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In 1967 Smale wrote an important survey article [l]1 outlining a program 
for the study of smooth dynamical systems on manifolds. The program has 
had both widespread influence and some important successes. In this review, 
I shall try to present a rough idea of the program in order to show how the 
book under review fits in. 

To begin with let us recall that Smale won the Fields medal for proving 
the Poincaré conjecture in dimensions greater than 5. The technique he used 
was that of Morse theory, where one takes a function defined on a manifold 
M and analyzes the topology of the manifold using the gradient flow of this 
function. Roughly speaking, one has a decomposition of the manifold as a 
union of unstable manifolds Wu(p) where p ranges over the critical points of 
the function and Wu(p) is the unstable manifold of the critical point p: 

M= \JWu(p), 
pen 

where 
H = {p e M: f\p) = p for all i) 

and 
Wu{p) = {x e M: lim <*(ƒ<(*), f\p)) = 0} 

t—*—oo 

with ƒ* the flow and d a suitable metric on the manifold M. After this 
spectacular success he set about studying the dynamical system for its own 
sake rather than as a tool to get at the topology of M. Of course, he knew 
that the above decomposition would be tractable only if the gradient function 
satisfied some nondegeneracy conditions (for example that its critical points be 
nondegenerate) and so quite naturally, he wanted to first study the "generic" 
case. 

Now of course any vector field (i.e., ordinary differential equation) on M 
will give a flow, but it is easy to see that in general we don't have such 
a simple decomposition. The reason is that (nongradient) vector fields can 
have periodic orbits and no two distinct points in the same periodic orbit can 
lie in the same unstable manifold. Smale was led to conjecture that suitable 
nondegeneracy hypotheses would lead to a decomposition 

(*) M = \JW"{SU) 

xThe interested reader should study the reprint [2] of Smale's paper rather than the 
original version since the reprint corrects some errors and includes an appendix which 
describes subsequent work in the area. 
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where for any set A C M we define 

wu(A) = (J r(p) 
peA 

and where n i , n 2 , . . . , H n are the critical elements of the flow ƒ*; i.e., the 
critical points and periodic orbits. (In particular, the conjecture said that 
there were only finitely many critical elements.) 

The conjecture was shot down almost immediately. Levinson pointed out 
that his work [3] extending work of Cartwright and Littlewood concerned very 
general examples of generic differential equations with infinitely many peri­
odic orbits and that indeed such examples were already known to Poincaré 
in the equations of classical mechanics. (Of course, the harmonic oscillator 
has infinitely many periodic solutions but this example is degenerate in the 
sense that small perturbations of it can be constructed which have no peri­
odic solutions except for the rest point.) Other examples were found in other 
classical subjects. For example, the geodesic flow on a surface of constant neg­
ative curvature can be more or less explicitly calculated and shown to have 
infinitely many distinct periodic solutions. The important work of Anosov [4] 
extended this to the geodesic flow of any compact manifold of strictly nega­
tive curvature (constant or not). More importantly, Anosov showed that any 
such flow was structurally stable in that a small perturbation of it preserved 
the topology of the flow. Perhaps the most dramatic example was given by 
Thorn who remarked that the diffeomorphism (discrete time dynamical sys­
tem) ƒ : T2 - • T2 of the torus given by 

ƒ (x, y) = (2x + y, x + y) mod Z2 

had periodic orbits of every (integer) period and that since this could be 
proved using the Lefschetz fixed point theorem it would be true of any small 
perturbation of ƒ. Smale himself produced his famous horseshoe example 
which showed that infinitely many periodic orbits could be expected in any 
system having a "transversal homoclinic point". 

This was the state of affairs at the time of Smale's 1967 paper. That paper 
introduced a key definition which these days cay be expressed in the form 

The chain recurrent set of ƒ is hyperbolic. 

It also contained two important conjectures: 

A system is Q -stable iff its chain recurrent set is hyperbolic; 

and 
A system is structurally stable iff its chain recurrent set is 
hyperbolic and it satisfies the strong transversality condition. 

(The book under review defines these terms precisely.) The if directions of 
these conjectures were proved within the next five years (see Smale's reprint 
[2] for references) and it appears that the converse directions will also be an­
nounced soon. For our purposes in this review it is enough to note that the 
hyperbolicity conditions generalize the conditions Anosov defined in his work, 
the strong transversality condition generalizes the condition that all homo-
clinic points be transverse, and the stability conditions say that important 
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topological properties of the system are unchanged by C1 small perturbations 
of it. 

The single most important result in Smale's 1967 paper is the so-called 
spectral decomposition theorem which proves a decomposition of the form (*) 
where the sets fit are the components of a certain decomposition of the chain 
recurrent set. The local behavior of the system near each Q» can be understood 
in terms not much different from the local behavior in the gradient case and 
so in a certain sense corrects Smale's original naive conjecture. 

Now we are ready to discuss what appears in the book under review. First, 
we should point out that the book deals exclusively with discrete-time dy­
namical systems (diffeomorphisms) whereas in the review we have mostly 
talked about continuous-time dynamical systems (flows). The latter is more 
in keeping with the origins of the subject while the former is more transparent 
technically. Suffice it to say that all theory in the book has an analog in the 
continuous-time case but the definitions and theorems are not quite so neat. 

The book begins with a chapter on topological dynamics which defines 
various kinds of recurrence. Subsequent chapters discuss hyperbolicity of in­
variant sets and its consequences. There are careful proofs that the unstable 
manifolds described above are indeed manifolds (the book works with sta­
ble manifolds, but a stable manifold of ƒ is an unstable manifold of / _ 1 ) , 
describes in detail the spectral decomposition, and proves some of the stabil­
ity results mentioned above. In addition it explains the Markov partitions of 
Bowen, which can be used to show that the restriction of ƒ to one of the fi» 
is topologically conjugate to a subshift of finite type in case the Q» is zero-
dimensional. (This can be viewed as giving a description of the local behavior 
of ƒ near Q».) 

The selection of material is in my view excellent for a graduate course in the 
subject: the student can confront most of the problems in the subject honestly 
but without being bogged down in too many technical details. The book grew 
out of a set of lecture notes from the academic year 1976-77 and there is no 
mention of any work which occurred subsequent to that year. Each chapter 
contains an annotated list of references which can be used to find proofs not 
included in the book, but no attempt is made to fit the work into a broader 
historical and mathematical context. 
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