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There are three appendices: (1) Elementary properties of symmetric ma­
trices over fields. (2) The geometry of metric spaces as another expression 
of the theory of quadratic forms. (3) Modules and ideals in quadratic fields 
Q(v/A) and their norm forms. This is helpful for the understanding of the 
Euler products occurring in Chapter Four. 
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1. The theory of numbers: its great conjectures. Problems in num­
ber theory have fascinated generations of professional and amateur scientists. 
Still today mathematicians are attracted to number theory because its history 
has brought so many conjectures. Some, like the Riemann Hypothesis, stated 
in 1859 (see §2), and the Goldbach conjecture, which goes back to 1742 (see 
§6), have yet to be proven. Others, thanks to the ingenuity of contemporary 
mathematicians or to highly sophisticated computer methods, have been re­
solved: such is the case of the Mertens conjecture (see §5), which was proven 
false by Odlyzko and te Riele [39] in 1983, some 86 years after it was stated. 

Many problems in number theory involve arithmetical functions. Our in­
tent here is to present a survey of (what we feel are) the most significant results 
in the theory of arithmetical functions, thereby leading us into a review of the 
books of McCarthy and Elliott. Though our presentation obviously cannot 
be exhaustive, our objective is to display most of the classical arithmetical 
functions (those which "made history") and to introduce the reader to the 
methods used by mathematicians to analyze their behavior. The two books 
under review are mainly concerned with results and methods in elementary 
and analytic number theory, though the second assumes some knowledge of 
probabilistic number theory; thus our survey will reflect the development of 
arithmetical functions only in these three areas. 
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2. The Prime Number Theorem: the first significant result. Al­
ready in 300 B.C., Euclid was aware of the fundamental theorem of arithmetic 
("given n € N, there exist r € N and primes q\ < qi < • • • < qr such that 
n is uniquely written as n = q"1 • q%2 --q?r for some positive integers a?) 
and proved that there exist infinitely many primes. Nevertheless, until a few 
centuries ago, number theory progressed by strictly elementary methods. But 
when, in the 18th century, Legendre and Gauss claimed that 7r(x), the number 
of primes up to x, behaves somewhat like x/(logx)—they were essentially 
stating what is known today as the Prime Number Theorem (from here on 
denoted by PNT), i.e., 

hm v , = 1 
z-Kx> ay (log x) 

—more powerful methods such as analysis made their entrance in the race for 
solving major number theory problems. Gauss knew that Li(x) = f£dt/(\ogt) 
was asymptotic to x/(logx), and he suggested, using a table of primes up to 
3,000,000, that 7r(x) is asymptotic to Li(x). He died before one could obtain 
a proof of his conjecture. It took a little more than a century before it could 
be proven: it was finally established independently by Hadamard and de la 
Vallée Poussin in 1896. This was certainly the first significant achievement in 
the area of analytic number theory. It was indeed so deep that an elementary 
proof of the PNT was only obtained in 1949 when Erdös [13] and Selberg [42] 
separately published proofs of it. 

In their proof of the PNT, both Hadamard and de la Vallée Poussin used 
what we now call the Riemann zeta function, defined by 

n=l 

This series obviously converges for any real s > 1. Euler was familiar with it. 
For instance, he noticed that, for s > 1, 

<» f£-nH*£+-)-nH)". 
where the infinite product extends over all primes. Relation (2) is commonly 
called the Euler identity. In 1859, essentially a century later, Riemann, in a 
famous ten-page paper [40], considered the series S^Li V n S f° r complex s, 
and extended the function £ to the whole complex plane, showing by analytic 
continuation that, except for a pole of order 1 at s = 1, ç(s) is analytic in C. 
He proved the famous functional equation (already known to Euler for real s) 

(3) ç(l - s) = 2(2TT)-5 cos(«/2)r(*)f(«), 

deduced from it that ç(—2n) = 0 for all integers n > 1, and further claimed 
that the only other solutions to ç(s) = 0 satisfy Re(s) = 1/2. This statement 
about the distribution of the zeros of the Riemann zeta function is known as 
the Riemann Hypothesis (from now on denoted by RH). Relation (2) being 
also true for all s € C such that Re(s) > 1, it is easy to prove that ç(s+it) ^ 0 
if Re(s) > 1. From (3) it follows that ç{s+it) # 0 if Re(s) < 0. Hence besides 
the trivial zeros s = —2n, n > 1, all the zeros p = /? + 27 of ç must satisfy 
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0 < ft < 1. Hadamard and de la Vallée Poussin proved that £(1 + it) ^ 0 for 
all real t (which by (3) also means that ç(it) ^ 0), a fact which turned out to 
be equivalent to the PNT. They actually proved that 

(4) 7r(x) = Li(x) + 0(x exp(—c\/\og x)) 

(here f(x) = 0(g(x)) means that there exists a constant C > 0 such that 
| f(x)\ < C\g(x)\ if x is sufficiently large), for some positive constant c. 

The size of the error term in (4) depends on the location of the zeros of the 
zeta function. For instance, if it could be proved that ç(s) ^ 0 for all s such 
that Re(s) > 0 for some | < 0 < 1, then we would have, for any fixed e > 0, 
7ï(x) = Li(rr) -I- O(x0+e). Assuming RH, von Koch [34] proved that 

(5) TT(X) = Li(x) + 0(x1/2 log x). 

The breakthrough initiated by Riemann confirmed the close interaction 
between the theory of functions of one complex variable and the theory of 
arithmetical functions. This connection is further studied in §5. 

3. The group of arithmetical functions. It can easily be shown that 
the PNT is equivalent to the statement %l){x) ~ x, where xj){x) = ^2n<x A(n), 
A being the von Mangoldt function defined on the positive integers by A(n) = 
logp if n = pa for a certain prime p and a G N, and A(n) = 0 otherwise. 
(Here and in what follows f(x) ~ g(x) means that l im^oo f(x)/g(x) = 1.) 
The von Mangoldt function is a particular example of an arithmetical function, 
that is, a complex-valued function defined on the natural numbers. Arithmetic 
function and number-theoretic function are synonyms of arithmetical function. 
Although it is not explicit in the definition, such a function should have some 
kind of "arithmetic flavor" in the sense that the value associated with the 
integer n should somehow reflect or depend on the arithmetic structure of n. 

More than 3000 years ago the Pythagoreans were studying perfect numbers, 
that is those positive integers which are equal to the sum of their proper 
divisors, or in other words the solutions of the equation a(n) = 2n, where 
a{n) stands for the sum of the divisors of n. For instance, 6, 28, 496 and 
8128 are perfect numbers. Euclid proved that every integer 2 m - 1 ( 2 m — 1), 
where 2m — 1 is a prime number, is perfect and moreover that all even perfect 
numbers are of that form. As of today, no odd perfect number is known. 

The arithmetical function a is a member of a large class of arithmetical 
functions known as the multiplicative functions. A function ƒ is said to be 
multiplicative if f(mn) = f(m)f(n) whenever (m, n) = 1. From this definition 
it follows that if ƒ is not identically zero, then f(l) = 1. Moreover each 
multiplicative function ƒ is entirely determined by its values on prime powers, 
that is 

(6) / (n)=/(n^) = n A?*)-
Sa||n / p<*\\n 

(Here pa | |n means that pa divides n, but pa+1 does not.) Let a be a fixed 
complex number, and define Ia{n) — n° for each n > 1; clearly Ia is a multi­
plicative function. It is also a totally (or completely) multiplicative function: f 
is such a function if f(mn) = f{m)f(n) for all m, n € N. The divisor function 
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d defined by d(n) = J2din 1 is multiplicative, but not totally multiplicative. 
The functions d and a are particular cases of the more general multiplicative 
function aa(n) = Yld\n da, where a is a fixed complex number. Since aa is 
multiplicative, we obtain from (6) that 

°a(n)= U(l+Pa+p2a + '-+paa), 
Va\\n 

which in the case a = 0 yields a neat formula for the divisor function, namely 

If we denote by A the set of all arithmetical functions ƒ such that ƒ (1) / 0 
and by M its subset of multiplicative functions, it can be shown that M is a 
subgroup of A with respect to the Dirichlet convolution *: 

(f*g)(n) = "£f(d)g(n/d). 
d\n 

One easily verifies that (̂ 4, *) and (M, *) are abelian groups, the identity 
element being the function E defined as E(l) = 1 and E(n) = 0 if n > 1. 
Here d = 1 * 1 and (7 = 1*7, with I = I\ and l(n) = 1 for all n. The Moebius 
function //, defined by 

{ 1 if n = l, 
/i(n) = < 0 if n is divisible by a square > 1, 

( (—l)r if n is the product of r distinct primes, 

plays a central role in the group A: Indeed /i * 1 = E and hence /i"1 = 1; 
this means that if ƒ = 1 * g, or equivalently if f(n) = $Zdin g{d), then g = 
// * ƒ, that is g(n) = Sd|n/i(n/rf)/(d). This last formula is known as the 
Moebius inversion formula and is used in deriving various identities involving 
arithmetical functions. The function \i is also an important actor in the play 
of sieve methods (see Halberstam and Richert [21]). 

Of major interest in number theory is the Euler totient function (j> defined 
by 0(n) = #{m < n: (m,n) = 1}. One can prove that ^ G M and that 

tin) = nH(l - 1/p) = nJ2»(d)/d. 
p\n d\n 

Therefore </> = // * / . Multiplying both sides by the function 1 yields the 
relation </> * 1 = I or equivalently Y^dln ^(^) = n> a v e ry u s e m^ identity. The 
important congruence a^m) = 1 (modm), where a,m G N and (a,m) = 1, 
was discovered by Euler some 250 years ago. In the late seventies, this appar­
ently simple result allowed mathematicians to build a code which is almost 
impossible to break even though the key is made public (see for instance 
Rivest, Shamir and Adleman [41]). 

A further generalization of the divisor function is the following: for a fixed 
k G N, let dfc(n) denote the number of representations of n as a product of k 
positive integers. Clearly d(n) = cfefa). Moreover 

(7) dk = 1 * • • • * 1, 

the product being taken k times. This function is studied in §§4 and 5. 
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Another important subset of M is the set of specially multiplicative func­
tions. Consideration of these functions arises naturally in the theory of mod­
ular forms (see Apostol [1]). A function ƒ € M is said to be specially multi­
plicative if there exists g G M such that for all m, n € N one has 

f(mn)= J2 f(m/d)f(n/d)g(d). 
d|(m,n) 

The function aa defined above is such a function. The Ramanujan tau-
function, denoted r and defined by 

oo oo 

*n(i-**)24=£'(")*n (M<i) 
k=l n = l 

is also a specially multiplicative function. The numbers T(TI) appear as Fourier 
coefficients of a certain modular function (see Apostol [1, Chapter 6]). 

Associated to ƒ G M is the Dirichlet series Df(s) where 

Note that if ƒ is totally multiplicative then 

n = l p x r / 

Finally observe that, given any ƒ, g € A, the identity 

m iw.) -1 ̂  - (Ê ¥) [t £) - "*.(* 
n=l \n=l / \n=l / 

which reveals a close connection between Dirichlet series and Dirichlet convo­
lution, can be used to prove various identities (see Ayoub [2]). 

Before ending this section, let us mention that additive functions, those 
satisfying f(mn) = f(m) H- / (n) , whenever (ra,n) = 1, also shed interesting 
information on the multiplicative structure of the positive integers. Obviously 
log n is such a function, two others being u and Q, where u){n) and fi(n) denote 
respectively the number of different prime factors of n and the total number 
of prime divisors of n. Note that if ƒ G M and ƒ (n) ^ 0 for all n, then 
log ƒ is additive. Furthermore, a function ƒ is said to be totally (or completely 
additive) if f(mn) = ƒ(m) + ƒ (n) for all m, n G N. Additive functions are 
fully studied in probabilistic number theory (see §7). 

4. Elementary methods leading to asymptotic results. Given ƒ € 
A, it is natural to inquire about the behavior of S/(N) = ]Cn</\r /(n)> when 
N is large. In the case of A, the answer lies in the statement of The PNT, that 
is, 

(9) SA(N)=^(N)~N, 

when N —• oo. In a sense, (9) means that the "average order" of A(n) is 
1. This motivates the following definition: an arithmetical function ƒ is said 
to have a mean value M(ƒ) if N~xSf(N) tends to a limit when N tends to 
infinity, in which case we set M(f) = limjv_>oo Sf(N)/N. 
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There are standard techniques relying on real analysis for estimating S/(N). 
One of them lies in a theorem due to Wintner which states that if two arith­
metical functions ƒ and g satisfy 

(10) f = i*g 

and if 2£Li 9(n)/n3 converges absolutely at s = 1, then M(f) exists and is 
equal to ^2^LX g(n)/n. For a proof, see De Koninck and Mercier [5, p. 120]. 
Note that, because of (8), relation (10) is equivalent to 

n = l n = l 

which reflects a type of relation satisfied by several well-known arithmetic 
functions. For example, one can apply Wintner's Theorem to f(n) = /i2(n) 
and easily obtain that the density of the set of square-free integers is 6/ir2. 

One can generalize Wintner's theorem by stating that if ƒ and g are arith­
metical functions satisfying ƒ = lk * g (here lk = 1 * • • • * 1, the product being 
taken k times) for some positive integer k and if £ £ l i g(n)/n converges ab­
solutely, then, as n —• +oo, 

(here ƒ(x) = o(g(x)) means that limx_>oo ƒ(x)/g(x) = 0). The proof is el­
ementary (see De Koninck and Mercier [5, p. 149]). This formula can be 
applied to the divisor function. Indeed, since d = l2 * E, it follows that 

(11) J2 d(n) = (l + o(l))WlogiV. 
n<N 

More generally, since by (7), d* = 1* * E, one can show that 

J2 dk(n) = (1 + o(l)) ? r±wJVlog*-1 AT, 

a minor step towards the study of the Dirichlet divisor problem (see §5). 
Several elementary methods have been created in studying number-theo­

retic functions. As an example, we describe one which is due to Dirichlet. 
For the sake of comparing different approaches with the same "client", we 
consider once more the divisor function and write successively 

n<N n<N ab=n ab<N a<N b<N/a a<N 

= £ * / « + £ W°) - N/a) = N £ 1/a + 0(N) 
a<N a<N a<N 

= N\0gN + 0(N), 
where we used the fact that 

(12) £ l / a = logiV + 0(l); 
a<N 

(here [x] stands for the largest integer not exceeding x). We have thus proven 
slightly more than (11) since we have now obtained information about the 
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size of the error term. Essentially, though, our result is no deeper than (12). 
In order to estimate more precisely Sd(iV), Dirichlet introduced a geometric 
approach. He observed that ^2ab<N 1 represents the number of lattice points 
located in the first quadrant on or under the hyperbola xy = N. He then 
argued that 

(13) 
£d(n) = £ 1 = 2 £ [N/a}-[^]* 

n<N ab<N a<y/N 

= 2 J2 Nla + 2 J2 ( [W - N/°) - (v7^ + ([VAT] - \fN))\ 
a<y/N a<VN 

Using the more accurate formula 5Z0<7V V a = ^ogN + 7 + 0(l/iV), where 
7 = — JQ00 e~x log xdx — 0.577... stands for the Euler constant, he obtained 

(14) J2 d ( n ) = N^gN + (27 - 1)JV + 0(v^5v). 

The method of Dirichlet is known as the "hyperbola method" and can be used 
in a variety of estimates (see Ayoub [2, Theorem 7.7]). It is important (at 
least historically!) to observe that relation (14) represents only the beginning 
of a series of improvements in the evaluation of ^2n<N d(n). Indeed, let 

(15) A{N) = ] T d(n) - N log N - (27 - 1)N. 
n<N 

How large is A(JV)? We have shown, by (14), that A{N) = 0(y/N). To 
further improve upon this estimate of A(iV), more powerful tools are needed, 
such as complex integration. But first, we consider additive functions. 

The global behavior of additive functions is generally easier to study than 
that of the multiplicative ones. Indeed, if ƒ is additive, then 

(16) . . 

+°( £ £i/(pa)-/(pa_1)i)> 

and in most cases, the first two terms on the right-hand side of (16) are easy 
to estimate while the O-term is small compared to the first two. For example, 
one can easily obtain from (16) that, with 

* = 7 + £ ( l / p + l o g ( l - l / p ) ) , 
v 

(17) ^2 w ( n ) = NQoglogN) + BN + 0(N/\ogN). 
n<N 

Analyzing the local behavior of additive functions presents a different chal­
lenge: this is one of the topics of probabilistic number theory (see §7). 
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5. Complex integration. If it is known that the mean value of a partic­
ular arithmetical function ƒ exists, then one can use its associated Dirichlet 
series D/(s) = Y£?=i f(n)/n8 to calculate M( / ) . Indeed, using the Mellin 
transform of Sf (£), the existence of M(f) implies that, for Re(s) > 1 and as 

DM = s f ° £ f M'"*"1 * = (1 + o(l)W(f)s f°° t 
Jl n<t J* 

= (l + o(l))M(/) 

Hence M(f) = l im a- i(a - l)Df(s). 
Complex integration can also be used to investigate the behavior of 

^2n<t / ( n ) - The standard approach is as follows. If a > 0, then 

j ra+ioo A * \ ra+iT 
(18) -!-: ƒ x ^ " 1 ^ ^ - ~ lim / a ^ d s 

2™ Ja-ioo 27TZ T - O O J a _ i T 

•{ 
0 i f 0 < z < l , 

1 if x > 1. 

Now, given f E A, suppose that its associated Dirichlet series Df (s) converges 
absolutely for Re(s) > a, where a is a certain positive real number. Arguing 
formally, we obtain (assuming that x is not an integer and a > a) 

1 pa-\-ioo -i ra-\-ioo 

t- / Df{s)x°s-1 ds=J2 /(»)5ZJ / (x/nYs-1 ds 
7rz Ja-ioo n<x

 Z7rz Ja-ioo 
•t pa+ioo 

<-J 2m Ja-ioo n>x «"'••'a-too 

Using (18), one can easily obtain that the last two integrals are equal to 2m 
and 0 respectively. This means that 

££ 27TZ Ja_ioo 

provided that a> a = ctf, the so-called abscissa of convergence oîDf(s). The 
inversion formula (19) is often called in the literature Perron's formula (for a 
detailed proof of it, see Titchmarsh [44, p. 300]). The process of obtaining 
information about J2n<x f(n) using the behavior of ]C£Li f(n)/n8 'ls what 
we call a Tauberian theorem for Dirichlet series. Now the integral on the right 
side of (19) is not always easy to compute. But when ƒ is multiplicative, the 
corresponding Df(s) is often "simple"—as is the case for ƒ = d, /z2, 0, or o 
(see Ayoub [2])—in which case the integral in (19) can be calculated quite 
accurately. For instance, since J ^ L j d{n)/n3 = £2(s), we have from (19) that 

a+ioo 1 pa-fioo 

(20) £<*w = db/ ^(^s-Us, 
provided a > 1. The function ç2(s)xss~1 is analytic in the whole plane except 
for two poles at s = 0 and s = 1. Now using Cauchy's theorem and estimates 
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of Ç(<J + it) for a < 1, one can proceed to move the line integral in (20) to the 
left of a — 1, picking up on the way the residue of ç2(s)x8s~1 at s = 1, which 
is equal to xlogx + (2^ — l)x. This accounts for the first two terms already 
obtained in (14). Various estimates of ç(s) allowed mathematicians to further 
improve upon the size of A(x) (defined in (15)). For instance Kolesnik [35] 
proved that A(x) = O(x35/108+e). It is conjectured that 

A(x) = 0{xx^e). 

The problem of obtaining the best upper bound for A(x) is a particular case 
of the general "Dirichlet divisor problem" : let 

A*(x) = ] T dk(n) - x • Pfc_i(logx) 
n<x 

be the error term in the asymptotic formula for J2n<x dfc(n)î what is the size 
of Afc(x)? (Here Pk-i(\ogx) is a polynomial of degree k — 1 in log x which is 
equal to the residue of çk(s)xss"'1 at s = 1.) 

Let M(x) = Yln<x Mn)î ft ls weu* known that M(x) = o(x), an estimate 
which is equivalent to the PNT. On the other hand, it has so far been im­
possible to prove that there exists A > 0 such that M(x) = 0(x 1 _ A ) . Under 
RH one could obtain M(x) = 0(x 1 / 2 + e ) for any e > 0 (see Ivié [28, p. 47]). 
In 1897, Mertens conjectured that |M(x)| < y/x for all x > 1. In view of the 
fact that ]C£Li n(n)/na = l/ç(s) and using the methods described in this 
paragraph, it becomes clear that the estimation of M(x) depends on the loca­
tion of the zeros of the Riemann zeta function in the critical strip 0 < a < 1. 
Using an old method of Landau adapted by Grosswald [19]), one can show 
that there exists a constant c €]0,1[ such that each of the two inequalities 
M(x) $ ±Cyfx occur infinitely often as x —* oo. But unfortunately by clas­
sical methods one cannot show (so far!) that c can be chosen greater than 
1 and thus contradict the Mertens conjecture. Nevertheless, by using com­
puter methods, Odlyzko and te Riele [39] were able to disprove the Mertens 
conjecture. 

6. Functions from additive number theory. Let 5 be a set of integers. 
Additive number theory is concerned with the problem of determining if a 
given integer n can be expressed as a sum of (possibly a restricted number 
of) elements of 5, and, if so, in how many ways. Hence to any such problem, 
one can associate an arithmetical function ƒ (n) = ƒ (n; 5, &) which counts the 
number of ways that n can be expressed as a sum of k elements of S. So, for 
each such problem, one is generally interested by two types of queries: # 1 . Is 
ƒ (n) > 0 for all n € N? #2 . What is the size of ƒ (n)? 

To show how popular this theory is, we mention the famous Goldbach 
conjecture which states that every even integer greater than 4 is expressible 
as a sum of two primes; this is the case when 5 = P , the set of all primes, 
and k = 2. No one yet has been able to prove or disprove this conjecture, 
although it is generally believed to be true. Even if in this case no one can 
give an answer to question # 1 , some are already speculating about question 
#2 . Indeed it was conjectured by Hardy and Littlewood [22] in 1922 that 
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for this problem the corresponding function ƒ (n) = ƒ (n; P, 2) satisfies 

A » ) - ( 1 + 0 ( 1 ) ) - * ? - n F l 
log n , x , r t p —* 

as n —• oo, where c = Ilp>2(l "" (P ~" 1)~2)-
We come back to the general setting and consider the case where 5 = N 

and k is unspecified: this gives the partition function p(n) which counts the 
number of partitions of n into natural numbers. The study of the partition 
function uses a combination of combinatorial and analytic methods. This is 
due essentially to the nice properties of the power series Y^Lo P(™)a;n (here it 
is convenient to define p(0) = 1). Indeed, just as Dirichlet series proved to be 
the natural tool for the study of multiplicative functions, for most problems 
of additive number theory, power series yield the proper setup for analyzing 
the properties and the behavior of the corresponding functions ƒ. In the case 
of the partition function, we first observe that 

F(x)d±tJTp(n)x»=f[(l-x'<r1. 
n = 0 fc=l 

This formal identity, besides providing various combinatorial identities (see 
Ayoub [2]), is the starting point in the process of finding an asymptotic es­
timate for p(n). In 1918, Hardy and Ramanujan [24] showed, using analytic 
methods, that 

p{n) = (1 + o(l))((4>/3 n ) " 1 exp^V^/S))-

The best estimates concerning the size of p(n) for large n are obtained by the 
use of the "circle method" due to Hardy (other important contributors being 
Davenport, Littlewood, Mordell, Rademacher, Ramanujan and Vinogradov). 
This method is too complex to explain in such a short exposition, but let us 
only mention the general idea. First, by Cauchy's Theorem, we have that 

f Ï l f FWA 
p ( n ) = 2 ^ y c ^ i ^ 

where G is a simple closed contour around the origin lying inside the unit 
circle. The ingenuity of this method is to replace the contour of integration 
along |x| = 1 by a path consisting of a sequence of abutting arcs inside the 
unit circle chosen close enough to allow a fairly good approximation of F(x) 
by simple functions along the new path of integration. 

In ending this brief discussion on additive number theory, we mention two 
problems, one solved and one unsolved, which portray how difficult it is to 
relate the additive structure of an integer to its multiplicative one. The first 
of these is a conjecture stated by Erdôs and Mirsky [16] in 1952 and which 
says that there exist infinitely many integers n such that d(n) = d(n + 1). 
Many have been baffled over this problem, but, in 1984, Heath-Brown [25], 
adding a new idea to an argument of Spiro [43] finally proved the conjecture; 
he actually obtained much more, namely that there exists c > 0 such that 
#{n < x: d(n) = d(n + 1)} > ex / log7 x for x sufficiently large. Our second 
problem is the already famous "abc conjecture" : Let a, 6, c be relatively prime 
integers such that a+b = c; then, given e > 0, there exists K = K(e) > 0 such 
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that max(|a|, |6|) < K([\p\abc p)1 + e• This conjecture is very deep: indeed, one 
can show that if it were true then Fermat's Last Theorem, which says that, 
for each integer n > 2, the equation xn +yn = zn has no integral solution 
with xyz ± 0, would also be true for n sufficiently large (see Vojta [46]). 

7. Probabilistic number theory. So far we have been mainly concerned 
with the global behavior of arithmetical functions. Investigating their local 
behavior and in particular the distribution of the values of multiplicative 
or additive functions is in general a much more difficult problem. A first 
indication to that effect comes from observing that usually, given a function 
ƒ, multiplicative or additive, the behavior of the sequence / ( l ) , ƒ (2), ƒ (3), . . . 
is very erratic. This is perhaps not so surprising. Indeed, if the sequence 
(/(n))n€N were smooth in the sense that it is a nondecreasing sequence of 
real numbers, then one could show that there exists a constant c > 0 such that 
f(n) = c(logn) (if ƒ is additive) or f(n) = nc (if ƒ is multiplicative). This 
was proven by Erdôs [12] in 1946 in the case of additive functions. His proof 
was ingenious but entirely elementary. It is almost ironic that it was only 
seven years later that Lambek and Moser [37], apparently unaware of Erdos' 
result, stated and proved the analogous result for multiplicative functions. 
But their proof was much simpler. In 1958, Erdos proved that the condition 
of monotonicity can be somewhat relieved: he showed that, if ƒ is additive 
and liminfn_0 0(/(n + 1) - f(n)) = 0, then ƒ G SC, where Sf = {ƒ : N -+ R 
such that f(n) = clogn for all n G N, for some c G R}. In 1970, Kâtai [33] 
established another conjecture of Erdos, namely that, if ƒ is additive and, as 
x —• oo, x" 1 ^2n<x \f{n + 1 ) - /(w)| —• 0, then ƒ G J ? . This was also proven 
by Wirsing [48]. 

Even though most multiplicative and additive functions oscillate erratically, 
when one studies the distribution of their values, it turns out that several ques­
tions can be formulated and answered using ideas and methods of probability 
theory. Hence one can say that probabilistic number theory is the study of the 
distribution of the values of multiplicative or additive arithmetical functions. 
The mere use of probabilistic methods in number theory can be interpreted 
as saying that one is working in the area of probabilistic number theory. Per­
haps this second "definition" is the best; indeed, does the PNT belong to 
elementary number theory, analytic number theory or probabilistic number 
theory? In fact, it belongs to all three of them! This particular example 
also shows that the three areas are not disjoint. In any event, probabilistic 
number theory is very young; to quote Elliott [10], it "may be viewed as a 
Twentieth-Century Sport". 

If ƒ is multiplicative and nonzero, then log ƒ is additive; hence it gen­
erally is sufficient to study the distribution of values of additive functions. 
To better understand how probabilistic number theory was born, let us con­
sider the function u introduced in §3. From (17), one can easily say that 
the average value of u{n) in the interval [1, N] is log log N or, in probabilistic 
terms, that the expected value of u(n) is log log n. On the other hand, clearly 
liminfn_>oo ^(^) = 1 and furthermore one can show that 

lim sup u) (n) log log n / log n = 1. 
n—•oo 
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Hence the function u(n) oscillates often between 1 and (log n)/(log log n). 
Therefore is is natural to inquire to what extent the function u(n) devi­
ates from its average value log log n for most integers n in a given inter­
val [l,iV]. The first nontrivial answer to this question was given in 1917 
by Hardy and Ramanujan [23]. They proved that, given any positive ip(n) 
such that linin^oo ip(n) = +oo, the number of integers n < N such that 
\v(n) - loglogiV| > ip(N)y/\oglogN is o(N). This means that, for al­
most all positive integers n < iV, u(ri) deviates from log log N by no more 
than \l){N)>flog\ogN. Their argument, although arithmetical, was essen­
tially an analogue of the probability-theoretic law of large numbers. This 
was further confirmed in 1934 by Turân [45], who gave a new proof of Hardy 
and Ramanujan's result. His proof was based on the elementary estimate 
Sn<7v(a;(n) ~~ log log iV)2 < csiVloglogiV. A similar argument holds if one 
considers Q instead of u. Examining Turân's proof, one can recognize an 
argument (unknown to Turân at that time) of Tchebycheff in the theory of 
probability. 

In their 1917 paper, Hardy and Ramanujan introduced the notion of "nor­
mal order" of an arithmetical function ƒ : given e > 0, if the set of integers n 
for which \f(n) — g(n)\ > eg{n) is of density zero, where g(n) is an "elemen­
tary" and increasing function, then f(n) is said to have normal order g(n). 
For example, uj(n) and fi(n) both have normal order log log n. Necessary and 
sufficient conditions for an additive function to have a normal order are given 
in the book of Elliott [10]. On the other hand, it was proven by Birch [3] that 
the only multiplicative functions ƒ having a normal order are those defined 
by f{n) = nc, where c G R. 

Let «^ be a property satisfied by certain integers. By Nx(n;^), we 
mean the number of positive integers n not exceeding x which satisfy prop­
erty «^. For each x > 1, we define the frequency i/x(n;«f^) as the number 
[x]~1iVa;(n;«^). Approximately five years after Turân's paper came out, Erdös 
and Kac [14, 15] confirmed the importance of probability theory in the study 
of number-theoretic problems: using the central limit theorem of probability 
theory and elementary arithmetic methods such as the sieve of Eratosthenes, 
they proved that, given a real-valued strongly additive function ƒ (that is, an 
additive function such that f{pa) = f{p) for all primes p and a € N) such 
that |/(p)| < 1 and for which 

p<x \ ? / 

as x —• oo, then 

/ f{n)-A(x) ^ \ 1 fz _w2/2j 

hm vx [ n; ', , < z) = —= ƒ e w / 2 dw, 

where A(x) = ^2p<x f (p)/p- Clearly w is such a function. 
One can say that the central problem in studying the distribution of the 

values of additive functions f(n) is to investigate when functions a(x) and 
0(x) > 0 may be found such that the frequencies 

(21) vx{n; f(n) - a(x) < z0(x)) 
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possess a limiting distribution as x —• oo. The famous Erdös-Wintner theorem 
corresponds to the choice f3(x) — 1 and a(x) — 0 and states that an additive 
function ƒ possesses a limiting distribution if and only if the three series 

| / ( P ) | > 1 ^ |/(P)|<1 ^ I/(P)I<1 F 

converge. The proof of this theorem appeared in several steps in the literature. 
For a simple proof, see Galambos and Kâtai [17]. Necessary and sufficient 
conditions for the existence of a distribution function for multiplicative func­
tions are given in Galambos and Szüsz [18]. 

A major tool in establishing the limiting behavior of the frequencies (21) 
is the Turân-Kubilius inequality which can be stated as follows: There exists 
an absolute constant c such that, for all N € N, one has 

(22) ^ | / (n) -^( iV) | 2 <ciVZ?(7V) 2 

n<N 

uniformly for all complex-valued additive functions ƒ, where 

A(N) = j:>m 
p<N P 

and 
1/2 

£ i/(p*)i2/pfc) >o. 
Kpk<N 

In his book Probabilistic number theory I, Elliott [9] gave a proof of (22) with 
c < 32 with an argument yielding limsupc < 2. Recently, Hildebrand [26] 
showed that, as N —• oo, c —> 3/2. 

Mean value theorems have great importance in probabilistic number theory. 
Here is why. Let ƒ be a real additive function. Using the theory of Fourier 
transforms, one has that the characteristic function $#(£) (defined for real t) 
of the distribution function FN(Z) = ^jv(n; f(ri) < z) is given by 

9N(t) = f°° eitzdFN(z) = W-1 ^2 eitf{n)-

If there exists some function $(t) continuous at t = 0 such that lim^_^oo ®N(t) 
= $(£)> then FN{Z) converges to some distribution function F(z) at each of 
its points of continuity, and hence $(t) is the characteristic function of F(x). 
Thus the problem of investigating the asymptotic behavior of N~x^2n<N g(n), 
where g is a complex-valued multiplicative function bounded by 1, becomes 
very important. On this matter, Delange [6] proved, in 1961, that necessary 
and sufficient conditions for the existence of a nonzero mean value for a mul­
tiplicative function g bounded by 1 are that ^2p{g{p) — l)/p converges and 
that, for all primes p, 2 ^ 1 0 g(pk)/pk ^ 0. The problem of characterizing 
those multiplicative functions g bounded by 1 such that M(g) exists and is 
equal to zero was solved by Wirsing [47] in 1967, but only for the case of real-
valued functions. One year later, Halasz [20] solved the problem in the case 
of complex-valued functions. One can read more about this in the book of 
Elliott [9]. Other books relevant to the study of probabilistic number theory 
are the books of Kac [29] and of Kubilius [36]. 



BOOK REVIEWS 243 

8. The books of McCarthy and Elliott. McCarthy's purpose is to 
give "contemporary results" concerning arithmetical functions. He focuses 
his attention on special topics and carries the reader "beyond the point at 
which textbooks abandon the subject". Although the author does not present 
his material in that order, we see three main topics being dealt with: 

1. Multiplicative functions: Their elementary properties (including the fact 
that (A, *, •) is a ring), their generating functions and some asymptotic results 
involving them (such as the hyperbola method described above in §4). 

2. Ramanujan's sums (that is, for fixed fceN and n € N, the sum of the 
nth powers of the primitive fcth roots of unity) and how they can be used to 
count the number of solutions (x i , . . . , x3) of n = a\X\ H \- asxa (modr). 

3. Two generalizations: One is an extension of the Dirichlet convolution: 
let K: N x N -+ C, ƒ, g € A, then define 

(ƒ *K 9)(n) = J2 K ^ d)f(d)g(n/d); 
d\n 

the case üf (n, d) = 1 if (d, n/d) = 1 and 0 otherwise yields the well-known 
unitary convolution 

( ƒ « » ) ( * ) = £ f(d)9(n/d). 
d|n; (d,n/d)=l 

The other one concerns generalized arithmetical functions ƒ : P x P —• C, 
where P is a partially ordered set. 

Particularly interesting is the author's presentation of specially multiplica­
tive functions (which we introduced in §3), a subject usually not included 
in textbooks but nevertheless of great importance in the theory of modular 
functions. 

Although the book does not cover a wide variety of subjects, it is very 
pleasant to read. On the other hand, it is certainly suited for an undergraduate 
or beginners' graduate course in number theory: students will be motivated 
and challenged by some 400 exercises (which, incidentally, fill 128 of the book's 
365 pages). 

While McCarthy's book is quite elementary and readily accessible to uni­
versity students, the book of Elliott is much more advanced and is written for 
specialists. It includes much of the already published work of the author, but 
it also does contain many new results. 

Let oi, 02 , . . . , be a sequence of positive integers; then every positive integer 
n has a product representation 

(23) n = at--ad
k
k, 

for suitably chosen A: € N and dj € Z. This is one of the important results 
proved in Elliott's book. "Who cares?" one might say. Actually, many should 
and many will if they read what follows. 

Elliott studies representations of positive integers as products of rationals 
of a prescribed type and shows how this problem plays a central role in solving 
several conjectures involving number-theoretic functions. This is one reason 
for rejoicing. There is another one. In order to derive most of his results, 
the author combines in a very neat way the ring-theoretic properties of the 
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integers with methods of elementary functional analysis. Without this original 
approach, most of the results he produces would still be unobtainable. 

Here are two of the conjectures which motivated the subject. As we saw in 
§7, Erdös [12] proved that, if ƒ is additive and 

(24) ƒ (n + 1) - ƒ (n) -> 0, as n - • oo, 

then ƒ € -2s7. Notice that condition (24) is essential in the sense that it cannot 
be replaced, say, by "/(3n + 1) - f(n) —• 0, as n —• oo". Around 1970, Kâtai 
[31, 32] asked for a characterization of those additive functions which satisfy 

(25) f (an + 6) - f (An + B) -> C, as n -* oo, 

for some integers a > 0, 6, 4̂ > 0, .8 and constant C. Partial results with 
B = 0 were obtained by Kâtai [31, 32], and Mauclaire [38]. In his book, 
Elliott provides a complete solution to Kâtai's problem. More precisely, he 
proves 

THEOREM A. If f is as above and further if the integers a > 0, 6, A > 0, 
B satisfy A = aB—Ab ^ 0, then there is a constant C such that f(n) = Clogn 
for all n € N such that (n,aAA) = 1. 

This result follows essentially from a new method introduced by Elliott for 
quantitatively characterizing real-valued additive functions in terms of their 
differences f (an + b) — f (An + B). More precisely, in order to prove Theorem 
A, the author uses a "basic inequality" (somewhat typical of many estimates 
displayed in the manuscript): "The inequality 

£ hf(q)-F(x)logq\2<: sup ± £ \f(an + b) - f(An + B)\*, 

with 

*•>-( E f )( E to)-* 
(q,aAA) = l (q,aAA)=l 

holds uniformly for all additive functions f(n) for all x > x$. Here a?o,c 
and the implied constant depend at most upon a, 6, A and B; g denotes a 
prime-power." (Here h(x) «C g(x) means that h(x) = 0(g(x)).) The proof of 
this estimate, although it uses only elementary techniques including several 
applications of the Cauchy-Schwarz inequality and the Chinese Remainder 
Theorem, is very complicated and covers almost 30 pages. 

So far, we have mentioned very little about integer products (actually, apart 
from a few pages, Elliott starts writing about these only in Chapter 15), but 
here they come. Kâtai [30] called a set of uniqueness a sequence a\ < a% < 
• • • of positive integers with the property that every real-valued completely 
additive function which vanishes on each o» also vanishes identically. Kâtai 
showed that there exists a constant K > 0 such that {p + 1 : p is prime} 
U{p: p < K} is a set of uniqueness. His proof was based on a result of 
Bombieri [4] in the theory of the large sieve. He further conjectured that 
{p + 1 : p is prime} is a set of uniqueness, that is, that a completely additive 
function is entirely determined by its values on "shifted primes", a result 
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which Elliott [8] finally established in 1974. Elliott's proof also used large 
sieve estimates and various results on the distribution functions of additive 
functions. In 1976, Indlekofer [27] displayed a large class of sets of uniqueness. 
Then, in 1978, Wolke [50], and Dress and Volkmann [7] proved, using vector 
spaces over Q, that in order for a sequence (ojOyeN to be a set of uniqueness, 
it is necessary and sufficient that every positive integer n have a multiplicative 
representation 

(26) " h =ri a ' ; 
with £i = ±1 (here h may vary with n). With this result, it became clear that 
uniqueness statements for additive functions are related to statements about 
multiplicative representations of positive integers (see also Wirsing [49]). In­
deed, a careful analysis of the proof of Elliott [8] shows that each positive 
integer n has a representation 

(27) n* = n ( P i « + l ) e S * = ± 1 ' 

a particular case of (26). All these results, we believe, motivate a systematic 
study of "integer products". The product representation (23) portrays one of 
the many connections between the theory of arithmetical functions and certain 
problems in algebra. We will only mention here the general set-up used by 
Elliott in his presentation. Let 01,02,... be a sequence of positive integers. 
Suppose one wants to show that every positive integer n can be written as 
in (23). Consider the multiplicative group Q* of positive rationals. Let T 
denote the subgroup generated by the ay's. Then form the quotient group 
G = Q*/r. The general procedure consists in proving that (i) G is finitely 
generated, (ii) G is of bounded order (that is, there is an integer m such that 
the mth power of every element in it is the identity) and (iii) G is trivial. 
Since every real-valued completely additive function ƒ can be extended in a 
natural way to Q* by defining f{r/s) = f(r) — f(s) for each r/s G Q*, Elliott 
considers a completely additive function as a group homomorphism of (Q*, •) 
into the additive reals (R, +); but these homomorphisms differ only insofar as 
they assume values in nonisomorphic groups, and thus the attention is focused 
on the image groups. This is only the starting point of a general setting which 
allows the author to use the full power of algebraic methods. Consider now 
the vector space C m = C x • • • x C (over the field C). On this space, define 
the L2 norm by 

f m v l / 2 

llvllm=(£lw|2) . 

Now let a; be a fixed large number and put s = s(x) — #{pk < x). Since every 
complex-valued additive function is entirely determined by its values at the 
prime powers, one can easily construct a one-to-one correspondence between 
CM and C*(x). Define the operator T: C3^ — CM by 

T(f)(n) = £ f(pk)(pk(l - 1/P))-1/2 - £ f(pk)((l - 1/P)/P*)1/2. 
pk\\n pk<x 

Then the Turân-Kubilius inequality (22) can be regarded as a bound for the 
norm of T. Elliott studies the underlying operator T. For this problem 
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and others, he applies several tools of functional analysis. These techniques 
allow one to consider classical problems involving arithmetical functions with 
a different approach. In particular, it can be shown that determining the best 
constant in the Turân-Kubilius inequality is equivalent to finding the spectral 
radius of a certain operator (see Hildebrand [26], Elliott [11]). 

Finally we observe that, by including a series of 108 exercises and a list 
of 18 open problems at the end of his manuscript, Elliott makes an effort to 
reach the graduate student. On the other hand, he further improves upon his 
presentation by including a kind of update on some of the material published 
in his two books on probabilistic number theory [9, 10]. 

What makes a particular subject in mathematics interesting is either the 
importance of its results or the scope of the methods used to derive them. By 
his presentation, Elliott shows that the theory of arithmetic functions satisfies 
both these criteria. 
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