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Experts in multidimensional complex analysis will find the title 
of this monograph sufficiently informative, but most other math­
ematicians will probably feel lost, and perhaps not bother to look 
closer at this book. That would be regrettable, because what is 
before us is the first attempt to make accessible to a wider audi­
ence the deep work of A. Andreotti and H. Grauert published in 
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a classic paper in 1962 [AnGr]. The results and techniques devel­
oped in this paper have become standard fare for researchers in 
several complex variables (though they have not yet appeared in 
book form), and they still continue to exert a profound influence. 

The theory of Andreotti and Grauert bridges the gap between 
the two extreme cases of complex manifolds for which complex 
analysis had been developed thoroughly by the mid-1950s, namely 
the compact ones on the one hand, and the so-called Stein mani­
folds on the other. (For the purposes of this review we will only 
consider complex manifolds, and ignore the fact that all results 
are in fact true for complex spaces, a generalization of complex 
manifolds which includes "analytic singularities.") 

Stein manifolds were first introduced by Karl Stein in 1951 [Ste] 
as an abstract generalization of domains of holomorphy in Cn ; in 
contrast to compact manifolds they carry lots of nontrivial holo-
morphic functions, enough to make function theory on such man­
ifolds a natural generalization of function theory on open subsets 
of the complex plane, or on noncompact Riemann surfaces. Stein 
manifolds can be characterized in many ways: for example, they 
are precisely those manifolds of positive dimension which can be 
embedded as closed submanifolds of some C^. Their most im­
portant analytic property is given by H. Cartan's Theorem B: On 
a Stein manifold M all cohomology groups Hq(M, S) with val­
ues in a coherent analytic sheaf S vanish for q > 1. Moreover, 
this triviality of the analytic sheaf cohomology characterizes Stein 
manifolds. An excellent reference is the monograph by H. Grauert 
and R. Remmert [GrRe]. 

In contrast to real manifolds, complex compact manifolds do 
not exist in Cn (except for the trivial case of a finite set of points), 
so examples of such manifolds are necessarily more abstract. 
Among the simplest examples are the complex projective spaces 
CP" and the complex tori. It is a deep theorem, due to Chow, 
that every complex submanifold of CP" is algebraic, i.e., it can 
be defined as the common zero set of a finite set of homogeneous 
polynomials. In contrast to the situation in dimension one, in 
dimension > 2 there exist complex manifolds that are not alge­
braic; such examples were already known to Riemann, who in fact 
determined the necessary and sufficient conditions for a complex 
torus (i.e. the quotient of Cn by a lattice) to be embeddable in 
CP* . A classical theorem of Cartan and Serre states that on a com-
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pact complex manifold X all coherent analytic sheaf cohomology 
groups Hq{X, S) are finite dimensional (see [GrRe]). 

In higher dimensions there exist of course lots of noncompact 
manifolds which are not Stein. The simplest examples are open 
sets in Cn , n > 2, which are not domains of holomorphy, like the 
complement of a ball. Less trivial, but still natural examples arise 
by considering the complements in CP" of complex submanifolds 
of codimension > 2 . In view of the results mentioned above, the 
obvious question then is: What can one say about the cohomology 
groups of such manifolds? In order to answer this meaningfully, 
one must consider some natural and verifiable conditions on such 
manifolds, which somehow lie between compact and Stein. Let us 
now consider the classes of manifolds which were introduced by 
Andreotti and Grauert. First, we recall that for a real valued C2 

function 0 on an open set D in C" the Levi form (or complex 
Hessian) is defined by 

j,k=i J k 

The Levi form is a Hermitian form in t, and 4> is said to be 
strictly plurisubharmonic on D if the Levi form is positive definite 
at every point z e D. More generally, 0 is said to be ^-convex, 
where 1 < q < n , if at each point z e D the Levi form of (j> has 
at least n - q +1 positive eigenvalues. (/> is said to be ^-concave if 
- 0 is ^-convex. Note that strictly plurisubharmonic functions are 
precisely the 1-convex functions. Moreover, ^-convex functions 
remain ^-convex under biholomorphic maps, so that ^-convex 
and g-concave functions can be defined on complex manifolds. 
The notion of ^-convexity was introduced first by W. Rothstein 
(Math. Ann. 129, 1955). It is a deep theorem, essentially due to 
Grauert [Gra 1 and DoGr], that a complex manifold M is Stein 
if and only if there is a C2 strictly plurisubharmonic exhaustion 
function 0 on M (i.e. the sublevel sets Mc = {x e M: (j)(x) < c} 
have compact closure in M for every c G R). It is now quite 
natural to make the following 

Definition. The complex manifold X is said to be ^-convex, 1 < 
q, if there are a C exhaustion function <\> on X and a compact 
subset K of X such that (j) is g-convex on X - K. UK can 
be chosen empty, i.e. if (j) is ^-convex on I , I is said to be 
^-complete. X is said to be ^-concave if there is an exhaustion 
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function on X which is ^-concave outside a compact set. Com­
pact manifolds are also called 0-convex. 

Since ^-concave functions cannot take on (local) minima at in­
terior points, there do not exist global g-concave exhaustion func­
tions, thus there is no concave analogue of ^-completeness. Notice 
that by Grauert's characterization mentioned above, X is Stein if 
and only if X is 1-complete. 

It is easy to construct lots of explicit examples of ^-convex do­
mains in C" for any q . The complement of a coordinate ball or, 
more generally, of a strictly pseudoconvex domain in a compact 
complex manifold is easily seen to be 1-concave. Much deeper is 
the fact, proved in 1970 by W. Barth [Bar], that the complement 
of a complex submanifold of codimension q in projective space is 
^-convex (this does no longer hold for analytic subvarieties, i.e. in 
the presence of singularities!). Y. T. Siu and the reviewer proved 
that a real submanifold M of Cn for which at each point p the 
maximal complex subspace of the (real) tangent space T (M) has 
dimension < q has a neighborhood basis of (q + Incomplete do­
mains [RaSi]. 

We can now state the principal results of Andreotti and Grauert. 
Many of these results had already been announced by Grauert in 
1959 [Gra 2], shortly after the publication of his ground-breaking 
solution of the Levi problem in 1958 [Gra 1]. 

Let X be a complex manifold, q an integer > 0, and S a 
coherent analytic sheaf on X. Then 

<\imcH
r(X,S)<oo 

a) for all r > q if X is ^-convex; 
b) for all r < dih(S') - q if q > 0 and X is ^-concave, where 

dih(S') denotes the homological dimension of S. 
Furthermore, if q > 0 and X is ^-complete, then 

Hr(X, S) = 0 for r>q. 

We do not define the notion of homological dimension of a sheaf 
precisely. In essence, it measures how close the sheaf is to being 
locally free, i.e., isomorphic to the sheaf of germs of holomorphic 
sections of a holomorphic vector bundle; the homological dimen­
sion of a locally free sheaf equals the dimension of the underlying 
base manifold. Homological dimension has its origins in commu­
tative algebra; the concept was first introduced and investigated 
systematically for sheaves in the paper of Andreotti and Grauert. 



194 BOOK REVIEWS 

Stripped of all technical details, there are essentially two major 
steps in the proof of these results. The first part involves proving an 
isomorphism between the sheaf cohomology groups in the relevant 
dimensions for two sublevel sets Xb and Xc of the ^-convex, re­
spectively ^-concave exhaustion function </> for b < c sufficiently 
close to each other. This is done by the "bumping technique" in­
troduced in [Gra 1]: one shows that there is an isomorphism if Xb 

is "bumped out" just a little bit near a given boundary point, and 
then one repeats this step finitely many times until one has covered 
the whole boundary. The finite dimensionality of the cohomology 
groups then follows by the argument first introduced by Cartan and 
Serre in the proof of the finiteness theorem on compact complex 
spaces, i.e., by an application of a version of MontePs theorem for 
analytic cohomology classes, and by the compactness theorem of 
L. Schwartz for Fréchet spaces. In the second step one must show 
that there is an isomorphism between the cohomology groups of 
X and of Xb for b sufficiently large; the key ingredient here is 
a very delicate version valid for cohomology classes of the classi­
cal Runge approximation theorem for holomorphic functions. It 
goes without saying that in the spirit of the 1950s/early 1960s, the 
proofs involve the full machinery of coherent analytic sheaf coho­
mology. As of today, no substantial simplification of the original 
proofs is known which gives the results of Andreotti and Grauert 
in full strength, i.e., not just on manifolds, but on complex spaces. 

Beginning in 1969, methods of integral representations were 
introduced on strictly pseudoconvex domains, and rapidly found 
wide applications to the solution of numerous problems in multi­
dimensional complex analysis which could not be tackled by the 
classical sheaf theoretic methods. This is not the place to review 
these developments in detail. But suffice it to say that these meth­
ods were pioneered by H. Grauert and I. Lieb, who used a new 
construction of Cauchy-type kernels due to E. Ramirez, and, inde­
pendently, by G. M. Henkin, one of the authors of the book under 
review. Moreover, it is by now well known that these methods 
can be used very effectively to build up the fundamental global 
analytic theory of several complex variables, thus providing alter-
natives to the sheaf theoretic methods and to the L d -methods of 
L. Hörmandsr. Such expositions can be found in the earlier book 
by the present authors [HeLe], and in a book by the reviewer [Ran], 
to which the reader is referred to for more complete references. 
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In the book under review, Henkin and Leiterer write another 
major chapter in the program to build up several complex variables 
by methods of integral representations. They present an essentially 
self-contained new proof of the results of Andreotti and Grauert 
and of many of the subsequent variations, generalizations, and 
applications due to other mathematicians, by systematically using 
integral representations. These methods are quite a bit more el­
ementary and easier than the original proofs, but they only give 
the classical results for the case of complex manifolds (i.e. no sin­
gularities) and for holomorphic vector bundles (i.e. locally free 
sheaves). These restrictions are in line with current trends in com­
plex analysis, which are much more concerned with detailed infor­
mation about the boundary behavior of analytic objects than with 
developing the foundations in the appropriate most general setting. 
In fact, the proofs in the book before us yield a lot of additional 
information involving precise estimates up to the boundary which 
are not available by the classical methods. 

The philosophy of the proofs is similar to the classical one. First 
one studies the sublevel sets Xc of the given exhaustion function 
(j). The heart of the matter is a precise optimal estimate in Lip-
schitz norm for solutions of the Cauchy-Riemann equations on 
forms of type (0, r) under suitable convexity/concavity hypothe­
ses. This result involves a well-known extension of the Grauert-
Lieb/Henkin construction of integral solution operators for d in 
the strictly pseudoconvex case. For the ^-convex case, this was 
done first in 1974 by W. Fischer and I. Lieb [FiLi], and, indepen­
dently, by Siu and the reviewer [op. cit.], while the key observa­
tion to handle the concave case is due to M. Hortmann [Hor], who 
did the 1-concave case in 1976; a few years later Lieb extended 
Hortmann's method to the ^-concave case. The present authors 
introduce some technical improvements, for example, they allow 
certain nonsmooth boundaries, and add to the local estimates for 
9 a local approximation theorem for d-closed forms, which is 
needed later to pass by an exhaustion procedure from the sets 
Xc — {x: </>(x) < c} to the full manifold X. To derive from 
the precise local theorem the global finiteness results for Xc, the 
bumping technique is replaced by the smoothing property of the 
local integral solution operator for d , which yields a compact op­
erator from local ^-cohomology classes into itself. This can be 
globalized in a straightforward manner, and the finiteness state­
ment is obtained from standard results about compact operators 
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in Banach spaces. The vector bundle case is reduced to the case 
of (0, q) forms via local trivializations and Dolbeault's isomor­
phism. 

Even though the book by Henkin and Leiterer is technical and 
written in a rather dry no-nonsense style, the authors have been 
careful and precise, making the product quite readable and clear. 
The material was obviously written specifically for this book, in 
contrast to the authors' earlier book [HeLe], which for the better 
half reproduced verbatim material published in research journals. 
On the other hand the references and historical notes are not as 
accurate as in their earlier work—for example, some of the key ref­
erences quoted above are missing. It is quite annoying—at least to 
this reviewer—that the authors decided to change the standard ter­
minology. As defined by Henkin-Leiterer, a function is ^-convex 
if its Levi form has at least q positive eigenvalues, thus making 
strictly plurisubharmonic functions n-convex (if defined on an n-
dimensional complex manifold). Additional changes appear in the 
definition of ^-convex/concave manifolds. Not only is this bound 
to cause confusion, but it makes the conclusion in all main theo­
rems depend explicitly on the dimension n of the manifold. The 
index is too short, but the list of symbols is adequate and quite 
useful when reading this technical material. There is also a short 
list of open problems. At $44.90 (for the nonsocialist countries 
edition) the price is exorbitant for a book under 300 pages which 
is duplicated from a typed manuscript (including many handwrit­
ten symbols). If you have a friend in a socialist country, enlist his 
help in getting you a copy of the edition published by Akademie-
Verlag in Berlin (DDR); except for a soft cover, it is identical to 
the Birkhàuser edition, but it is much cheaper. 

Henkin and Leiterer have to be thanked for having taken on the 
hard work to present a different and more elementary approach to 
the key ideas of the work of Andreotti and Grauert, even if this 
does not yield the full strength of the original results. Moreover, 
the best is still to come. As the authors state in the Introduction, 
this book is preparing the grounds for an additional book which 
will contain substantial applications of the Andreotti-Grauert the­
ory with estimates to the theory of holomorphic vector bundles, the 
theory of the tangential Cauchy-Riemann equations, the Radon-
Penrose transformation, and to inverse scattering problems. Rudi­
ments of these applications are contained in several recent articles 
by Henkin and various of his collaborators (precise references are 
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given in the book). I think we have much to look forward to in 
the promised future book by Henkin and Leiterer, especially if 
it will not just reproduce published research articles. Substantial 
new applications will turn the book under review from just being 
an interesting display of the power and versatility of the methods 
of integral representations in multidimensional complex analysis 
into an important fundamental reference which has the potential 
to exert a profound and long lasting influence on future research 
comparable to the original work of Andreotti and Grauert. 
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