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Since the introduction of pseudodifferential operators (psdo) in the 
foundational papers by J. Bokobza and A. Unterberger [BU] and by J. J. 
Kohn and L. Nirenberg [KN] more than 20 years ago, the psdo proved to 
be a powerful tool in the analysis of partial differential operators (pdo) on 
compact smooth manifolds and euclidean spaces. 

Recently much of attention has been shifted to pdo on noncompact 
manifolds (cf. [CGT, D3, M, P, R, S]). It is conspicuous however how 
little the psdo have been used in this context (cf. [E]), possibly because a 
necessary global symbolic calculus is still in its development. The Cordes 
book presents a principal calculus of such sort in a C*-algebras framework. 

One of two historical sources of psdo was the theory of boundary value 
problems for elliptic equations (another was quantization). It was con­
cerned with classical potential representations of their solutions. The po­
tential densities satisfy singular integral equations on the boundary, and a 
general technique (proposed by G. Giraux in 1934) was a reduction to reg­
ular Fredholm integral equations. In 1936 S. G. Mikhlin found a key for 
such regularization, introducing the (principal) symbol of singular integral 
operators (sio). Actually he worked with sio on the plane, but his sym­
bol construction was immediately extended by G. Giraux to any euclidean 
space. The construction was based on a rather heavy decomposition of the 
sio into multiple power series A; = (-A)l/2d/dXj of Riesz operators. In 
the 1950s A. Caldéron and A. Zygmund discovered a much more flexible 
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Fourier transform characterization of sio and their symbols. Of equal im­
portance was the factorization of pdo as S(-A)m/2 where S is an sio (cf. 
[CZ]). The power of it was immediately demonstrated by the famous pa­
per by Caldéron [Cl] on the uniqueness of the Cauchy problem for elliptic 
equations. A next natural step was to investigate the algebra generated 
by S(-A)m/2 (with arbitrary sio S and m) and derive its principal sym­
bolic calculus. This has been done in [Dl] with the explicit purpose of 
providing more homotopy freedom for elliptic boundary problems forti­
fying singificantly the I. Gelfand strategy to evaluate their indices. Soon 
J. Bokobza and A. Unterberger [BU], J. J. Kohn and L. Nirenberg [KN] 
and immediately L. Hörmander [H] refined the symbolic calculus of (clas­
sical) psdo, in particular for study of degenerate boundary value problems. 
Simultaneously a relationship with H. Weyl quantization showed that the 
correspondence of psdo to refined symbols is not unique. On the other 
hand, I. Gohberg [G] had already discovered the intrinsic nature of the 
principal symbol: it is the Gelfand transform of the quotient C* -algebra 
*F0 generated by the classical zero order psdo on Rn modulo its commu­
tator. Actually he assumed that the generators are the Riesz operators 
and multipliers with compactly supported continuous functions. Then the 
commutator ideal E coincides with the ideal K of all compact operators on 
L2(Rn). This is also true for C*-algebras ^o(^) generated by compactly 
supported psdo on smooth manifolds Q. The traditional construction of 
psdo on manifolds is based on their pseudolocalization to the psdo on co­
ordinate charts. It is rather awkward for global considerations unless the 
psdo can be approximated with compactly supported operators. In par­
ticular the Fredholm properties are difficult to verify. However a global 
study is possible for the comparison C* -algebras. This concept of Cordes 
has been a subject of his work and the work of his collaborators and stu­
dents for more than 20 years. The book is a fair account of their research. 
A comparison C*-algebra A on L2{£l,djLi) (where dju is a smooth positive 
measure on a noncompact manifold Q) is generated by smooth multipliers 
and generalized Riesz operators. The multipliers belong to a class A* of 
smooth bounded functions on Q,. The generalized Riesz operators are of 
the form DA where A = ( - / / ) l / 2 is the Friedrichs extension of a fixed 
selfadjoint second order elliptic differential operator > 0 (usually > 1) 
and D belongs to a class D# of vector fields on Q. A basic example of H 
is the Laplacian on a Riemannian Q. In this case A is called a Laplace 
comparison algebra. An order m pdo P is said to be within the reach of 
A if P = SAm where S is in the comparison algebra. Under general as­
sumptions A contains the ideal K of all compact operators on L2(Q,dju), 
and Hs = AsL2(Q,d/i) form a Sobolev scale, so that Fredholm proper­
ties of A on Hs are equivalent to Fredholm properties of S in A. The 
Gelfand space M of the quotient of A modulo its commutator E contains 
the Gelfand space Mo of the ideal ^o/K which is homeomorphic to the 
cosphere bundle S*Q. The space is called the symbol space and its com­
plement M - MQ is the secondary symbol space. The latter is an origin of 
the essential spectrum of elliptic pde within the reach of the algebra. The 
book describes a variety of examples of the secondary symbol spaces. 
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Another theme is the case when E ^ K, but E/K = C(N,K(h)), the 
C*-algebra of continuous functions on N with values in compact oper­
ators on a Hubert space h, and N is the symbol space of a comparison 
algebra. The i£(A)-valued functions are the is-symbols; they can be ex­
tended to L(/z)-valued symbols on A. An important example is the Laplace 
comparison algebra on complete manifolds with finite number of cylin­
drical ends. In general there are many nonclassical situations (e.g. on 
noncompact manifolds or manifolds with singularities) when the commu­
tator ideal E of natural C* -algebras of sio is larger than the ideal K of 
compact operators, but there exists a finite composition series of ideals 
O = J-\ <Jo = K<-<Jr = A such that the subquotient Jj/Jj+i are 
continuous trace C* -algebras with finite-dimensional Hausdorff spectra X,. 
Such algebras are called solvable and in somewhat less generality have been 
introduced with many examples in the paper [D2] of 1978. 

There is a Fredholm and index hierarchy in solvable C*-algebras which 
converts inversion of sio modulo ideals Jj into a successive inversion of 
Riesz-Shauder operator families (cf. [D2]). A solvable C*-algebra of sio 
(with r = 2) was considered by H. Cordes [C2] already in 1969. Recently 
it was shown (cf. [D3]) that controlled classical sio generate solvable C*-
algebras on an extensive class of Riemannian manifolds with stratified 
Thorn compactifications. 

The Cordes book provides a timely introduction to the rapidly develop­
ing field. 
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One of the most fascinating aspects of number theory and arithmetic 
algebraic geometry is the deep and mysterious connection between arith­
metic and analysis. One example of this is the formula for the residue of 
the zeta function of a number field F, 

(1) hm(5 - \)CF(S) = J — 
•*->! wVd 

where r\ (resp. ri) is the number of real (resp. complex) embeddings of F, 
h is the class number of F, R is the regulator (a determinant of logarithms 
of global units) of F, w is the number of roots of unity in F, and d is the 
discriminant of F. 

Another, more modern example deals with elliptic curves. If E is an 
elliptic curve defined over a number field F (i.e., E is a curve defined by 
an equation y2 = x3 - ax - b with a,b e F and 4a3 - 27 b2 ^ 0), then E has 
an L-function and various arithmetic invariants. The fundamental object 
of arithmetic interest is the set E(F) of points on E with coordinates in 
F\ E(F) has a natural abelian group structure and by the Mordell-Weil 
theorem this group is finitely generated. The L-function is defined by an 
Euler product over primes p of F, 

L(E,s) = l[Lp(Np-s) 
p 

where LP(T) is a polynomial in T of degree at most 2, whose coefficients 
depend on the reduction of E modulo p. The conjecture of Birch and 
Swinnerton-Dyer states that 

(2) rankz E(F) = orcUi L(E, s) 

and further, if we denote this common value by r, the conjecture expresses 
lim5_+i(s - l)~rL(E,s) in terms of other invariants of E, with a formula 
analogous to (1). 


