SPLITTINGS OF SURFACES

RICHARD K. SKORA

Let F be a compact 2-manifold without boundary and with Euler characteristic $\chi(F) < 0$. Only for convenience endow F with a fixed hyperbolic structure, i.e., a discrete, faithful representation of the fundamental group $\pi_1 F$ into the space of isometries of hyperbolic 2-space. Teichmüller space, $\mathcal{T}(F)$, is the space of all hyperbolic structures on F divided out by conjugation. W. P. Thurston [Th1] showed that $\mathcal{T}(F)$ admits a compactification as a ball of dimension $-3\chi(F)$. There is a natural identification of the interior of the ball with $\mathcal{T}(F)$ and the boundary of the ball with the space of projective measured geodesic laminations on F (defined below).

J. W. Morgan and P. B. Shalen [MS1, Mo] considered a more general problem. Let Γ be a finitely generated, nonvirtually Abelian group and let $\mathscr{D}_n = \mathscr{D}(\Gamma, \mathrm{Isom}(H^n))$ be the space of discrete, faithful representations of Γ into the group of isometries of hyperbolic n-space divided out by conjugation. They showed that \mathscr{D}_n admits a compactification $\widehat{\mathscr{D}}_n$ where each point of $\widehat{\mathscr{D}}_n - \mathscr{D}_n$ corresponds to a small action of Γ on an **R**-tree. When $\Gamma = \pi_1 F$ and n = 2, they too show that their boundary $\widehat{\mathscr{D}}_n - \mathscr{D}_n$ is homeomorphic to the space of projective measured geodesic laminations on F.

An **R**-tree is a metric space (T, d), such that any two distinct points are joined by a unique arc and every arc is isometric to an interval in **R**. It is understood that if a group acts on an **R**-tree, then it acts by isometries and there is no invariant, proper subtree. An action is *small* if the stabilizer of each arc does not contain a free group of rank two.

The above results motivate studying small actions of Γ on **R**-

Received by the editors June 28, 1989 and, in revised form, December 20, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 30F25; Secondary 32G15, 22E40, 20F32.

Key words and phrases. Surface, hyperbolic structure, lamination, tree.

Supported in part by a SUNY Research Development Grant and by a National Science Foundation Postdoctoral Research Fellowship.

trees. When $\Gamma=\pi_1 F$, we completely characterize small actions and answer a question from [Sh]. Recall that the only small subgroups of $\pi_1 F$ are cyclic groups. Here is our main theorem (definitions follow immediately). It has a generalization for a compact 2-manifold with boundary.

Theorem. Let $\pi_1 F \times T \to T$ be an action on an **R**-tree. Then $\pi_1 F \times T \to T$ is dual to a measured geodesic lamination if and only if the stabilizer of each arc is cyclic.

A geodesic lamination $\mathscr L$ is a closed subset of F, such that each path component is a simple geodesic. A geodesic lamination is discrete if it is a finite union of simple closed geodesics. Say an arc in F is transverse to $\mathscr L$ if its endpoints lie on the complement of $\mathscr L$ and it is transverse locally. A transverse measure μ is a function from the set of transverse arcs to the set $[0, +\infty)$, such that (i) $\mu(\gamma + \gamma') = \mu(\gamma) + \mu(\gamma')$; and (ii) $\mu(\gamma) = \mu(\gamma')$, whenever γ , γ' differ by a 1-parameter family of transverse arcs. One may think of a transverse measure on a discrete geodesic lamination as simply an assignment of weights to each geodesic. The set of measured discrete geodesic laminations is dense in the space of measured geodesic laminations [Th1].

Let $\mathbf{H}^2 \to F$ be the universal covering. Given a measured geodesic lamination (\mathcal{L}, μ) in F its preimage in \mathbf{H}^2 is $(\widetilde{\mathcal{L}}, \widetilde{\mu})$. Say the action $\pi_1 F \times T \to T$ is dual to (\mathcal{L}, μ) if there is an equivariant, locally constant map $p \colon \mathbf{H}^2 - \widetilde{\mathcal{L}} \to T$, such that $\widetilde{\mu}(\gamma) = d(p(\gamma(0)), p(\gamma(1)))$, for every transverse arc $\gamma \colon [0, 1] \to \mathbf{H}^2$ meeting each path component of \mathcal{L} at most once.

Morgan and J.-P. Otal [MO] proved the above theorem under an additional geometric hypothesis (cp. [Sk]). And H. Gillet and P. B. Shalen [GS] proved it under the additional hypothesis that the action has rank equal to 1 or 2.

The techniques of J. Stallings [MS1] prove the theorem when the **R**-tree is a simplicial tree. In this case it has the following interpretation. The Bass-Serre theory [Se] implies that the action on the simplicial tree gives a *splitting* of $\pi_1 F$, e.g., a free product with amalgamation or HNN-extension. And the lamination which will be discrete is called a *splitting* of F.

1. Degenerations of hyperbolic structures on surfaces

Let $\rho \in \mathcal{D}_n = \mathcal{D}(\pi_1 F, \operatorname{Isom}(H^n))$. Define its length function $l \colon \pi_1 F \to \mathbf{R}$ by $l(g) = \inf_{x \in \mathbf{H}^n} d(x, \rho(g)(x))$. Now form the

projective space $\mathscr{P} = [0, +\infty)^{\pi_1 F} - 0/\sim$. One gets a map Θ : $\mathscr{D}_n \to \mathscr{P}$ by sending a representation to its projectivized length function.

Let $\pi_1 F \times T \to T$ be an action on an **R**-tree. Define its length function $l \colon \pi_1 F \to \mathbf{R}$ by $l(g) = \inf_{x \in T} d(x, g(x))$. A small action of $\pi_1 F$ is determined by its length function [CM]. The space of projective classes of small length functions on trees $\mathscr{SLF}(\pi_1 F)$ is the image in $\mathscr P$ of all small actions on **R**-trees.

Morgan and Shalen showed that the closure $\overline{\Theta(\mathscr{D}_n)}$ is compact and that $\overline{\Theta(\mathscr{D}_n)}-\Theta(\mathscr{D}_n)$ is a subset of $\mathscr{SLF}(\pi_1F)$. This leads to the compactification $\widehat{\mathscr{D}}_n$. Identify \mathscr{D}_n with its image in $\widehat{\mathscr{D}}_n$ and let $\partial \mathscr{D}_n = \widehat{\mathscr{D}}_n - \mathscr{D}_n$.

Finally given a measured geodesic lamination (\mathcal{L}, μ) it has a length function $l: \pi_1 F \to R$, where l(g) is the transverse measure of the geodesic representative of g. Again the measured geodesic lamination is determined by its length function [Th1, PH]. The space of projective measured geodesic laminations $\mathcal{PML}(F)$ is the image in \mathcal{P} of all measured geodesic laminations.

Thurston showed $\mathscr{PML}(F) = \partial \mathscr{D}_2$. By construction $\partial \mathscr{D}_2 \subseteq \partial \mathscr{D}_n \subseteq \mathscr{SLF}(\pi_1 F)$. And the main theorem implies

$$\mathscr{SLF}(\pi_1F)\subseteq\mathscr{PML}(F).$$

Theorem. For all $n \ge 2$, $\partial \mathcal{D}_n = \mathcal{PML}(F)$.

The above theorem in the cases n = 2, 3 was first proved by Thurston [Th2].

2. Small actions of surface groups on R-trees

The main theorem also has applications to the study of surface group actions on **R**-trees. From [Ha] or [MS2] $\mathscr{PML}(F) \subseteq \mathscr{SLF}(\pi_1 F)$. Again by the main theorem $\mathscr{SLF}(\pi_1 F) \subseteq \mathscr{PML}(F)$. The following answers a question of M. Culler and J. W. Morgan [CM] in the case the group is $\pi_1 F$.

Theorem.
$$SLF(\pi_1 F) = PML(F)$$
.

Since every measured geodesic lamination is approximable by a measured discrete geodesic lamination, the above theorem tells us that every small action of $\pi_1 F$ on an **R**-tree is approximable by a small action on a simplicial tree. It is an open question whether every (small) action of a finitely generated group on an **R**-tree is approximable by a (small) action on a simplicial tree [Sh].

Finally we may deduce two finiteness results. Fix a small action $\pi_1 F \times T \to T$ and the dual measured geodesic lamination (\mathcal{L}, μ) . A vertex of T is a point x, where $T - \{x\}$ has more than two connected components. The vertices of T correspond to the connected components of $\mathbf{H}^2 - \widetilde{\mathcal{L}}$. An area calculation shows the number of orbits of vertices is no greater than $-2\gamma(F)$.

The rank of the action is the dimension of $G \otimes \mathbf{Q}$ as a vector space over \mathbf{Q} , where G is the subgroup of \mathbf{R} equal to $\langle l(g) \rangle_{g \in \pi_1 F}$. Again referring back to the lamination, one sees that the rank is no greater than one plus the dimension of $\mathscr{PML}(F)$ which is $-3\chi(F)$.

3. Sketch of the proof of the main theorem

Suppose that $\pi_1 F \times T \to T$ is dual to a measured geodesic lamination. Then the stabilizer of each arc in T is contained in the fundamental group of a path component of the lamination which is cyclic.

Now conversely suppose the action has cyclic arc stabilizers. The starting point is a theorem of A. Hatcher [Ha] or Morgan and Otal [MO]. They prove that there is an action on an **R**-tree $\pi_1 F \times R \to R$ and an equivariant morphism $\phi \colon R \to T$, such that $\pi_1 F \times R \to R$ is dual to a measured geodesic lamination (\mathcal{L}, μ) on F.

A morphism from R to T is a map $\phi: R \to T$, such that for each arc [x, y] in R there is an arc $[x, z] \subseteq [x, y]$, such that $\phi|[x, z]$ is an isometry. The morphism ϕ folds at a point $x \in R$ if there are arcs [x, y] and [x, y'] such that $[x, y] \cap [x, y'] = \{x\}$; $\phi|[x, y]$ and $\phi|[x, y']$ are embeddings; and $\phi([x, y]) = \phi([x, y'])$. A morphism either is a monomorphism or folds at some point. Thus it suffices to show that ϕ does not fold.

We will prove the theorem by contradiction. Suppose ϕ folds at x. Let [x, y] and [x, y'] be as in the definition of fold. We may suppose x is a vertex.

Suppose R is a simplicial tree. Then $\mathscr L$ is a discrete geodesic lamination and up to rechoosing we may suppose [x,y], [x,y'] have infinite cyclic stabilizers $\langle g \rangle$, $\langle g' \rangle$, respectively. It is easy to see from the geometry of $\mathscr L$ that $\langle g \rangle$, $\langle g' \rangle$ are conjugate, but $\langle g, g' \rangle$ is free of rank two. Therefore the stabilizer of $\phi([x,y]) = \phi([x,y'])$ contains this free group of rank two which is a contradiction.

Now for R a general R-tree the proof proceeds by studying (\mathcal{L}, μ) more carefully. An important tool is a train track. A train track is a smooth subgraph τ of F, such that the double of each component of $F - \tau$ along its smooth frontier has negative Euler characteristic. An important combinatorial property of τ is that every smoothly immersed curve γ in τ is determined by the lift to \mathbf{H}^2 of its initial and terminal points [Th1, PH]. In particular, every smoothly immersed loop is nontrivial. Say that a lamination is carried by a train track τ if there is a map $f: F \to F$ fixed on τ and homotopic to the identity, such that f composed with each smooth curve in $\mathcal L$ is a smooth immersion. Every geodesic lamination is carried by a train track [Th1, PH].

The second tool is an interval exchange map. Let α be transverse to $\mathscr L$ with lift $\tilde \alpha$ in $\widetilde \mathscr L$, such that the image of $\tilde \alpha$ in R is $[x\,,\,y]$ and $\mu(\alpha)=d(x\,,\,y)$. Fix an orientation and transverse orientation on α and let I be an interval of length $\mu(\alpha)$. Then parallel translation of α along $\mathscr L$ determines an interval exchange map $A\colon I\to I$. If we identify $[x\,,\,y]$ with I, then there are a finite number of elements $g_1\,,\ldots\in\pi_1F$ which permute the subarcs of $[x\,,\,y]$ exactly the same way A permutes the subintervals of I. It follows that words of length n in $g_1\,,\ldots$ permute the subarcs of $[x\,,\,y]$ exactly the same way A^n permutes the subintervals of I.

So corresponding to both [x, y], [x, y'] are interval exchange maps A, A' respectively. Or equivalently, there are group elements g_1, \ldots and g_1', \ldots which permute subarcs of [x, y] and [x, y'], respectively. Let τ carry \mathscr{L} . Up to passing to a finite fold covering and rechoosing [x, y] and [x, y'] we may suppose that distinct positive words in $g_1, \ldots, g_1', \ldots$ are represented by distinct smoothly immersed loops in τ .

Since [x, y] and [x, y'] have identical images in T, we should consider the way $g_1, \ldots, g'_1, \ldots$ permute the subarcs of $\phi([x, y])$. For any $z \in \phi([x, y])$, let \mathscr{C}_n be the set of sequences $\langle h_1, \ldots, h_n \rangle$, such that $h_i \in \{g_1, \ldots, g'_1, \ldots\}$ and $h_i \circ \cdots \circ h_1(z) \in \phi([x, y])$, for all i. The set \mathscr{C}_n grows exponentially with n.

However, A, A' are defined by finitely many translations. So their n-fold compositions are defined by a certain number of translations which grows polynomially with n. Therefore $\mathcal{C}_n(z)$ grows polynomially with n. Now one may argue for all but at most

countably many z and for large enough n, there are distinct positive words w, v, u in the elements $g_1, \ldots, g_1', \ldots$ which agree on some subarc of $\phi([x,y])$. By our choice of τ the words w, v, u represent distinct elements of $\pi_1 F$. Thus $w^{-1}v$, $w^{-1}u$ fix an arc. Finally, by choosing w, v, u carefully the elements $w^{-1}v$, $w^{-1}u$ will generate a free group of rank two. This is a contradiction.

REFERENCES

- [CM] M. Culler and J. W. Morgan, *Group actions on R-trees*, Proc. London Math. Soc. 55 (1987), 571-604.
- [GS] H. Gillet and P. B. Shalen, *Dendrology of groups in low Q-ranks*, J. Differential Geometry (to appear).
- [Ha] A. Hatcher, Measured lamination spaces for surfaces from the topological viewpoint, Topology Appl. 30 (1988), 63-88.
- [Mo] J. W. Morgan, Group actions on trees and the compactification of the spaces of classes of SO(n, 1)-representations, Topology 25 (1986), 1-34.
- [MO] J. W. Morgan and J.-P. Otal, Relative growth rates of closed geodesics on a surface under varying hyperbolic structures, preprint.
- [MS1] J. W. Morgan and P. B. Shalen, Degenerations of hyperbolic structures, I: Valuations, trees and surfaces, Ann. of Math. 120 (1984), 401-476.
- [MS2] ____, Surface groups acting on R-trees, preprint.
- [PH] R.C. Penner and J. L. Harer, Combinatorics of train tracks, preprint.
- [Se] J.-P. Serre, Trees, Springer-Verlag, New York, 1980.
- [Sh] P. B. Shalen, Dendrology of groups: An introduction, in Essays in Group Theory (S. M. Gersten ed.), Mathematical Sciences Research Institute Publications, #8, Springer-Verlag, New York, 1987, pp. 265-319.
- [Sk] R. K. Skora, Geometric actions of surface groups on Λ -trees, Comm. Math. (to appear).
- [Th1] W. P. Thurston, Geometry and topology of 3-manifolds, preprint.
- [Th2] _____, Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, preprint.

Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651

Department of Mathematics, Columbia University, New York, New York 10027