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Class field theory, by Jürgen Neukirch, Grundlehren der Mathematischen 
Wissenschaften, vol. 280, Springer-Verlag, Berlin, Heidelberg, New 
York, and Tokyo, 1986, $29.50. ISBN 0-387-15251-2 

Local class field theory, by Kenkichi Iwasawa. Oxford Mathematical Mono­
graphs, Oxford University Press, New York and Clarendon Press, Ox­
ford, 1986, viii + 155 pp., $39.95. ISBN 0-19-504030-9 

Nowadays class field theory is mostly thought of as the theory which 
describes (more or less explicitly) the maximal abelian Galois extension of 
a local or global field K and which describes, again rather explicitly, the 
corresponding Galois group GsH(Kab/K) and its quotients GSL\(L/K),L/K 
abelian, preferably (and usually) in terms of some 'norm subgroups.' Here 
a local field is usually taken to be a finite algebraic extension of the field of 
/?-adic integers Q^, or the field of Laurent series ¥P((T)) over a finite field, 
and a global field is a finite extension of the rationals Q or of the field of 
rational functions ¥P(T) over a finite field Fp. 

It should be noted though, that there are more general local fields over 
which a class field theory can be developed, in particular complete, dis­
cretely valued fields with algebraically closed residue field [9], or, more 
generally, with perfect residue field [3]. And, much more importantly—in 
my opinion—, there is the algebraic AT-theory based class field theory of 
Kato and Parshin [6, 7, 8] for finitely generated fields over their prime field 
(and schemes of finite type over Z). However, these last named topics are 
not touched upon in the two books under review so I will not say much 
more about them. 

The "definition" of class field theory given above is quite far removed 
from its origin—class field theory is one of those subjects which has gone 
through many "revolutions," generalizations, and changes of point of view; 
some 7 in my personal count and way of looking at it—and the description 
given does not give much of a clue to the origin of the word 'class field.' 
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Let us therefore backtrack a little bit, using [1] as a guide. An early 
concern is with polynomials ƒ (X) over the integers 

f(X) = a0X
m + a{X

m-l + ... + am 

a§am ^ 0, m > 1. The prime p splits the polynomial (or f{X) splits mod­
ulo p) if p does not divide a0 and there are m different roots 
to the equation (congruence) f(X) = 0 mod p. A set of primes P splits a 
polynomial /(X) if, with finitely many exceptions, all p e P split f(X), 
and it splits a field K when the defining polynomial of some generator a of 
K over Q is split by P. A class field for a set of primes is then (if it exists) 
a maximal normal field over Q that is split by P such that, vice versa, P is 
maximal (with finitely many exceptions) for K. Consider for instance the 
quadratic forms 

( X2-(d/4)Y2 ifd = 0 mod 4, 
F<{X'Y)=\X>-XY-^Y> ifrfssl mod 4. 

And consider the equations (to be solved in integers, X, Y, Z,p;p a prime; 
(p9XY) = (Z,2d) = 1) and set (keeping the notation of [1]), 

Px = {p: Zp = Fd{X, Y) is solvable} 
P2 = {p: Z2p = Fd(X, Y) is solvable} 
p4 = {p:p = Fd(X, Y) is solvable} 

then the class fields of P\,Pi,PA do exist and are known respectively as the 
splitting field of Fd (which is Q(\/d)), the genus ring class field of Fd and 
the ring class field of Fd. The various quadratic reciprocity theorems (of 
Gauss and Jacobi) relate—among other things—also to such questions. 

Subsequently, greatly stimulated by the Fermât problem, interest (also) 
focussed on the, clearly related, matter of unique factorization in (the ring 
of integers AK of) a finite extension K of Q. The ring AK is defined as 
the ring of all a e K which satisfy a monic equation an + a\an~l -\ h 
an = 0 with at E Z. There is unique factorization (of ideals) in terms of 
prime ideals—this is where the term ideal comes from: it is short for ideal 
number—and thus the question arises how large an extension L of K to 
take such that all prime ideals of K become principal in L, i.e. such that 
pAL = (/?) for a suitable 0 e AL, and related to this, the question arises 
how a prime ideal of K can split in an extension L, i.e. how pAL factorizes 
in terms of the prime ideals of L. In the case of the Fermât problem the 
relevant field K is the cyclotomic field Q(£«) where £„ is a primitive «th 
root of unity: Ç» = 1 and <J# / 1 for d < n. This led (Hubert) to the 
notion of an (absolute) class field KH for K. The ideal class group CK of 
K is by definition the group of all ideals of K modulo the principal ideals 
of K. (A (fractional) ideal of AT is a finitely generated AK submodule of 
K\ the submodules aAK, a G AT are the principal (fractional) ideals.) The 
class number of K is the cardinality of C#. The—it should be unique— 
class field KH of K should be an abelian extension of K, with Galois group 
CK such that KH/K is unramified i.e. (neglecting infinite primes) if every 
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prime ideal p of K factorizes as qi • q̂  for different prime ideals qi • • • q# 
of KH, and such that if ƒ is the smallest integer such that p^ is principal 
in K then p decomposes as qi • • • qg in KH with NKH/H(qt) = pf,fg = n. 
Existence and uniqueness of such a class field was proved by Furtwàngler. 
The Hubert class field KH has the property that every ideal a of K becomes 
principal in KH (the principal ideal theorem). Subsequently the idea of a 
class group was generalized to that of a ray class group (Weber, Takagi) and 
that made every finite abelian Galois extension a (generalized) class field 
and brings us back to the beginning of this preamble, namely the definition 
of class field theory as the construction of maximal abelian extensions of 
fields and the description of the corresponding (topological) Galois group. 

Let us now first take up the subject of Iwasawa's beautiful book, the 
case of a local field with finite residue class field, i.e. the case of a finite 
extension K of Q^ or FP((T)). In this case the ring of integers AK is a 
principal ideal ring with principal maximal ideal m̂  = (n^) and group of 
units UK = AK\WK> There is a valuation vK on K defined by uK(x) = m, 
if x = 71% u, u e UK, VK(0) = oo; the valuation defines a topology (and 
a norm): the m^, m = 1,2,... form a system of open neighborhoods of 
0. It turns out that the Galois group of the maximal abelian extension is 
isomorphic to UK X Z, where Z = limZ/(«) is the profinite completion 
of the integers. More precisely let L/K be a finite abelian extension, then 
there is a canonical (and functorial in a suitable sense) isomorphism 

K*/NL/KL* -^ Gal(L/tf) 

where K* = AT\{0} and NL/K : L* —• K* is the norm map. 

NL,K{P) = n °w) 
aeGa\(L/K) 

and these reciprocity isomorphisms combine to define an isomorphism 

UK x Z = K* -^ Gdil(Kab/K) 

where K* is the completion of the group K* with respect to the topology of 
closed subgroups of finite index in K* (where a closed subgroup is defined 
via the topology inherited from the topology defined by the valuation on 
K). Implicit in this statement is the fact that the subgroups of K* which 
arise as a norm subgroup are precisely the closed subgroups of finite index 
(the existence theorem and traditionally one of the harder parts of a class 
field theory). The canonical maps K* —• GdX(L/K) giving the isomorphism 
are known as reciprocity maps or norm residue symbols because of their 
relations with Gauss, Jacobi, Legendre, Hubert, and Artin reciprocity and 
norm residue symbols. 

In Iwasawa's elegant treatment of all this (and more) the rather ex­
plicit construction of the maximal abelian extension by Lubin and Tate is 
most important, as it is in several other approaches including the one in 
Neukirch's book. Possibly the fastest way to describe the maximal abelian 
extension is as follows. Choose a TIK G m# such that (UK) — m#. Let q 
be the number of elements of the residue field AK/XÜK = k. Consider the 
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polynomial 
f(X) = nKX + X«. 

Let fm\X) be the «th iterate of f(X), i.e. f{l)(X) = f(X) and flm\X) 
= Rf{m~x){X)). Now let Wm be the set of all roots of fm\X) (in some 
algebraic closure of K). Let Lm be the field K{Wm). Then Lm/K is a 
totally ramified abelian extension with Galois group UK/U^ where 

U% = {ueUK:u=\ mod nf}. 

Given the right point of view, which is that ƒ(X) is in fact an endomor-
phism of a formal group over AK, these facts are rather easy to prove. 
Much harder is then to show that NL/K ULm = Ug which can be done in 
a variety of ways and it is here that—in my opinion—there are the most 
essential differences between the various treatments. 

These formal groups, which are formal groups with maximally large 
endomorphism groups, are the analogues of elliptic curves with complex 
multiplication in the case of global class field theory of imaginary quadratic 
fields and thus the Lubin-Tate theory becomes very analogous to the Kron-
ecker-Weber and Weber-Takagi theorems concerning abelian extensions of 
Q and of imaginary quadratic fields respectively. Together with a maximal 
unramified extension Knr of K the Lm generate Kab, i.e. (Um Lm)Knr — 
Kab. Once one has sorted out the dependence on n of the Lm there also 
result, modulo a lot of additional work, 'explicit' formulas for the residue 
maps due to Wiles, Coleman, de Shalit, and others, which are important 
in a number of applications [2, 10]. This is the topic of the last chapter 
of Iwasawa's book. It concludes with appendices on Galois cohomology; 
the Brauer group of a local field, essential to the cohomological approach 
to local class field theory, and an outline of part of HazewinkeFs approach 
[4], to local class field theory. The latter method was the basis of a previous 
treatment by Iwasawa of local class field theory [5] of which this book is a 
really completely rewritten and reworked version. 

Now let us turn to the second book under review, by Jürgen Neukrich. 
He adds yet another layer of abstractness to the already towering tower of 
abstract layers of class field theory. That sounds like bad news. But the 
result is such an elegant unified presentation of both local and global class 
field theory (but excluding as far as is known—this is certainly something 
which merits investigation—the class field theories for generalized local 
fields and the algebraic A -̂theory based Parshin-Kato class field theory, I 
mentioned at the beginning), that I am greatly inclined to count this as 
one of my seven 'revolutions' in class field theory. The basic idea consists 
of a generalization: an abstract class field theory which is purely group 
theoretical. What is needed first is a profinite group G, i.e. a directed 
projective limit of finite groups (whence the name). Now use symbols K to 
label the closed subgroups of finite index of G. (The model to keep in mind 
is the (topological) Galois group of an infinite Galois extension of a field; 
in that case the label L of GL is the fix-field of the closed subgroup of finite 
index GL.) Let the group G itself have the label K. Given two labels M 
and L one says that M/L is a Galois extension if the group G M is a normal 
subgroup of GL. The Galois group is then Gal(M/L) = GL/GM- Let the 
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label of {1} c G be K (the algebraic closure of K). The composite LM 
of two labels is the label belonging to the group (topologically) generated 
by GL and GM. One also sets [M: L] = #Gal(Af/L) if M/L is Galois. 
The two other things one needs for an abstract class field theory are now 
a surjective continuous homomorphism 

deg: G->Z 

and a suitable G-module^ (such that G acts continuously on A where A 
has the discrete topology). Let K be the label of Ker(deg) and for each 
L/K let L = KL. Then Gal(L/L) ~ Z and one defines fL = [L n K: K]. 
Using the module A one defines 

AL = {a e A : a{d) = a for all a e Gx} 

a€Ga\(M/L) 

(A is written multiplicatively). The extra structure one needs on A for 
an abstract class field theory is now what the author calls a Henselian 
valuation with respect to deg, which is a homomorphism 

v : AK - • Z 

compatible with deg in the sense that 

u(AK) = Z D Z, Z//IZ c Z//IZ, HNL/KAL) = fLZ 

and finally the G-module A is required to satisfy the low dimension coho-
mological conditions 

#H°(Ga\(M/L),AM) = #Gal(L/M) 
#7/-1(Gal(M/L),^M) = 1 

(which last condition is the abstract version of Hubert 90). This is all that 
is needed to define, fairly straightforwardly, abstract reciprocity maps 

rM/L: Gal(M/L) -> AM/NM/LAL. 

To interpret all this it is easiest to keep the case of a characteristic zero 
local field (with finite residue field) in mind. In that case K is the maximal 
unramified extension of K, fa is the residue degree of L/K, A = K*, etc. 
And indeed it takes the author in Chapter III some 7 pp. to verify that 
his axioms are satisfied in this case. (There are also manifold other more 
explicit results in Chapter III such as the local and global Kronecker-Weber 
theorems that abelian extensions of Qp resp. Q are contained in cyclotomic 
extensions, the Hubert symbol, and the Lubin-Tate construction already 
discussed above. 

The global case is, as always nowadays, more difficult, though histori­
cally it came first, another of those revolutions in class field theory. In this 
case A is the idèle class group of the global field K. An idèle is simply a 
sequence (ap) where p runs through all primes of K such that ap e K*, 
where Kp is the completion of K with respect to the valuation defined by 
the ideal p, and such that ap is a unit in Kp for almost all p. (For an 
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infinite prime p the corresponding group of units is all of K*, for a finite 
prime p it is the group of elements Up of p-valuation zero in Kp.) Let 
IK denote the group of idèles. The principal idèles are the elements of 
K* (under the diagonal embedding K* t-> Yip K* ) and the quotient is the 
idèle class group CK = IK/K*. Incidentally, as I learned from the book 
under review, the word idèle comes from ideal element, which got abbre­
viated id.el. whence (in French, the concept originated with Chevalley) 
idèle. Thus 'ideal' and 'idèle' have essentially same root. For global class 
field theory the G-module A is now the idèle class group C#. There is, 
as expected, a great deal more to do to establish the author's axioms in 
this case, but still the treatment is basically painless. I will not give more 
details; this review is already getting out of hand. Then in §8 of Chapter 
IV the author proceeds to link the idèle theoretic formulation where the 
basic isomorphism is 

Gal(L/K) £- CK/NL/KCL 

with the older ideal theoretic formulation, i.e. ray class fields. The starting 
connection between idèles and idèle class group and ideals and ideal class 
group is 

IK/IF * JK, IK/IFK* ~ JK/PK 

where JK and PK are respectively the group of (fractional) ideals and (frac­
tional) principal ideals and 7£° is the subgroup 

if= n K; x nu*-
p infinite p finite 

And thus the author recovers all the theorems which are sometimes listed as 
the principal theorems of (ray) class field theory: abelian extensions are ray 
class fields; for any ray class group H there exists a unique corresponding 
abelian extension; the decomposition of primes theorem; the conductor-
ramification theorem; the translation theorem; Artin's general reciprocity 
law, the principal ideal theorem; not that these theorems all occur under 
these (or related) names in the index. And that brings me to perhaps the 
only thing to cavil about in this admirable book. For a book about a topic 
so laden with named theorems and with quite generally an unusually heavy 
terminological load, the index is decidedly skimpy. The reader who wants 
to look up specific theorems, concepts, and definitions rather than read 
(i.e. work) through the book systematically will have a tough time of it. 
An index of symbols would also have helped. Though, come to think about 
it, even in this aspect, the weakest of the book, it is probably better than 
most; the art of indexing in any case seems to be a practically forgotten 
one. 

There is more to class field theory, as I have hinted occasionally above, 
than is covered in these books, and there is much more in these books than 
I have had occasion to mention. 

All in all, we have here two excellent books which are more than heartily 
recommended to departmental and individual collections alike, and which 
I am happy to add to my own. There is only one thing wrong with that, 
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being the excellent books they are, I obtained copies before they were 
offered to me for review. Ah well! 
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Multiphase averaging for classical systems, with applications to adiabatic 
theorems by Pierre Lochak and Claude Meunier. (Translated by 
H. S. Dumas), Applied Mathematical Sciences, vol. 72, Springer-Verlag, 
New York, Berlin, Heidelberg, 1988, xi + 360 pp., $39.80. ISBN 0-387-
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The idea of a separation of scales is of fundamental importance in our 
attempts to understand the world. When we speak of movement up or 
down "on the average," we are appealing to a process which removes rapid 
fluctuations and uncovers underlying trends. The formal perturbation pro­
cedure known as the method of multiple scales (or, in its simplest form, 
two-timing) relies on such a separation of time scales, as do the various 
averaging and homogenization theorems which make up an important part 
of the theory of differential equations and which form the subject of the 
book under review. 

The simplest form of averaging, over a single time scale, proceeds as 
follows. Starting with a sufficiently smooth vector field f(x, t) on Rn x R 
which depends ^-periodically on time, t, the averaged vector field is defined 
as 

(0) f(*) = j j f(x,t)dt. 


