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COUNTING LATIN RECTANGLES 

IRA M. GESSEL 

A fc x n Latin rectangle is a fc x n array of numbers such that each row 
is a permutation of {1,2, . . . , n} and each column has distinct entries. The 
problem of counting Latin rectangles is of considerable interest. Explicit for­
mulas for fc = 3 are fairly well known [1-3, 4, pp. 284-286 and 506-507, 5, 
6, 9-11, 12, pp. 204-210]. Formulas for fc = 4 were found by Pranesachar et 
al. [1, 9] and a complicated formula for all fc was found by Nechvatal [8]. We 
give here a simple derivation of a formula similar to Nechvatal's. The formula 
implies that for fixed fc, the number of fc x n Latin rectangles satisfies a lin­
ear recurrence with polynomial coefficients. We use properties of the Möbius 
functions of partition lattices, as did Bogart and Longyear [2], Pranesachar 
et al. [1, 9], and Nechvatal [8], but in a somewhat different way. 

In order to state the formula, we first make some definitions. Let P be 
the set of partitions of k = {1,2, . . . , fc} and let S be the set of nonempty 
subsets of k. If ƒ is a function from P to the nonnegative integers N, and A 
is in S, then we set (ƒ, A) = Y1*BA f M ' w n e r e the s u m 'ls °ver all partitions 
7T of which .A is a block. We shall say that two functions f,g: P —> N are 
compatible if (f,A) = (g,A) for each A in S. 

THEOREM. The number of kxn Latin rectangles is 

where the sum is over all compatible pairs ƒ, g of functions from P to N 
satisfying J2„eP ƒ00 = J2*eP 000 = n' 

PROOF. We first restate the problem in terms of bipartite graphs. Given 
a, kxn "rectangle" satisfying the row conditions, but with column entries not 
necessarily distinct, we may associate to it a bipartite graph with vertex sets 
P = {pi,P2î---,Pn} and Q = {91,^2,- •• ><?n}, and with edges colored in fc 
colors. (We identify the set of colors with k.) If the rectangle has the entry / 

Received by the editors January 29, 1986 and, in revised form, September 20, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 05A15. 

©1987 American Mathematical Society 
0273-0979/87 $1.00 + $.25 per page 

79 



80 I. M. GESSEL 

in the (i, j) position, then the graph has an edge of color i from vertex pj to 
vertex qi. For simplicity we refer to bipartite graphs obtained from rectangles 
this way as colored graphs. They have the property that each vertex is incident 
with one edge of each of the k colors. A Latin rectangle will correspond to a 
colored graph without multiple edges. We call these graphs Latin graphs. 

Let us define a partitioned graph to be an ordered pair (G,7), where G is 
a colored graph and 7 is a function defined o n P x Q such that ^(p, q) is a 
partition of the set of colors of the edges of G from p to g. We shall count 
Latin graphs by counting partitioned graphs weighted in such a way that the 
sum of the weights of all partitioned graphs corresponding to a given colored 
graph will be 1 if the colored graph is Latin and 0 otherwise. 

By the Möbius function of a partition 7r of a set T — {ti, ^2,. •., tm} we 
mean the Möbius function of the interval [0, ir] in the lattice of partitions of 
T, where 0 is the partition {{£1}, {£2}, • • • > {̂ m}}« It is well known [13, 14] 
that if 7T has blocks of sizes 61,62,... , 6r, then the Möbius function of n is 
ni=i(~l)6 i '"1(6i — 1)!. Now let us weight a partitioned graph by the product 
of the Möbius functions of its partitions. It follows from the basic property of 
the Möbius function that, with this weighting, the sum of the weights of all 
partitioned graphs is equal to the number of Latin graphs. 

We now need only count weighted partitioned graphs. If (G, 7) is a parti­
tioned graph we can construct a new kind of object by "cutting in half" all 
the edges of G. When we do this we lose adjacencies of vertices, but we retain 
the partitions of colors at each vertex. 

More formally, we define a semigraph to be a function a that assigns to each 
element of PUQ a partition of the set of colors. The operation of "cutting the 
edges in half" applied to a partitioned graph (G, 7) assigns to it the semigraph 
a as follows: for p G P, 

"(P) = U 'ïfotf)' 

and for q G Q, 

peP 

If v is a vertex, we call the elements of a(v) the half-edge blocks at v. 
We now construct a generating function for semigraphs. We shall then 

apply a linear operator that converts this generating function into the sum of 
the weights of the partitioned graphs. 

For each A G S, let XA and Y A be variables, and for any partition ir in P, 
let 

X* = I ] XA and F. = J ] Y*' 
AG7T A G T T 

We now assign to any semigraph a the weight 

I I ^a(p)ya(9)-
p€P, q€Q 
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It is clear that the sum of the weights of all semigraphs is 

\ireP J \<reP J 
Now given a semigraph a, how can we construct all partitioned graphs 

corresponding to it? We can do this by pairing up half-edge blocks of P with 
half-edge blocks of Q corresponding to the same set of colors. In order for this 
to be possible, it must be the case that for each subset A of k, the number of 
half-edge blocks of P corresponding to A must equal the number of half-edge 
blocks of Q corresponding to A. If this is the case, and the number of each 
is CA, then the half-edge blocks corresponding to A can be paired up in c^! 
ways, and each pair should be assigned the weight ( - l ) ^ ' " 1 ) ^ ! -1)! . Thus 
the number of Latin graphs is obtained by expanding (1), and then applying 
the linear operator that takes the monomial I 1 A G S ( ^ ^ 4 ) C A ^° 

J J ( _ 1 ) C A ( | A | - I ) ( | A | _ 1 ) ! C A C A ! 

AGS 

and takes monomials not of this form to zero. To get an explicit expression, 
we expand (1) by the multinomial theorem, getting 

V n ! 2 TT WOOyoOO 

fciu,/M!»wiir- ' 
where the sum is over all functions ƒ, g: P —» N for which J2neP f l71") = 

X^TTGP ^(7r) = n> an(^ ^ e * n e o r e m follows easily. 
It follows from the theorem and from results of Zeilberger [16] and Lipshitz 

[7] that for fixed fc, the number Lk(n) of k x n Latin rectangles is P-recursive 
[15], i.e., that for some M and for some polynomials Ci(n), i = 0 , . . . ,M 
(depending on fc), 

M 
Y^Ci{n)Lk{n + i) = 0 . 

The method described here can also be used to count regular graphs and 
digraphs of various types, or equivalently, positive integer and 0-1 matrices 
with prescribed row and column sums. 
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