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ON THE LIE SUBGROUPS 
OF INFINITE DIMENSIONAL LIE GROUPS 

J. LESLIE 

1. Introduction. Milnor [4] posed the question, "Does every closed Lie 
subalgebra of the Lie algebra of an infinite-dimensional Lie group modelled on 
a complete locally convex topological vector space correspond to an immersed 
Lie subgroup?" Omori [5] has shown that the answer to this question is 
negative in general; in this note we outline conditions under which a positive 
answer can be given. 

Correspondence with Milnor has been helpful in preparing the present ver­
sion of this research announcement. 

All of the theorems in this paper have proofs which are written down. The 
author is in the process of preparing a manuscript in which detailed proofs 
are presented. 

Let us recall that a subset of a real vector space E is said to absorb a subset 
B of E when there exists a constant À > 0 so that XB Ç A. 

We shall call a subset, S, of a vector space which is circled (i.e. |A| < I and 
s G S implies Xs € S) and convex a disk. 

DEFINITION 1. A bornological vector space is a Hausdorff, locally convex, 
topological vector space in which any disk which absorbs every bounded subset 
of E is a neighborhood of the origin. 

EXAMPLE 1. A metrizable locally convex topological vector space is 
bornological [1], 

EXAMPLE 2. The locally convex inductive limit of bornological spaces is 
bornological [1]. 

CONVENTION. C° will mean continuous in this paper. 
DEFINITION 2. We say that ƒ : U -> F is Gateaux Cn smooth when there 

exists fc-multilinear symmetric continuous functions Dkf(x) : Ex-xE-^F, 
1 < fc < w, x E f/, so that each 

Dkf:UxEx >..xE->F 

is continuous and each 

Fk(v) = f(x+v)-f(x)-Df(x)(v) ±Dkf(x)(v,...,v), l<k<v, 

satisfies the property that 

is continuous at (0,v). 
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DEFINITION 3. Given a Lie group G modelled on a complete bornological 
space Q the manifold structure on G gives rise to a local trivialization of the 
tangent bundle TG at e € G over a coordinate neighborhood of G at e, say 
[7, so that TU « U x Q. In general a right invariant vector field £ will define 
with respect to this trivialization a nonconstant function X$: U —» Q. We 
say that the Lie group is nice when given any pair of closed, bounded disks 
B, G Ç Q there exists a sequence of closed, bounded disks C i , . . . , G n , . . . and 
0 < e < 1 so that 

(1) X^{xo + eC) Ç Ci, for £ G eB. 
(2) xo + eG + (e/l!)Ci + • • • + {en/nl)Cn Ç U. 
(3) There exists a positive integer p and a closed bounded disk D so that 

Dn = X)q>n(l/g!)Cg S A f°r n ^ P> converges to 0 in F for the D-gauge 
norm topology on FD. 

DEFINITION 4. Let ^ b e a topological vector space and U Ç E a neigh­
borhood of the origin, a [/-system of generators S of the bounded sets of E 
is a collection of bounded subsets of U so that 

(i) given BuB2eB, there exists B3 e B with S i U B2 C B3; 
(ii) given any bounded subset C Ç E, there exists B G S which absorbs C. 
DEFINITION 5. A nice Lie group is called perfect when with respect to the 

canonical coordinate system ((7, </>) of the definition of niceness (see Definition 
3) we have a neighborhood Uo of the identity with U§ Ç U so that </>{Uo) Q 9 
is a convex open neighborhood of the origin and so that given any pair, a G Uo 
and 0 < la < 1, we have that there exists a l/o-system of generators B so that 
B G S, and h€ B implies 

{Dx{<t> o Ra o </>-% - Dx{(j> o Ra o O o X B ) Ç laDx{<j> o Ra o ^ M B ) ; 

for all S G S, where D ^ )y is differentiation at y. 
EXAMPLES, (a) Banach-Lie groups are perfect. 
(b) Let Gn Ç Gn+i be a sequence of Banach-Lie groups. Then limnGn is 

a perfect Lie group. 
(c) Let M be a compact C°° manifold without boundary, then Diff°°(M) 

with the C°° topology is perfect. 
(d) Let M be a compact real analytic manifold without boundary, then 

Diffw(M) with Cw topology is perfect. 
(e) Let V\ be a finite-dimensional vector space over R and let V = V\-\ h 

Vi H be the free Lie algebra generated by V. The Campbell-Hausdorff for­
mula defines a perfect Lie group structure on V = YiieN ^ w ^ n *n e Cartesian 
product topology. 

2. Statement of Theorem. 
DEFINITION 6. Given a Lie group G with Lie algebra Q. A closed Lie 

subalgebra U which has a closed complement K in Q is called admissible 
when there exists a chart at e G G, (^,17), and a direct sum decomposition 
g = # -f JC so that the composition 

</>*: £->7r>/oX£(x), £ G # , 
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is an isomorphism onto H for each x € U, where 7r>/:p = )/ + JC-»)/ is the 
canonical projection; further we suppose that the map 

9:U->L(M,){) 
given by x —• ^~x is locally strongly bounded (i.e. given B a bounded disk in 
H and xo G t/, there exists e > 0 so that $(xo + ^B)(C) Ç # is bounded for 
every bounded JB Ç #). 

THEOREM. Let G be a perfect Lie group modelled on a complete bornologi-
cal space with Lie algebra Q, and suppose that M is an admissible Lie subalgebra 
of Q. Then there exists a Lie subgroup H having M as its Lie algebra, 

EXAMPLES, (a) The C°° divergence free vector fields and the C°° locally 
Hamiltonian vector fields form admissible subalgebras of the Lie algebra of 
Diff°°(M), where M is a compact C°° manifold without boundary. 

(b) Banachable Lie subalgebras with a closed complement in the Lie algebra 
of a nice Lie group are admissible. 

The verification of Example (a) depends on the so-called normal coordi­
nates of Omori [6]. 

3. Remarks on the proof. The principal tool in the proof of the above 
theorem is the following version of a Frobenius theorem. This is a subtle 
theorem, as in the classical case it depends on an existence and uniqueness 
argument and on the smooth dependence on initial conditions. 

THEOREM. Let E and F be complete bornological spaces and E' ÇE and 
F' Ç F open sets. Suppose f:E'xF'xE->FisaC2 map linear in E. 
Suppose for each (x, y) € E' x F' and each pair (o, 6) € E x E that the map 

r) i ft f 
( M ) - > ^(^y>û;6) + —(x,2/,a;/(x,y,6)) 

is symmetric in (a, 6). 
Further, suppose that given xo € E', yo G F' and closed, bounded disks 

B Ç C and C Ç F that there exists 0 < e < 1 and a sequence of closed, 
bounded disks CnC F so that XQ + eB C E', yo + eC Ç F' and so that 

(1) f{xo + eB,y0 + eC,B)ÇC1; 
(2) 

and 

|^(io + eB,y0 + eC+YiCi+--- + J , Cn)(Cn) ç Cn+1; 

(3) there exists a positive integer p and a closed, bounded disk D, so that 

q>n H' 

for n > p converges to 0 in FQ = UA>O ^ for ^e & QauQe norm topology. 
Then there exist open neighborhoods UQ ofxo in E\ and VQ ofyo in F\ and a 
unique C2-mapping 

a:U0xV0-+F 
so that a(xo,y) = y and D\a(x,y) = ƒ(#, a(x,2/)). 
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