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SPLITTINGS OF SURFACES 

RICHARD K. SKORA 

Let F be a compact 2-manifold without boundary and with 
Euler characteristic x{F) < 0. Only for convenience endow F 
with a fixed hyperbolic structure, i.e., a discrete, faithful represen­
tation of the fundamental group nxF into the space of isometries 
of hyperbolic 2-space. Teichmüller space, ^(F), is the space of 
all hyperbolic structures on F divided out by conjugation. W. P. 
Thurston [Thl] showed that ^(F) admits a compactification as 
a ball of dimension - 3 # (F) . There is a natural identification of 
the interior of the ball with ^{F) and the boundary of the ball 
with the space of projective measured geodesic laminations on F 
(defined below). 

J. W. Morgan and P. B. Shalen [MSI, Mo] considered a more 
general problem. Let T be a finitely generated, nonvirtually Abeli-
an group and let 3n = 3r(T, lsom(Hn)) be the space of discrete, 
faithful representations of F into the group of isometries of hy­
perbolic rc-space divided out by conjugation. They showed that 
3tn admits a compactification 3fn where each point of 2n - 2n 

corresponds to a small action of t on an R-tree. When T = nxF 
and n = 2, they too show that their boundary 3Jn -2^n is homeo-
morphic to the space of projective measured geodesic laminations 
on F. 

An R-tree is a metric space (T, d), such that any two distinct 
points are joined by a unique arc and every arc is isometric to an 
interval in R. It is understood that if a group acts on an R-tree, 
then it acts by isometries and there is no invariant, proper subtree. 
An action is small if the stabilizer of each arc does not contain a 
free group of rank two. 

The above results motivate studying small actions of T on R-
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trees. When r = n{F, we completely characterize small actions 
and answer a question from [Sh]. Recall that the only small sub­
groups of nxF are cyclic groups. Here is our main theorem (defi­
nitions follow immediately). It has a generalization for a compact 
2-manifold with boundary. 

Theorem. Let n{F x T —• T be an action on an R-tree. Then 
nxF x T -* T is dual to a measured geodesic lamination if and 
only if the stabilizer of each arc is cyclic. 

A geodesic lamination £? is a closed subset of F, such that 
each path component is a simple geodesic. A geodesic lamination 
is discrete if it is a finite union of simple closed geodesies. Say an 
arc in F is transverse to J ? if its endpoints lie on the complement 
of J ? and it is transverse locally. A transverse measure // is a 
function from the set of transverse arcs to the set [0, +oo), such 
that (i) /u(y + / ) = p(y) + ju(y') ; and (ii) ju(y) = ju(yf), whenever 
y, y' differ by a 1-parameter family of transverse arcs. One may 
think of a transverse measure on a discrete geodesic lamination 
as simply an assignment of weights to each geodesic. The set of 
measured discrete geodesic laminations is dense in the space of 
measured geodesic laminations [Thl]. 

Let H -> F be the universal covering. Given a measured 
geodesic lamination ( J? , /i) in F its preimage in H2 is ( J? , ju). 
Say the action n{F x T —• T is dual to ( J? , fi) if there is an 

equivariant, locally constant map p : H2 - 3? —• T, such that 
ju(y) = d(p(y(0)), p(y(l))), for every transverse arc y: [0, 1] -» 
H meeting each path component of J ? at most once. 

Morgan and J.-P. Otal [MO] proved the above theorem under 
an additional geometric hypothesis (cp. [Sk]). And H. Gillet and 
P. B. Shalen [GS] proved it under the additional hypothesis that 
the action has rank equal to 1 or 2 . 

The techniques of J. Stallings [MSI] prove the theorem when 
the R-tree is a simplicial tree. In this case it has the following 
interpretation. The Bass-Serre theory [Se] implies that the action 
on the simplicial tree gives a splitting of nxF, e.g., a free product 
with amalgamation or HNN-extension. And the lamination which 
will be discrete is called a splitting of F . 

1. DEGENERATIONS OF HYPERBOLIC STRUCTURES ON SURFACES 

Let p e 2n = Sf{nxF, lsom(Hn)). Define its length function 
I: nxF —• R by 1(g) = mfxeHnd(x9 p(g)(x)). Now form the 
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projective space & - [0, +oófxF - 0/ ~ . One gets a map 6 : 
3fn —> «^ by sending a representation to its projectivized length 
function. 

Let ^ j f x T - ^ r bean action on an R-tree. Define its length 
function /: nxF —• R by /(g) = mfxeTd(x, #(.*)). A small action 
of fljF is determined by its length function [CM]. The space of 
projective classes of small length functions on trees 5^S^{nxF) is 
the image in 3? of all small actions on R-trees. 

Morgan and Shalen showed that the closure &(&„) is compact 
and that ë p j - &{3fn) is a subset of <92^{n{F). This leads 
to the compactification 3fn . Identify 3n with its image in 3n 

and let 32\ =3n-3Jn. 
Finally given a measured geodesic lamination (J?, ju) it has a 

length function I: nxF —• R, where 1(g) is the transverse measure 
of the geodesic representative of g. Again the measured geodesic 
lamination is determined by its length function [Thl, PH]. The 
space of projective measured geodesic laminations &Jfâ?{F) is 
the image in 30 of all measured geodesic laminations. 

Thurston showed &>Jtë?(F) = d22. By construction d3f2 C 
dS8n ç &3&'{nxF). And the main theorem implies 

Theorem. For all n>2, d2n = SPJf&iF). • 

The above theorem in the cases « = 2 , 3 was first proved by 
Thurston [Th2]. 

2. SMALL ACTIONS OF SURFACE GROUPS ON R-TREES 

The main theorem also has applications to the study of sur­
face group actions on R-trees. From [Ha] or [MS2] &>Jfâ?(F) ç 
&S£9F{nxF). Again by the main theorem 5^2^(71^) ç 
&1&S?(F). The following answers a question of M. Culler and 
J. W. Morgan [CM] in the case the group is nxF . 

Theorem. StSSF^F) = &>Jfâf(F). • 

Since every measured geodesic lamination is approximable by a 
measured discrete geodesic lamination, the above theorem tells us 
that every small action of nxF on an R-tree is approximable by 
a small action on a simplicial tree. It is an open question whether 
every (small) action of a finitely generated group on an R-tree is 
aproximable by a (small) action on a simplicial tree [Sh]. 
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Finally we may deduce two finiteness results. Fix a small ac­
tion nxF x T —• T and the dual measured geodesic lamination 
{3?, / / ) . A vertex of T is a point x , where T - {x} has more 
than two connected components. The vertices of T correspond to 
the connected components of H —S? . An area calculation shows 
the number of orbits of vertices is no greater than -2x(F). 

The rank of the action is the dimension of G 0 Q as a vector 
space over Q, where G is the subgroup of R equal to (1(g)) en F . 
Again referring back to the lamination, one sees that the rank is 
no greater than one plus the dimension of &tö?(F) which is 
- 3 * ( F ) . 

3. SKETCH OF THE PROOF OF THE MAIN THEOREM 

Suppose that n{F x T —> T is dual to a measured geodesic 
lamination. Then the stabilizer of each arc in T is contained 
in the fundamental group of a path component of the lamination 
which is cyclic. 

Now conversely suppose the action has cyclic arc stabilizers. 
The starting point is a theorem of A. Hatcher [Ha] or Morgan 
and Otal [MO]. They prove that there is an action on an R-tree 
n{F xR —• R and an equivariant morphism (j)\ i? —• T, such that 
n{F x R —• R is dual to a measured geodesic lamination (2C, ju) 
on F. 

A morphism from R to T is a map (f>: R —• T, such that for 
each arc [x, y] in R there is an arc [x, z] ç [x,y], such that 
(f>\[x, z] is an isometry. The morphism </> folds at a point x E R 
if there are arcs [x, y] and [x, / ] such that [x, y] n [x, y] = 
{x}; </>|[x,y] and (f>\[x,y'] are embeddings; and (j)([x,y]) = 
<l>([x > yD • A morphism either is a monomorphism or folds at 
some point. Thus it suffices to show that 0 does not fold. 

We will prove the theorem by contradiction. Suppose 0 folds 
at x . Let [x, y] and [x, y] be as in the definition of fold. We 
may suppose x is a vertex. 

Suppose R is a simplicial tree. Then i ? is a discrete geodesic 
lamination and up to rechoosing we may suppose [x, y ] , [x, j / ] 
have infinite cyclic stabilizers (g), (gf), respectively. It is easy 
to see from the geometry of J ? that (g), (g') are conjugate, but 
(g, g') is free of rank two. Therefore the stabilizer of (j)([x, y]) = 
</>([•* 5 / ] ) contains this free group of rank two which is a contra­
diction. 
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Now for R a general R-tree the proof proceeds by studying 
(Jîf, fi) more carefully. An important tool is a train track. A train 
track is a smooth subgraph T o f f , such that the double of each 
component of F - x along its smooth frontier has negative Euler 
characteristic. An important combinatorial property of r is that 
every smoothly immersed curve y in r is determined by the lift 
to H of its initial and terminal points [Thl, PH]. In particular, 
every smoothly immersed loop is nontrivial. Say that a lamination 
is carried by a train track r if there is a map ƒ : F —• F fixed 
on T and homotopic to the identity, such that ƒ composed with 
each smooth curve in J ? is a smooth immersion. Every geodesic 
lamination is carried by a train track [Thl, PH]. 

The second tool is an interval exchange map. Let a be trans­
verse to S? with lift à in S*, such that the image of a in R 
is [x, y] and ju(a) = d(x, y). Fix an orientation and transverse 
orientation on a and let I be an interval of length ju(a). Then 
parallel translation of a along Sf determines an interval exchange 
map A: I —• I. If we identify [x, y] with I, then there are a fi­
nite number of elements gx, . . . e nxF which permute the subarcs 
of [x, y] exactly the same way A permutes the subintervals of I. 
It follows that words of length n in gx, . . . permute the subarcs 
of [x, y] exactly the same way An permutes the subintervals of 
ƒ . 

So corresponding to both [x, y], [x, y] are interval exchange 
maps A, Af respectively. Or equivalently, there are group ele­
ments gx, . . . and g[, . . . which permute subarcs of [x, y] and 
[x, / ] , respectively. Let T carry J ? . Up to passing to a finite 
fold covering and rechoosing [x, y] and [x, )/] we may suppose 
that distinct positive words in gx, . . . , g[, . . . are represented by 
distinct smoothly immersed loops in T . 

Since [x, y] and [x, y'] have identical images in T, we should 
consider the way ^ , . . . , g[, . . . permute the subarcs of 
0([* ? y]) • F° r anY z £ 0([* 5 J7]) ? le t ^ be the set of sequences 
{hx, . . . , hn), such that A,. G {^ , . . . , g[, . . . } and hi o • •. o 
hx\z) € (f)([x, y]), for all / . The set Wn grows exponentially with 
n. 

However, A , ^ ' are defined by finitely many translations. So 
their «-fold compositions are defined by a certain number of trans­
lations which grows polynomially with n. Therefore ^n{z) grows 
polynomially with n. Now one may argue for all but at most 
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countably many z and for large enough n , there are distinct pos­
itive words w , v , u in the elements gl9 ... , g[, ... which agree 
on some subarc of </>([x, y]). By our choice of T the words w , 
v, u represent distinct elements of nxF. Thus w~lv, w~lu 
fix an arc. Finally, by choosing w , v , u carefully the elements 
w~lv ,w~lu will generate a free group of rank two. This is a 
contradiction. 
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