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SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS 

ALAN WEINSTEIN 

0. Introduction. A symplectic groupoid is a manifold T with a partially 
defined multiplication (satisfying certain axioms) and a compatible symplectic 
structure. The identity elements in T turn out to form a Poisson manifold To? 
and the correspondence between symplectic groupoids and Poisson manifolds 
is a natural extension of the one between Lie groups and Lie algebras. 

As with Lie groups, under certain (simple) connectivity assumptions, every 
homomorphism of symplectic groupoids is determined by its underlying Pois­
son mapping, and every Poisson mapping may be integrated to a canonical 
relation between symplectic groupoids. On the other hand, not every Poisson 
manifold arises from a symplectic groupoid, at least if we restrict our attention 
to ordinary manifolds (even non-Hausdorff ones), so "Lie's third fundamental 
theorem" does not apply in this context. 

Using the notion of symplectic groupoid, we can answer many of the ques­
tions raised by Karasev and Maslov [9, 10] about "universal enveloping alge­
bras" for quasiclassical approximations to nonlinear commutation relations. 
(I wish to acknowledge here that [9] already contains implicitly some of the 
ideas concerning Poisson structures and their symplectic realizations which 
were presented in [18].) In fact, the reading of Karasev and Maslov's pa­
pers was one of the main stimuli for the work described here. Following their 
reasoning, it seems that a suitably developed "quantization theory" for sym­
plectic groupoids should provide a tool for studying nonlinear commutation 
relations which is analogous to the use of topology and analysis on global Lie 
groups in the study of linear commutation relations. Such a theory would 
also clarify the relation, mostly an analogy at present, between symplectic 
groupoids, star products [2], and the operator algebras of noncommutative 
differential geometry [3]. 

More immediately, the notion of symplectic groupoid unifies many con­
structions in symplectic and Poisson geometry; in particular, it provides a 
framework for studying the collection of all symplectic realizations of a given 
Poisson manifold. 

A detailed exposition of these results will appear in [4]. Many of the 
details were worked out during a visit to the Université Claude-Bernard Lyon 
I. I would like to thank Pierre Dazord for his hospitality in Lyon, as well 
as for many stimulating discussions. The idea of introducing groupoids into 
symplectic geometry arose in the course of conversations with Marc Rieffel 
about operator algebras and the subsequent reading of J. Renault's thesis 
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1. Definitions. We recall that a groupoid is a set T equipped with a subset 
To of identity elements, projections a ("source") and /3 ("target") from T to 
To, a multiplication operation (x,y) »-> xy defined whenever /3(x) = «(y), 
and an inversion operation t: T —• T, satisfying algebraic axioms generalizing 
those of a group [7, 11, 14]. 

If T is a G°° manifold, and all the other objects appearing in the definition 
above are C°° manifolds, submanifolds, and mappings, with a and /? submer­
sions, then T is called a differentiable groupoid. If T is also equipped with a 
symplectic structure fi for which the submanifold I^ = {(^,x,y)| z = xy} is 
lagrangian in (r , fi) x (r, —fi) x (r, — fi), then we call T a symplectic groupoid. 
(The closely related but less useful concept of "*-algebra in the symplectic 
category" was introduced in [17].) 

2. The Poisson manifold of a symplectic groupoid. It is easy to show 
that the inversion mapping on a symplectic groupoid T is antisymplectic and 
that To is lagrangian. With some more effort, one shows that a*(G°°(ro)) 
and /3*(C°°(TQ)) are the centralizers of one another in the Poisson bracket 
Lie algebra C°°(T). It follows from the theory of Poisson dual pairs [18] that 
there is a uniquely determined Poisson structure on To for which the mappings 
a and /? are Poisson and anti-Poisson respectively. 

3. Examples. Two classes of examples generalize those in [17]. 
A. Cotangent bundles. Let G be any differentiable groupoid, and let G3 be 

the submanifold {(2, x,y)\ z = xy} in G x G x G. Then the conormal bundle 
v*G3 is lagrangian in T*(G xGxG) = T*Gx T*G x T*G, where T*G has 
the canonical symplectic structure fie?; multiplying the cotangent vectors in 
the last two factors by - 1 gives a lagrangian submanifold of (T*G, fie) x 
(T*G,-fiö) x (T*G,—fio) which is 1^ for a symplectic groupoid structure 
on T = T*G. (T3 is also the wavefront set for convolution in the groupoid 
algebra [3, 14] of G.) To turns out to be the conormal bundle ^*Go, with a 
Poisson structure for which the functions on v*Go which are linear on fibres 
form a Lie subalgebra of G*(i/*Go). (Thus, the sections of the normal bundle 
VGQ form a Lie algebra; this is just the Lie algebroid of Pradines [13].) 

For example, if G is a Lie group (a differentiable groupoid with just one 
identity element), the Poisson manifold To is just the dual space g* of the 
Lie algebra of G, with its well-known Lie-Poisson structure. At the other 
extreme, if G is a trivial groupoid (i.e. Go = G), then the groupoid structure 
on T = T*G is addition along the fibres, and the Poisson structure on To = G 
(the zero section in T*G) is trivial. If G is the associated groupoid [11] of 
equivariant maps between fibres in a principal bundle H —• B —> X, then 
r 0 is the "phase space of a classical particle in a Yang-Mills field" [15, 16] 
with configuration space X and internal variables in h*. Finally, if G is the 
holonomy groupoid of a foliation [3, 19], then To is the "cotangent bundle 
along the leaves", natural domain for the symbol calculus of the operator 
algebras associated with the foliation [3]. 

B. Fundamental groupoids. If (P,fi) is any symplectic manifold, then 
(P,fl) x (P, —fi) is a symplectic groupoid with respect to the operation 
(p> Q)(QI r) = (p>r)- Covering this product are the fundamental groupoid 7r(P) 
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[homology groupoid M{P)} consisting of homotopy [homology] classes of paths 
in P with fixed endpoints. Both TT(P) and U(P) have compatible symplectic 
structures pulled up from (P,Q) x (P, -f i ) . Any symplectic action of a Lie 
group on P lifts to actions on 7r(P) and M{P) which are hamiltonian (i.e., 
admitting ad*-equivariant momentum mappings). 

4. Constructing symplectic groupoids. To construct a "local sym­
plectic groupoid" T for a given Poisson manifold To, it is enough to have any 
symplectic manifold S equipped with a Poisson mapping a: S —• TQ and 
a lagrangian cross section for a, which identifies To with a submanifold of 
S. From this data, one can construct in a canonical way a local groupoid 
structure [7] on a neighborhood of I\) in S. 

It was shown in [18] that such a map a: S —• To always exists if we 
take sufficiently small open subsets in To. Using the theory of symplectic 
groupoids, we can now show that these local symplectic realizations can be 
sewn together to produce a realization for all of To- This implies the existence 
of a local symplectic groupoid associated with every Poisson manifold. [Added 
in proof. This result, together with other ideas closely related to our work, is 
also contained in [20].] 

It is not always possible to extend a local symplectic groupoid to a global 
one, though. Consider, for instance, To = 5 2 x R with a Poisson structure in 
which the symplectic leaves are 52 ,s with area given by the function t *-> l+t2 

on R. Then the natural candidate for T turns out to be singular along a 4-
dimensional manifold, with normal spaces given by the quotient of R2 by the 
Z action n • (t,y) = (t,y + nt). The nonexistence of a nonsingular T for this 
T0 is related to the violation of the linear variation property of Duistermaat-
Heckman [6]. The failure of "Lie III" and the need for generalized manifolds 
have already been observed in several related contexts [1, 5, 7, 8, 12]. 
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