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SPLITTINGS OF SURFACES

RICHARD K. SKORA

Let F be a compact 2-manifold without boundary and with
Euler characteristic y(F) < 0. Only for convenience endow F
with a fixed hyperbolic structure, i.c., a discrete, faithful represen-
tation of the fundamental group #, F into the space of isometries
of hyperbolic 2-space. Teichmiiller space,  (F), is the space of
all hyperbolic structures on F divided out by conjugation. W. P.
Thurston [Th1] showed that . (F) admits a compactification as
a ball of dimension —3x(F). There is a natural identification of
the interior of the ball with .7 (F) and the boundary of the ball
with the space of projective measured geodesic laminations on F
(defined below).

J. W. Morgan and P. B. Shalen [MS1, Mo] considered a more
general problem. Let I' be a finitely generated, nonvirtually Abeli-
an group and let &, = Z (T, Isom(H")) be the space of discrete,
faithful representations of I' into the group of isometries of hy-
perbolic n-space divided out by conjugation. They showed that
<, admits a compactification 9 where each point of 9 -9,
corresponds to a small action of F on an R-tree. When F = an

and n = 2, they too show that their boundary @n —-Y, is homeo-
morphic to the space of projective measured geodesic laminations
on F.

An R-tree is a metric space (7T, d), such that any two distinct
points are joined by a unique arc and every arc is isometric to an
interval in R. It is understood that if a group acts on an R-tree,
then it acts by isometries and there is no invariant, proper subtree.
An action is small if the stabilizer of each arc does not contain a
free group of rank two.

The above results motivate studying small actions of I" on R-
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trees. When I' = n, F, we completely characterize small actions
and answer a question from [Sh]. Recall that the only small sub-
groups of n, F are cyclic groups. Here is our main theorem (defi-
nitions follow immediately). It has a generalization for a compact
2-manifold with boundary.

Theorem. Let n\F x T — T be an action on an R-tree. Then
n,F xT — T is dual to a measured geodesic lamination if and
only if the stabilizer of each arc is cyclic.

A geodesic lamination & is a closed subset of F, such that
each path component is a simple geodesic. A geodesic lamination
is discrete if it is a finite union of simple closed geodesics. Say an
arcin F is transverse to £ if its endpoints lie on the complement
of . and it is transverse locally. A transverse measure u is a
function from the set of transverse arcs to the set [0, +00), such
that (i) u(y+7") = u(») + u(y"); and (i) u(y) = u(y"), whenever
y, 7" differ by a 1-parameter family of transverse arcs. One may
think of a transverse measure on a discrete geodesic lamination
as simply an assignment of weights to each geodesic. The set of
measured discrete geodesic laminations is dense in the space of
measured geodesic laminations [Th1].

Let H> — F be the universal covering. Given a measured
geodesic lamination (&, u) in F its preimage in H’ is (&, Q).
Say the action n,F x T — T is dual to (&, u) if there is an
equivariant, locally constant map p: H - Z - T, such that
i(y) = d(p(y(0)), p(y(1))), for every transverse arc y: [0, 1] —
H? meeting each path component of .# at most once.

Morgan and J.-P. Otal [MO] proved the above theorem under
an additional geometric hypothesis (cp. [Sk]). And H. Gillet and
P. B. Shalen [GS] proved it under the additional hypothesis that
the action has rank equal to 1 or 2.

The techniques of J. Stallings [MS1] prove the theorem when
the R-tree is a simplicial tree. In this case it has the following
interpretation. The Bass—Serre theory [Se] implies that the action
on the simplicial tree gives a splitting of n F, e.g., a free product
with amalgamation or HNN-extension. And the lamination which
will be discrete is called a splitting of F .

1. DEGENERATIONS OF HYPERBOLIC STRUCTURES ON SURFACES

Let p € D, = D (n,F, Isom(H")). Define its length function
l:m,F — R by I(g) = inf, 4. d(x, p(g)(x)). Now form the
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projective space &£ = [0, +oo)”'F — 0/ ~. One gets a map O :
9, — & by sending a representation to its projectivized length
function.

Let n,F x T — T be an action on an R-tree. Define its length
Junction I: n, F — R by /(g) = inf, ., d(x, g(x)). A small action
of m,F is determined by its length function [CM]. The space of
projective classes of small length functions on trees SZF (n F) is
the image in & of all small actions on R-trees.

Morgan and Shalen showed that the closure ©(Z,) is compact

and that ©(Y,) — ©(Z,) is a subset of S2ZF (n F). This leads
to the compactification @\n . Identify &, with its image in Q\n
and let 09, =2, -9, .

Finally given a measured geodesic lamination (%, u) it has a
length function |: m;F — R, where /(g) is the transverse measure
of the geodesic representative of g. Again the measured geodesic
lamination is determined by its length function [Th1, PH]. The
space of projective measured geodesic laminations PHL (F) is
the image in & of all measured geodesic laminations.

Thurston showed #AZ(F) = 0Z,. By construction 0%, C
09, C FZF (n F). And the main theorem implies

SFLF (n F) C PHL(F).
Theorem. Forall n>2, 09, =PH#ZL(F). B

The above theorem in the cases » = 2, 3 was first proved by
Thurston [Th2].

2. SMALL ACTIONS OF SURFACE GROUPS ON R-TREES

The main theorem also has applications to the study of sur-
face group actions on R-trees. From [Ha] or [MS2] 4L (F) C
SZF (nF). Again by the main theorem SZ&F (n F) C
PHZL(F). The following answers a question of M. Culler and
J. W. Morgan [CM] in the case the group is = F .

Theorem. 27 (n F)=PH#ZL(F). R

Since every measured geodesic lamination is approximable by a
measured discrete geodesic lamination, the above theorem tells us
that every small action of 7, F on an R-tree is approximable by
a small action on a simplicial tree. It is an open question whether
every (small) action of a finitely generated group on an R-tree is
aproximable by a (small) action on a simplicial tree [Sh].
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Finally we may deduce two finiteness results. Fix a small ac-
tion 7, F x T — T and the dual measured geodesic lamination
(&, u). A vertex of T is a point x, where T — {x} has more
than two connected components The vertlces of T correspond to
the connected components of H? ,S” An area calculation shows
the number of orbits of vertices is no greater than —2y(F).

The rank of the action is the dimension of G ® Q as a vector
space over Q, where G is the subgroup of R equal to {/(g)) gen F -
Again referring back to the lamination, one sees that the rank is
no greater than one plus the dimension of ZAZ(F) which is
=3x(F).

3. SKETCH OF THE PROOF OF THE MAIN THEOREM

Suppose that n F x T — T is dual to a measured geodesic
lamination. Then the stabilizer of each arc in T is contained
in the fundamental group of a path component of the lamination
which is cyclic.

Now conversely suppose the action has cyclic arc stabilizers.
The starting point is a theorem of A. Hatcher [Ha] or Morgan
and Otal [MO]. They prove that there is an action on an R-tree
n,F x R — R and an equivariant morphism ¢: R — T, such that
n,F x R — R is dual to a measured geodesic lamination (&, u)
on F.

A morphism from R to T isa map ¢: R — T, such that for
each arc [x, y] in R there is an arc [x, z] C [x, y], such that
@|[x, z] is an isometry. The morphism ¢ folds at a point x € R
if there are arcs [x, ¥] and [x, y'] such that [x, y]n[x, )] =
{x}; &|[x,y] and ¢|[x, '] are embeddings; and ¢([x, y]) =
#([x,¥']). A morphism either is a monomorphism or folds at
some point. Thus it suffices to show that ¢ does not fold.

We will prove the theorem by contradiction. Suppose ¢ folds
at x. Let [x, y] and [x, y'] be as in the definition of fold. We
may suppose x is a vertex.

Suppose R is a simplicial tree. Then & is a discrete geodesic
lamination and up to rechoosing we may suppose [x, ¥], [x, ']
have infinite cyclic stabilizers (g), (g’), respectively. It is easy
to see from the geometry of . that (g), (g') are conjugate, but
(g, g') is free of rank two. Therefore the stabilizer of ¢([x, y]) =
é([x, »y']) contains this free group of rank two which is a contra-
diction.
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Now for R a general R-tree the proof proceeds by studying
(£, n) more carefully. An important tool is a train track. A train
track is a smooth subgraph 7 of F, such that the double of each
component of F — 7 along its smooth frontier has negative Euler
characteristic. An important combinatorial property of 7 is that
every smoothly immersed curve y in 7 is determined by the lift
to H? of its initial and terminal points [Th1, PH]. In particular,
every smoothly immersed loop is nontrivial. Say that a lamination
is carried by a train track 7 if there is a map f: F — F fixed
on 7 and homotopic to the identity, such that f composed with
each smooth curve in . is a smooth immersion. Every geodesic
lamination is carried by a train track [Th1, PH].

The second tool is an interxgl exchange map. Let a be trans-
verse to & with lift & in ., such that the image of & in R
is [x, y] and u(a) = d(x, y). Fix an orientation and transverse
orientation on « and let / be an interval of length u(a). Then
parallel translation of o along .# determines an interval exchange
map A: I — I. If we identify [x, y] with I, then there are a fi-
nite number of elements g, , ... € n, F which permute the subarcs
of [x, y] exactly the same way A permutes the subintervals of I.
It follows that words of length n in g, ... permute the subarcs
of [x, y] exactly the same way A" permutes the subintervals of
I.

So corresponding to both [x, ¥], [x, y'] are interval exchange
maps A, A’ respectively. Or equivalently, there are group ele-
ments g,, ... and g{ , ... which permute subarcs of [x, y] and
[x, y'], respectively. Let 7 carry .. Up to passing to a finite
fold covering and rechoosing [x, ¥] and [x, y'] we may suppose
that distinct positive words in g, ..., g{ , ... are represented by
distinct smoothly immersed loops in 7.

Since [x, y] and [x, '] have identical images in T , we should
consider the way g,..., g{ , ... permute the subarcs of
#([x, y]). Forany z € ¢([x, y]), let &, be the set of sequences
(hy,..., h,), such that h, € {g,..., g{, ...} and A 0.0
h,(z) € ¢([x, ¥1), for all i. The set &, grows exponentially with
n.

However, 4, A' are defined by finitely many translations. So
their n-fold compositions are defined by a certain number of trans-
lations which grows polynomially with n . Therefore % (z) grows
polynomially with n. Now one may argue for all but at most
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countably many z and for large enough 7, there are distinct pos-
itive words w, v, u inthe elements g, ..., g{ , ... which agree
on some subarc of ¢([x, y]). By our choice of 7 the words w,
v, u represent distinct elements of #, F. Thus w v, wlu
fix an arc. Finally, by choosing w, v, u carefully the elements
w™ v, w™'u will generate a free group of rank two. This is a
contradiction.
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