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The statistical theory of stationary sequences (or time series) and ran­
dom fields has acquired such a vast literature over the last thirty years that 
finding one's way through its various ramifications is no easy task. This 
elegantly produced monograph by one of our most distinguished experts 
on stationary stochastic processes consists of a selection of topics on the 
frontiers of current research in this field. A great deal of the material is 
based on the author's own work or a direct development of it. 

The point of departure for all statistical work in time series is the 
Kolmogorov-Wiener theory which provides the mathematical foundations. 
A brief background of the latter will be helpful to the nonspecialist in un­
derstanding and appreciating the more modern developments. 

The mathematical background. The setting of the linear prediction prob­
lem for stationary sequences in a Hubert space context is due to Kol-
mogorov [6]. This can be seen for any second order process even without 
the stationarity assumption. A second order process x = (xt) is a family 
of real or complex-valued random variables xt(co) defined on a probability 
space (Cl,^,^) such that E\xt\

2 < oo for each t. (The symbol E stands 
for integration with respect to the measure P(dco).) It is convenient to 
assume Ext = 0. The index set over which t varies is either Z or R. In 
the former, discrete time case, one speaks of a sequence. If t e R, (xt) is 
assumed to be L2-continuous in t. The terms sequence and process will be 
used interchangeably in this review. 

Each xt can be regarded as an element of the real (or complex) Hubert 
space L2 = L 2 ( î î , ^ , ^ ) , with inner product (w, v) = E(uv). For purposes 
of linear prediction, the "history" of the process is given by the family 
of Hubert spaces H(x;t) := closed linear subspace of L2 generated by 
{xs,s < t}. H(x\ -oo) = f]t H(X; t) is called the remote past of x, H(x; t), 
the past and present up to t and H(x\oo) := VtH(x;t), the history of x. 
The problem is to obtain the optimal (i.e., least squares) predictor xu\t of 
a future state xtx given {xs,s < t}, (t\ > t). Since the optimality criterion 
requires that the prediction error \\xt{ - xtx\t\\ = mîueH{x,t) II**, - w|| the 
solution is given by the orthogonal projection xt{\t = Pro}H^x.^xtl which 
satisfies the equation 

(1) (xtx\t>Xs) = {xtl,xs), for all s <t. 

Prediction theory, therefore, is concerned with the finding of com­
putable algorithms for the predictor and a computable formula for the 
error. 

(xt) is called a (weakly) stationary sequence, if t e Z (a stationary pro­
cess if t G R) and the covariance function E(xtxs) = rt-s. In the discrete 
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time case, 
rt= [* eitXdF(X) 

J — 71 

and in the continuous time case, 

/

oo 
eMdF{X) 

-oo 

where F is called the spectral distribution function of x. These results, 
the first due to Herglotz and the second due to Bochner, Khinchin and 
Wiener, were already in existence before the work on prediction theory. 

In 1938, applying the newly emerging theory of stochastic processes to 
time series analysis, H. Wold obtained a decomposition of a stationary se­
quence, now bearing his name. It was left to Kolmogorov to exploit the full 
significance of these developments. In his famous, beautiful 1941 paper, 
[6], he gave a formulation of the theory in terms of the geometry of Hubert 
space and made the Wold decomposition the basis for a deeper analysis of 
x itself. The process x is called regular or purely nondeterministic (PND) 
if H(x\ -oo) = 0, it is singular or deterministic if H(x; -oo) = H(x). 

Wold decomposition. If H(x;-oo) ^ H(x)9 then (xt) has the unique 
decomposition 

(2) xt = x\ + x[' 

where (x't) is PND, (x") is deterministic and the Hubert subspaces H(x') 
and H{x") are mutually orthogonal. 

It was shown in [6] that the sequence (xt) is PND iff its spectral distribu­
tion is absolutely continuous and the spectral density satisfies the condition 

/ " 
J—j 

log ƒ"(A) d'À > -oo 

(Paley-Wiener criterion for the discrete time case). Kolmogorov also ob­
tained an H2-factorization of the spectral density f{X) — \y/(e~a)\2 where 
y/ is an outer function in Beurling's terminology. The process (xt) has a 
one-sided moving average representation 

oo 

(3) xt = J2 CJ&~J (EZA = Sj-k) 
j=0 

where the coefficients Cj are those of the function 
oo 

(4) y,(z) = J2cjzj-
7=0 

The expression for the optimal predictor can be immediately written down 
from (3) and (4). The one-step prediction error is given by the Szegö 
formula 

\\xt+\ -*H-i|f||2 = 27rexp|— ƒ \ogf(X)dx\. 
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Wiener, working independently and somewhat later than Kolmogorov, 
mostly considered continuous parameter stationary processes [9]. He re­
duced the prediction problem to the solution of a " Wiener-Hopf' equation 
of which equation ( 1 ) is a prototype. His treatment even for this case was 
not as thorough as Kolmogorov's for the discrete time problem. Wiener 
himself gave only passing attention to stationary sequences or to time do­
main questions. (See, however, Masani's comments in [7].) 

Kolmogorov's discussion of the prediction theory for one-dimensional 
stationary sequences was so complete that attempts to generalize it to 
the vector valued situation have enriched harmonic analysis, influencing 
among other areas, the theory of matrix-valued Hp functions and their fac­
torization. A corresponding development of spectral theory for stationary 
random fields is very much the concern of present-day research. 

Time domain analysis. The analysis of the Wold decomposition given 
in [6] can easily be identified as a special case of the more general and 
abstract form discovered by Halmos twenty years after the appearance of 
Kolmogorov's paper [3]. Let V be an isometry on a separable Hubert space 
%*. Then %f has the decomposition 

oo 

(5) / = / o o © ^ e K y ) 
k=\ 

where R = V{&). The spaces Vk{R^) and V^R1-) (k / j) are mutually 
orthogonal and the restriction of V to ̂ So is unitary. The Wold decomposi­
tion can be written in the form (5) if we make the following identifications: 
%* = H(x, 0), V = the restriction of C/_1 to H(x, 0) where U is the unitary 
operator associated with (xt): Uxt - xt+\9 R1^ = H(x;0) Q H(x;-l) (the 
"innovation" subspace) and ̂ So = H(x; -oo). 

Extensions of the decomposition (5) to more general processes and its 
relevance to the invariant subspace problem is yet another link, now well 
understood, between prediction theory and harmonic analysis. 

The development of a nonlinear or nonstationary theory of prediction, 
interpolation and filtering has, not surprisingly, concentrated on the time 
domain approach. (See Cramer [1] for the beginnings of a spectral the­
ory of nonstationary harmonizable processes and also the recent book of 
Priestley [8].) 

The theory of representing a second order PND process (xt) in terms 
of innovation processes in the discrete parameter case (or differential in­
novation processes in the continuous parameter case) is due to Hida and 
Cramer [1, 4]. The best linear predictor can be directly obtained from 
such a representation. 

The modern nonlinear theory essentially views the processes as stochas­
tic dynamical systems and formulates the problem in terms of stochastic 
differential equations. Hubert space techniques are inappropriate and have 
to be replaced by structural assumptions of a different sort. (See the article 
by Kallianpur in [5].) 
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Statistical analysis. Some general comments might be in order pertain­
ing to the statistical problems treated in this book. An estimate of an un­
known parameter 6 appearing in the distribution of the process in question, 
is any measurable function TN(X\,..., XN) of the observations X\,..., x^. 
{TN} is a consistent estimator of 8 if TN —• 6 in probability (or almost 
surely) as TV —• oo. Among consistent estimators, a further desirable prop­
erty is that ÜN[TM - 9] have a limiting distribution G (usually Gaussian) 
as N —• oo, for suitable norming constants UN —> oo. Both these properties 
are of an asymptotic character. There are other properties for fixed sample 
size: The estimate TN is unbiased if, for each N, ETN = 0. Among all 
unbiased estimates, one might look for one whose variance is smallest, i.e., 
for which E(TN - 8)2 is a minimum. In most statistical problems in time 
series it is the asymptotic properties that are within our reach. 

From the point of view of applications, the solution of the prediction 
problem (the same is true of filtering and interpolation, not discussed here) 
provided by the Kolmogorov-Wiener theory cannot be used since, in prac­
tice, the spectral density (and so also the covariance function) is unknown 
and has to be estimated from the data. The estimation problems connected 
with the spectral density may be posed at three different levels: 

(a) The functional form of the density ƒ (A, 0) is known but depends on 
a finite number of real parameters 0 = (öi,...,ö^). An important class 
of processes that falls under this heading is the ARMA (autoregressive 
moving average) model. 

(b) Estimation of ƒ (A) at a particular frequency L 
(c) Estimation of the function ƒ(•). This is an example where the pa­

rameter is infinite dimensional and is not treated in the book. 
The main difference in technique with similar problems in other areas 

of statistics is the difficulty caused by the fact that the observations are not 
stochastically independent but are data coming from a stationary sequence. 
Two assumptions that are most often made to deal with this difficulty (in 
addition, of course, to other assumptions having to do with smoothness 
or the existence of moments) are strict stationarity and the strong mixing 
condition: The process (xt) is strictly stationary if the joint distribution of 
every arbitrary vector (xtl,...,xtk) is invariant under time shifts. 

A strictly stationary process (xt) is strongly mixing if the following con­
dition holds: Let 38n be the c-field generated by \x^k < n) and ^ , the 
cr-field generated by {Xk,k > n). Then 

sup \P(B n F) - P(B)P(F)\ = a(n) -> 0 as n -+ oo. 

The strong mixing condition essentially says that the dependence of the 
sequence is short range, that is, the past and future of (xt) are asymp­
totically independent. It was introduced by Rosenblatt in 1956 and has 
proved indispensable for establishing convergence to a Gaussian distribu­
tion. It is used in the book to derive the asymptotic normality of a large 
class of spectral density estimates in Problem (b). An important example 
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of the latter is the smoothed periodogram 

/NW= f WN{n-k)IN{k)dX 
J — n 

where the periodogram 

and Wf N 

is a sequence of suitably chosen weight functions. 

Problem (a). Linear processes and ARMA models. A PND stationary 
sequence has the representation 

oo oo 

xt= Yl aJ^-j where Yl N 2 < °° 
j=—oo j= — oo 

and (&) is a white noise, i.e. (&,&) = St-S. (xt) having the above repre­
sentation is a linear process if ay is real and the (&) are real, independent, 
identically distributed random variables with E£t = 0 and EÇf = 1. The 
analysis of such processes throws light on the general theory. A widely 
studied example of a linear process is the ARMA model. A process (xt) is 
ARMA of order (k, I) if it satisfies a relation 

k I 

p=0 q=0 

«o>A) î 0, where (£,) are independent, identically distributed random 
variables with E£t = 0, EÇf = a2 > 0. The spectral density of (xt) has the 
form 

™ - Tn 
a(e~lÀ) 

\ft{e-*)\ 
where a(z) = E^=o^ z ^ a n d ^(z) = Ep=o^ZjP- T h e ARMA process 
is thus a finite parameter model mentioned in (a). The parameters (aq) 
and (ftp) are estimated using a modified maximum likelihood method. 
Consistency and asymptotic normality are also established. 

Non-Gaussian linear processes, i.e., where (&) are non-Gaussian exhibit, 
in some respects, a strikingly different behavior from the Gaussian linear 
processes. They are studied in connection with the deconvolution problem, 
the determination of the sequence (&) from the (xt). 

Probability density and regression estimates are considered in a sepa­
rate chapter. The work of Brillinger and Rosenblatt on cumulant spectral 
estimates is presented in detail in Chapter VI. 

The core of the book has to do with the large sample theory of covari-
ance, spectral and cumulant spectral estimates. The limiting distributions 
are normal when the stationary process in question satisfies a strong mix­
ing condition. This situation covers a wide class of processes met with 
in practice. However, recent research has uncovered exotic non-Gaussian 
limiting distributions for a large class of stationary processes exhibiting 
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long range dependence. One example (possibly the first such) due to Pro­
fessor Rosenblatt himself is described in Chapter II. More recent work in 
this direction, by him, by Dobrushin and Major and others is briefly al­
luded to in one of the problems at the end of the chapter. One wishes that 
this exciting work were given more prominence and space in the book. 

Random fields. Let n = (ni,...,nk) e Zk, k > 2. A real or complex-
valued stochastic process or sequence (xn) parametrized by the lattice 
points n is called a k-parameter weakly stationary random field if Exn = a 
and Cov(xn9xm) = E(xn - a)(xm - a) = rn-m depending only on the dif­
ference n - m. 

Many of the above problems—ARMA models, strong mixing, parameter 
estimation, spectral density estimation, etc., are also considered for ran­
dom fields. Though random fields form a part of the title of the book, the 
author has chosen not to treat it as a separate topic. Problems on random 
fields are scattered in several sections spread over five chapters, and I am 
not sure that this diffusion does justice to this important area. The spec­
tral theory for Helson and Lowdenslager's prediction for the half-plane 
is carried out in some detail in Chapter VIII (though without complete 
proofs). 

Since spectral techniques and harmonic analysis are the basic analyti­
cal tools of the book, it is understandable that so little space is devoted to 
time-domain related questions. A discussion of the time-domain approach 
would have been particularly appropriate for random fields since the rel­
evant spectral theory parallels the definitions one chooses for "past" and 
"future" (e.g., the half-plane or quarter plane prediction problem). 

The section on the Kalman-Bucy filter is too brief and stands in isola­
tion in Chapter II. Here too, an important feature that distinguishes it and 
nonlinear filtering theory generally from the prediction (or filtering) theory 
of stationary sequences is the dynamical or time-domain formulation that 
is essential to the former. Stationarity is neither assumed nor available in 
general, so spectral techniques cannot be used. Harmonic analysis gives 
way to (stochastic) differential or difference equations which furnish re­
cursive filters or estimates. Some comments on these points would have 
made this section serve as a bridge to other vistas of the subject. 

As the author indicates in the preface, the book may be used either 
as a text for a one-semester course for advanced undergraduate students 
or as a springboard for seminars for research students. In my opinion, 
it is ideally suited for the latter purpose: the presentation, perfect for 
use in seminars, focuses directly on the problem under consideration with 
a minimum of digression. The problems and notes at the end of each 
chapter provide illuminating information on further developments and 
related research. Many of the proofs are presented in an informal manner, 
possibly, in order to avoid cluttering up the book with tedious details. The 
latter will have to be filled in by the student who might also have to be on 
his guard against the deceptive simplicity with which some of the deeper 
ideas are introduced. Though the book is formally self-contained, the 
introductory material is given in a highly condensed form and students 
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new to the field will derive full benefit from it after they have had a course 
that takes them in a leisurely fashion through the more traditional parts 
of the subject. Alternatively, they may supplement Chapter I by studying 
the basic material given in Chapter 2 of the author's earlier book with 
U. Grenander [2]. 

I cannot conclude this review without referring to a novel and pleasing 
feature of the book—the fairly detailed and interesting discussion of tur­
bulence, a topic in which the author has been interested for many years. As 
far as I am aware, this is the first book (in English) on stationary processes 
to include a treatment of this problem. 
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The fundamental theorem of combinatorial group theory is that a sub­
group of a free group is free. In contrast, subalgebras of free (associative) 
algebras are not well understood, and at the moment defy classification. 
This is not too surprising: in going from group theory to ring theory the 
translation of "subgroup" is (one-sided) "ideal." Thus the correct, and 
fundamental, theorem is that one-sided ideals of free algebras are free sub-
modules. This is a consequence of a "weak algorithm" that holds in the 


