A linear operator defined on both 
Lp° and lfx is therefore defined also on all If, p0 < p < px, 
provided that the definition of the operator on functions in the two 
spaces is compatible, i.e., Tf, for ƒ e LPonlfl , does not depend 
on whether we consider ƒ an element of Lp° or of LPl . One 
can then reasonably ask what properties of T on the endpoints, 
LPo and LPl, are transferred to the intermediate if . This is the 
simplest example which conveys the idea of interpolation theory. 

Interpolation theory has been vastly generalized beyond the con­
crete setting described above. It is natural to replace if spaces 
by Banach spaces, but important parts of the theory have also 
been developed in the setting of quasi-Banach spaces (to accom­
modate If spaces with p < 1, and, more importantly weak-L1 

and Hp spaces with p < 1 ) and even to quasi-normed groups, 
and to quasi-normed semi-groups (to accommodate, say, the class 
of functions with monotone Fourier coefficients). In some cases 
the single operator T can be replaced by an analytic family of 
operators, with important consequences in harmonic analysis, and 
the two-space framework can be replaced by a family of spaces. 
All these generalizations are motivated by applications to various 
areas of analysis, principally harmonic analysis, partial differen­
tial equations, and approximation theory. Before we discuss some 
of these generalizations, let us return to the modest setting of if 
spaces described above. 

Consider the Fourier transform of periodic functions: fA(n) = 
H JO n f(*)e~ mt dt. Bessel's inequality gives us 

(
QQ \ 1/2 / 2n \ 1/2 

XXwi2) < ( i / o i/wi1*) , 
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and, even more trivially, from \e in | = 1 we have 

\fA(n)\<±£n\f(t)\dt. 
The first inequality can be expressed by saying that the opera­
tor A maps L2([0, 2n]) to L2(Z), where the first measure space 
[0, 2n] is equipped with (normalized) Lebesgue measure, and the 
second measure space Z is equipped with the counting measure: 
M({n}) = 1 • The second inequality can be expressed by saying 
that the operator A maps z/([0, 2n\) to L°°(Z). We can now 
use the Riesz-Thorin interpolation theorem (Riesz, 1927; Thorin, 
1939) to obtain that these two endpoints results imply that A maps 
Lp([0, 2n]), for 1 < p < 2, to Lg(Z), where 

- = —~ h T and - = —r— + —, 
p 2 1 q 2 oo 

which gives \jp + \jq = 1. The theorem also gives information 
about the norm of the operator on the intermediate spaces, which, 
since the norm of A is one at both endpoints yields: 

This is the Hausdorff-Young theorem (1912-1923). W. H. Young 
proved the theorem for even integers q and Hausdorff extended 
it to all q > 2. The proof, naturally, was not the one above. 

The interpolation proof reveals the limitations of the theorem. 
One cannot hope to deduce from the theorem any conclusion which 
depends on any deeper property of the trigonometric system than 
the fact that it is a uniformly bounded orthonormal system. Even 
the completeness of the system does not enter the picture. 

The example above illustrates the advantages of interpolation 
results. In the first instance interpolation theory offers easy proofs 
of some theorems. More importantly, the easier proofs enable us 
to gauge properly the significance of these theorems. 

We should point out that in this review "Riesz" refers to Mar­
cel Riesz. The Riesz-Thorin interpolation theorem was proved by 
Riesz (1927) using truly elementary tools: determining necessary 
and sufficient conditions for equality in Holder's inequality for 
sequences. Thorin's proof (1939) came from left field. One con­
structs an analytic function on 0 < Re(z) < 1, ƒ(•, z), whose val­
ues on Re(z) = 0, ƒ(•, it), are Lp° functions, and on Re(z) = 1, 
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ƒ (•, 1 + it), are LPl functions. Tf(-, z) are again analytic func­
tions, whose behavior on Re(z) = 0 and on Re(z) = 1 is con­
trolled by the boundedness of T on the endpoint spaces, Lp° and 
LPl . One then applies Hadamard's three line theorem to control 
the size of the function a t z = s , 0 < . s < l , which gives the right 
estimate on Ü , for the intermediate p, 

I - l~s
 JL 

P " PQ P\ 

We have used the Fourier transform to motivate the Riesz-
Thorin interpolation theorem. Let us now consider the Hubert 
transform, defined by 

Hf(x) = limU f^zJldt. 
£-^° n J\t\>£ t 

Starting with ƒ , if we let F = Py* ƒ be the harmonic extension 
of ƒ to the upper half-plane, and then let G be the harmonic 
conjugate of F, i.e. F + iG is analytic in the upper half-plane, 
then it turns out that lim>;_ 0̂+ G(x, y) = Hf(x). It is impossible 
to overstate the importance of this operator, connecting as it does 
real analysis, harmonic analysis, complex analysis, and, through 
its generalizations to R" , partial differential equations. It has also 
served as a motivation for some of the most fundamental work in 
interpolation theory. 

It is not hard to see that H: L2 -> L2 . The proof that H: Lp 

—• Lp for other values of p, using interpolation, is rendered dif­
ficult by the fact that the usual endpoints, L1 and L°° , are not 
available for the Riesz-Thorin theorem. It is not hard to see that 
H does not map either of these spaces into itself. From the com­
plex analysis interpretation of the Hubert transform we get 

H(—L-) = - ? - 1 . —l-jeLl, b u t — ^ £ L l . 
VI + x 2 / 1+JC2 1 + x 2 1 + x 2 

For large x , x / ( l + x 2 ) is like l/x. 
Instead of l) boundedness H has the weaker property | { | # / | 

> A}| < C-11/11 j /ky i.e. H maps l) to weak-1) . Riesz's beautiful 
proof (1927) of H: LP —• Lp uses the complex analysis interpre­
tation of H to prove the Lp norm inequality for all even integer 
values of p. Next the Riesz-Thorin interpolation theorem is used 
to get the estimate or all p > 2, and, finally, since the dual operator 
to H is -H, we get the theorem for 1 < p < 2 as well. (This is 
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one of two proofs Riesz gave of the continuity of H. In the other 
proof, also published in 1927, the extension from even integers to 
other values of p is achieved by complex analysis considerations.) 

Alongside the Riesz-Thorin theorem, the other classical interpo­
lation theorem is due to Marcinkiewicz (1939). It was motivated 
by the idea of proving the if continuity of H by interpolât-
ing between its L continuity and the inequality |{ | i / / | > A}| < 
C * II / Hi M • Marcinkiewicz' idea was to decompose ƒ G if into 
two functions, ƒ = f + f 9 where 

f=(fif\f\>y 
\ 0 otherwise . 

fy e L 2 , and f e L 1 . H f = Hf + Hfy, and the behavior 

of H on L2 and on l) is used to control Hf and Hf. The 
level of the cut, y, is then varied, and a precise calculation of the 
resulting norm inequalities gives the if result. 

The examples outlined so far point to the great usefulness of in­
terpolation theorems. However, proving ad hoc interpolation the­
orems for each needed case is itself not an efficient method. It is 
as if telephone service were provided by connecting each customer 
by a special line to each other customer. It is far more efficient 
to connect each customer to a central exchange. The construc­
tion of such exchanges in the late 1950's marked the beginning 
of the modern theory of interpolation of operators. In essence, 
instead of interpolating the operators, we interpolate the spaces. 
Given spaces which are compatible—this has of course a precise 
technical meaning, but the idea is to axiomatize the fact that the 
algebra and topology in if spaces for different values of p are 
consistent—we construct new spaces which have the interpolation 
property. This means that if we are given two sets of endpoint 
spaces, A and B, and if we construct the interpolation spaces for 
both sets, A (parameters) 5 (parameters), then any linear oper­
ator (in real interpolation theory the operators need not be linear; 
weaker conditions suffice) which is continuous from A to B will 
be continuous from A (parameters) to B (parameters). For the 
results to be interesting, the constructed spaces should, of course, 
have intrinsic characterizations, and the identification of the inter­
polation spaces should incorporate the known interpolation theo­
rems. For a simple example, the interpolation spaces between if 
spaces should, for some values of the parameters, yield either the 
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Riesz-Thorin or the Marcinkiewicz interpolation theorem. 
We will confine our attention to the two major methods of 

constructing interpolation spaces, the real method, which is the 
abstract version of the Marcinkiewicz theorem, and the complex 
method, which is the abstract version of the Riesz-Thorin theo­
rem. 

In the real method, a family of norms K(t, a; AQ, Ax) (the 
word is used loosely; they could be a great deal less than fully 
fledged norms) depending on a parameter t > 0, is defined on 
a e A0+A{ (the ability to add elements of the two endpoint spaces 
follows from the compatibility requirements on A ). The interpo­
lation spaces are then defined by requiring that, as a function of 
t, K satisfies some integrability conditions. This corresponds to 
the varying level of cuts in the Marcinkiewicz theorem. The in­
formation carried by the behavior of K(t, a; AQ9 A{) can also be 
expressed in terms of the important ^-functional or approxima­
tion functional E(t, a; A0, Ax) which measures how closely (in 
the yij-norm) we can estimate a by an element whose ^40-norm 
is less than t. The intuitive simplicity of E makes its calculation 
very easy in some cases. 

In the complex method, the interpolation spaces consist of the 
values in the interior of a domain, of Banach space valued ana­
lytic functions which on the boundary of the domain belong to the 
endpoint spaces, the interpolated family. (In an important special 
case the interpolated family consists of only two spaces A0 , Ax.) 
This corresponds to the Thorin construction described above. 

Each method has its own advantages. The real method is in 
many cases richer. Consider the simple example of the Fourier 
transform. As we saw above, the complex method, when applied to 
the simple endpoint results yields the Hausdorff-Young theorem, 

(xxwr) <(£/ i/wr*j . 
The real method when applied to the same endpoint estimates, 
without any additional input from harmonic analysis work, gives 
the stronger Paley's theorem: 

(:&/>)]• v- 2 ) " <c(p)(^jo
2n\f(t)\pd?jp 
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where [ ƒA («)]* denotes the nonincreasing rearrangement of | ƒA (•)|. 
In the case of the Hubert transform, the complex method can 

handle the weak-type inequality at p = 1: \{\Hf\ > À}\ < C • 
11/11 j/A, although not by the methods discussed in this book, but 
the conclusion is not satisfactory, since we fail to get the Ü con­
tinuity of the operator. Another important advantage of the real 
method: it handles quasi-norms (triangle inequality weakened to 
\\a + b\\ < C{\\a\\ + \\b\\), in some instances homogeneity too is 
sacrificed) as easily as it does norms. To people brought up in 
functional analysis, this might seem a curiosity, of no great impor­
tance. Note however that the range space of the Hubert transform 
acting on I 1 , the space weak-L1 as it is called in the classical 
literature, or L(\, oo) in the modern one, the space of functions 
satisfying ja{\f\ > A} < A/X, is quasi-normed (in fact, for every 
C > 1 a quasi-norm on it can be found which satisfies a C-triangle 
inequality) but is not normable. Moreover, the generalization en­
ables us to incorporate in one interpolation scale Hp spaces for 
0 <p < oo. 

Finally, real interpolation theory is easily applicable to some 
nonlinear operators. The original paper of Marcinkiewicz already 
announces his theorem for quasi-linear operators. This, again, is 
important in many applications. 

The complex method, as one may expect where analytic func­
tions come into play, is much more rigid. This has the advantage 
of providing sharper norm estimates in some applications. Fur­
thermore, the rigidity of the method is a tool by which properties 
of an operator on an interpolation space spread to nearby spaces. 
The complex method also enables us to vary the operators analyti­
cally even as we vary the spaces. To emphasize the point, consider: 
if Tit are continuous on Lp° and Tl+it are continuous on LPl , 
then, if Tz form an analytic family of operators, we have the con­
tinuity of Ts on Lp^ . Moreover, the method permits us to have 
not only two endpoint spaces, but whole families of them. On the 
other hand, the extension of the theory to quasi-normed spaces is 
very problematic. At the core of the difficulties is the failure of 
the maximum principle for functions taking their values in quasi-
normed spaces. The best we have available at this time are results 
obtainable with the interplay of the complex and the real methods. 

Both methods have rich theories. For example, we have reitera­
tion theorems, which say that if we interpolate between 
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spaces which are themselves interpolation spaces, the interpolation 
spaces we get will include all the right interpolation spaces between 
the original endpoint spaces. We also have information about the 
interpolation of spaces which are duals of a given set of endpoint 
spaces. The two methods collaborate in that we know what are the 
interpolation spaces in the complex method of endpoints which 
are themselves interpolation spaces in the real method, and vice 
versa. 

In the context of real interpolation theory one should make 
special mention of recent work on " À^-divisibility." We have 
mentioned before that the real method is an abstract version of 
the Marcinkiewicz interpolation theorem, with the ^-functional 
providing the analogue of the variable-level cut of functions. K-
divisibility pushes this analogy further and provides powerful tools 
for extending results hitherto available only in the setting of 
L(p, q) spaces or weighted LP spaces to real interpolation scales 
of other quasi-Banach spaces. Roughly speaking, the ^-divisibility 
theorem enables us to manipulate the functions K(t, a; A0, Ax) 
with almost as much freedom as if they were arbitrary functions of 
t on (0, oo), and almost ignore the fact that they are determined 
by elements a e A0 + Ax. 

If we continue with the analogy of interpolation theory and 
telephone communications, the work described above is the con­
struction of the exchanges. But another no less important part 
of the theory is the linesman's job of connecting customers to 
the exchanges: finding the interpolation spaces for given endpoint 
spaces. The benefits of such results are clear: operators interpolate 
(and sometimes extrapolate), giving new and interesting results. 
But there can be another payoff which may even transcend these 
applications. The calculation of the interpolation spaces involves 
a detailed analysis of the spaces in question, leading to a better 
understanding of their properties. 

The book Interpolation of Operators is a graduate text, where the 
real method of interpolation is motivated, as the subject itself was, 
by central problems in harmonic analysis. One cannot say enough 
in praise of such a program. It gives the student a feeling for the 
development of the field, a sense of what is central and what is 
peripheral. It encourages the student to ask the right questions 
when embarking on his own research. The value of the book as 
an invitation to the field is enhanced by a felicitous writing style, 
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and the thoughtful selection of some elegant applications from the 
literature. 

The authors have also made several choices which might be 
questioned. We shall mention just two. One is the inclusion, at 
the beginning of the book, of a detailed exposition of Banach func­
tion spaces and rearrangement invariant spaces. The abundance 
of material on these subjects has crowded out some central topics 
in interpolation theory, such as the interpolation of dual spaces. 
Moreover, the student who wishes to learn real interpolation will 
have to be patient. The AT-functional is not introduced until page 
293. (The approximation functional is not mentioned at all.) A 
second major decision taken by the authors was to present real in­
terpolation theory only for Banach spaces. This, particularly in the 
context of real interpolation and in a book interested in applica­
tions, is somewhat surprising. As we have endeavored to explain, 
the more general setting does not complicate the theory, and is 
most useful in applications. 

One small carping. The operators admitted in the general the­
ory (Chapter 5), are required to be linear. This leaves the reader 
with the impression that real interpolation theory does not encom­
pass the Marcinkiewicz interpolation theorem, where the operators 
are quasi-linear. A definition of admissible operators in real in­
terpolation which, when applied to the L(p, q) scale, yields the 
Marcinkiewicz theorem in full, has been known at least since 1969. 

The authors should be congratulated on this attractive book. It 
could serve as an excellent text on Banach function spaces. Supple­
mented by the older book by Bergh and Löfström, and by various 
recent results in the literature, it can be the basis for an excellent 
course on interpolation theory as well. For experts in interpolation 
theory it offers an exposition of several elegant applications of the 
theory. 
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