
254 BOOK REVIEWS 

6. R. Gans, Fortpflanzung des Lichts durai ein inhomogenes Medium, Ann. Phys. 47 (1915), 
709-736. 

7. B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and applications of Hopf bifurcation, 
London Math. Soc. Lecture Series, No. 41, Cambridge Univ. Press, Cambridge, London, New 
York, 1981. 

8. R. E. Langer, On the asymptotic solutions of ordinary differential equations with an application 
to the Bessel functions of large complex order, Trans. Amer. Math. Soc. 34 (1932), 447-480. 

9. , The asymptotic solutions of ordinary linear differential equations of the second order, 
with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), 545-582. 

10. C. C. Lin, The theory of hydrodynamic stability, Cambridge Univ. Press, Cambridge, 1966. 
11. Y. Sibuya, Global theory of a second order linear differential equation with a polynomial 

coefficient, North-Holland Math. Studies no. 18, North-Holland-American Elsevier Publ. Co., 
Amsterdam-New York, 1975. 

12. W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience Publ., New 
York, 1965. 

NICHOLAS D. KAZARINOFF 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 15, Number 2, October 1986 
©1986 American Mathematical Society 
0273-0979/86 $1.00 + $.25 per page 

Theory of multipliers in spaces of differentiable functions, by V. G. Maz'ya and 
T. O. Shaposhnikova, Monographs and Studies in Mathematics, vol. 23, 
Pitman Publishing Co., Brooklyn, New York, 1985, xii 4- 344 pp., $49.95. 
ISBN 0-273-08638-3 

1. Multipliers. One of the simplest examples of a multiplier in a space of 
differentiable functions is a measurable function y(x), x G RW, such that the 
operator of pointwise multiplication u -> y • u is bounded from the Sobolev 
space W^ on Rn into L2 on Rn\ equivalently, there is a constant c such that 

(1) ƒ \y(x) • <t>(x) fdx < cƒ (| V*(x) |2 + |* (x) f) dx 

for all <j> e C0°°(R"). The space of all such y is denoted by M(W} -* L2), with 
the smallest c in (1) the square of the multiplier norm of y. Clearly, one can 
easily extend this notion to pairs of higher-order Sobolev spaces: Wp

m -> Wf, 
k < m, 1 <p,q < oc, or for that matter, to any of the various pairs of 
function spaces that naturally occur in analysis. The coefficients of a differen­
tial operator acting on Sobolev functions can be interpreted as multipliers. For 
example, if P(x, D)u = L{a{<kaa(x)D?u, then P: Wp

m -> Wp
m~k is continu­

ous when aa e M(Wp
m~lal -» Wp

m~k). The function y is called a compact 
multiplier if the operator of pointwise multiplication is a compact operator. 
The principal theme of the book under review (referred to below as Multi­
pliers) is the characterization of multipliers and compact multipliers in the 
basic Sobolev-type spaces used in analysis. Because of their connection to 
differential equations, it is not surprising that there are plenty of sufficient 
conditions in the literature for multipliers or compact multipliers. For example, 
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saying simply that "the coefficients are sufficiently smooth" in a differential 
operator is one such condition. The object, however, is to find necessary and 
sufficient conditions, or even just good sufficient conditions. Here the word 
"good" describes some ideal (largest) useful subclass of multipliers that can be 
easily and simply described. 

A necessary and sufficient condition on y that insures (1) for « ^ 2 is 

(2) sup( ƒ |Y(JC) I dx/ca.p(E)\ < oo, 

where the supremum is taken over all compact subsets E of R" of diameter < 1. 
Here cap(E) is the infimum of the integral on the right-hand side of (1) over 
all C™(Rn) functions <t> that are > 1 on E. This set function (capacity) is an 
equivalent form of the classical Newtonian capacity of E when n > 3 and the 
logarithmic capacity of E when n = 2. When n = 1, condition (2) simplies. It 
becomes 

(3) sup ( | Y ( > 0 I dy < oo. 
x J\x-y\<l 

These characterizations are the prototypes of the various characterizations of 
spaces of multipliers found in Multipliers. Condition (2) originated with V. G. 
Maz'ya [1]. The compact multiplier characterizations are given in an analogous 
fashion. 

Condition (2) has its drawbacks. It requires that each compact set be 
checked; it is well known that just letting E in (2) range over all balls in Rn is 
not enough. Nevertheless, (2) is surprisingly useful. For example an easy 
potential-theoretic argument shows that 

(4) sup/* \x - y\2-n\y{y)\2 dy < K 

implies (2) when n ^ 3. Also the " isoperimetric inequality" between Newto­
nian capacity and Lebesgue measure of a body implies that if y is in the 
Lebesgue space Ln, then (2) holds. Several authors have recently investigated 
the possibility of replacing condition (2) altogether, by a condition using only 
balls. For example, R. Kerman and E. Sawyer in [2] show that (1) is equivalent 
to 

(5) sup | fB [G^lYl2 • XB)]2dx/fB \y\2dx} < oo, 

where XB is the characteristic function of the ball B, and Gx(f) denotes the 
Bessel potential of ƒ of order 1. Also, f or n > 3 there is a simple and elegant 
sufficient condition for (1) using only balls due to C. Fefferman and D. H. 
Phong [3], It reads 

(6) sup j | £ | 2 ' / n - 1 | \y(x)\2*dx\ < oo 

for some p > 1. Notice that (6) reduces to (2) when E = B and p = 1. Other 
recent work extending the Fefferman-Phong result are contained in [4, 5, and 
6]. In these latter papers the idea is to characterize the multipliers on weighted 
Sobolev spaces. 
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2. Schrödinger operators. An area that has contributed to the theory of 
multipliers is the study of a particular differential operator, the Schrödinger 
operator: H = -A + F(x), A being the Laplace operator on Rn and V(x) a 
potential function on R". The idea over the years has been to find conditions 
on V that will yield a complete theory for such operators and still include all of 
the physically interesting potential functions. This theory starts simply with the 
problem of defining the operator and then studying its spectra, eigenvalues, 
eigenfunctions, etc. For example, asking that H be a bounded operator from 
W% into L2 would require that V be in M{W2 -> L2). This is rather severe. 
An alternative is to weaken the definition of if, allowing it to be only weakly 
defined on W?—in physical language, defined as a "form sum". In any case, 
to guarantee that the domain is sufficiently large one needs the estimate 

(7) |(*,K*)| < « ( * , - * * ) + *(*>*) 

for all <j> e C™(Rn). The symbol (•,• ) denotes the usual L2 inner product. 
Here a and b are positive constants with a < 1. If V has a fixed sign, then (7) 
clearly asks that at least it is ± the square of a multiplier in M{W2

l -» L2), 
one with a special size requirement on its norm. Thus a class of V that gives 
(7) with small a (at the expense of b) is of some interest in dealing with H. In 
the recent "comprehensive review" article [7], B. Simon singles out the good 
class (n > 3) 

(8) lim sup f \x-y\2~n\V(y)\dy = 0. 
S-+0 x J\x-y\<8 

This condition plays a central role in [7]—as well as implying (7) for small a. 
Furthermore, (8) is very closely related to the compactness conditions for a 
multiplier y, V = |y|2. In fact, if such a y satisfies (8) and has compact 
support, then it will be a compact multiplier. 

Condition (8) is the result of many years of study of the operators H. Early 
ideas for general conditions on V include those of T. Kato (early 1950s), 
H. Rollnik (1956), F. Stummel (1956), V. G. Maz'ya (1964), M. Schechter (late 
1960s), B. Simon (1970s) and others. In fact, (8) is a modified Stummel-
Schechter condition. These are all multiplier-type conditions, but conditions 
motivated mainly by physical considerations. Condition (2) was also motivated 
by the Schrödinger operator; however, it appears that the higher-order L 
analogues of (2) were motivated more by purely mathematical considerations, 
namely by a desire to complete the characterization of multipliers begun by 
A. Devinatz and I. I. Hirschman (1959-1962) and by R. Strichartz (1967); 
later contributions included work of J. C. Polking (1972), V. G. Maz'ya-T. O. 
Shaposhnikova (1979-1981), D. A. Stegenga (1980), and others. The book 
Multipliers follows this second approach and, unfortunately, does not even 
mention the physical background. (And for that matter, the review [7] ignores 
the Maz'ya treatment of Schrödinger operators.) Nevertheless the different 
approaches to multipliers have common roots. Perhaps the appearance of 
Multipliers will spark an interchange of ideas between these two approaches. 
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3. About the book. I was pleased when I noticed that the Pitman Press was 
publishing Multipliers. Indeed, my own interests over the last ten to fifteen 
years have been in areas of mathematics quite closely related to work of V. G. 
Maz'ya—specifically in nonlinear potential theory and its associated theory of 
L^-capacities. These are the central concepts used in Multipliers. Thus, it is 
nice to see this body of ideas developed further and applied. Also it is nice to 
see the work of Maz'ya-Shaposhnikova appear in book form in the Western 
press. They have many papers on multipliers and related topics scattered 
throughout the journals. These are now collected, organized and accessible. 
Furthermore, I have felt for some time that the work of Professor Maz'ya has 
not received the attention in the West that it deserves. This is especially true 
with regard to his ideas on multipliers and their relationship to differential 
equations, e.g., the Schrödinger equation with irregular potentials, as men­
tioned earlier. This book should help rectify this situation. 

The work of Professor Maz'ya, alone or with various colleagues, has ap­
peared now for fully two and a half decades. He has written on many diverse 
subjects, including the study of Sobolev functions on domains with irregular 
boundaries (extension theorems, embedding theorems, counterexamples, etc.), 
and has made extensive contributions to the theory of elliptic boundary value 
problems, especially in irregular regions. Since many of his original papers are 
rather difficult to obtain in the West, it is worth knowing that some of this 
material has been collected in translated editions. With regard to Sobolev-type 
functions one should consult his work with Yu. D. Burago [8] and his three 
volumes in German in the Teubner-Text zur Mathematik series [9]. In fact, it is 
the bulk of these three volumes that constitutes the new book Sobolev spaces, 
Springer-Verlag, 1985. Almost all of the prerequisites needed to read Multi­
pliers can be found in this book. In partial differential equations there is the 
recent Elliptic boundary value problems (Amer. Math. Soc. Transi., vol. 123, 
1984) co-authored with B. A. Plamenevskiï, N. F. Morozov, and L. Stupyalis, 
as well as a 1981 Akademie-Verlag manuscript on differential operators in a 
half-space (in German), co-authored with I. W. Gelman. 

Multipliers is, however, a very technical and specialized book that I would 
recommend mainly as a reference/research text. It contains a wealth of 
information—results due mainly to the authors—but it is a very exhausting 
book to read, especially, I suspect, for someone trying to read this material for 
the first time. The multiplier characterizations are produced with an increasing 
degree of complexity, from the classical Sobolev spaces on Rn in Chapter One 
to Bessel potentials in Chapter Two and then to the Besov space situation 
(fractional derivatives in Lp using difference quotients) in Chapter Three. 
Compact multipliers are treated in Chapter Four. It is not until Chapter Six 
that multipliers for Sobolev spaces on subdomains of Rn are considered, and 
then essentially only for Lipschitz domains (only five pages are devoted to the 
general domain situation). There are several applications of multipliers scattered 
throughout the first six chapters (including the discussion of the spectrum of a 
multiplier operator, differentiable maps on surfaces and manifolds, and the 
implicit function theorem), but it is really Chapter Seven that concentrates 
solely on applications. Here two problems in the regularity theory of the 
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boundary of a domain in the L^-theory of elliptic boundary value problems are 
discussed: the Fredholm property of a differential operator and the solvability 
of the Dirichlet problem in a Sobolev space on a bounded Lipschitz domain. In 
this last case, the " boundary maps" are now multipliers on certain Sobolev-type 
spaces on the boundary. An omission with regard to applications is the failure 
to mention any connections between the theory of multipliers and the existence 
of solutions to various nonlinear partial differential equations. One such 
obvious reference is [10]. It is, in fact, of interest to compare the Berger-
Schechter conditons for compact multipliers with those of Multipliers. There is 
a very nice and brief summary of the results of the book in the introduction, as 
well as a large list of references, two indices, and a list of symbols used in the 
text included at the end. These aid the reader considerably. 

4. Nonlinear potential theory. Finally, a few words should be added here 
about the principal tool used in Multipliers, namely nonlinear potential theory. 
The foundations of this theory were laid down in the late 1960s-early 1970s by 
several groups and individuals working independently: V. G. Maz'ya and V. P. 
Havin in Leningrad, L. I. Hedberg in Stockholm, N. G. Meyers and myself in 
Minneapolis and others including B. Fuglede, J. G. Resetnjak, 
J. Serrin, W. Littman, and J. Polking. But even as early as 1961, Professor 
Maz'ya began to develop his ideas for a capacity based on functions whose 
derivatives belong to the L^-spaces rather than the more traditional L2 or 
Hubert space case (Dirichlet space). The basic goal of this theory is to extend 
the ideas of classical (linear) potential theory (Newtonian potential, capacity, 
harmonic function, etc.) to a nonlinear setting—in particular, to an Zy-setting, 
p ¥= 2. The Dirichlet integral is replaced by j\Vu\pdx, 1 < p < oo (or by 
higher-order analogues), harmonic functions by solutions to the /?-Laplace 
equation &pu = 0, superharmonic functions by -Ap supersolutions, etc. Here 
the p-Laplacian of u is 

àpu = div(\Vu\p~2Vu), 

which becomes the usual Laplacian when p = 2. The Riesz decomposition 
theorem on R" implies that superharmonic functions are Newtonian potentials 
modulo harmonic functions. It turns out that the right version of Newtonian 
potential in the p ¥= 2 case is the nonlinear potential 

j\x-y\l-"iyj\y-zr"dV.{z))jl dy, 

l/p + l/q = I, li = Borel measure. Notice that these nonlinear potentials are 
just Newtonian potentials when p = 2. However, these new potentials are not 
— A^ supersolutions. Thus it would seem that the potential theory associated 
with these nonlinear potentials is at best only very weakly linked to the 
differential equation side. Nevertheless, there are still very strong parallels to 
the classical theory including: capacity theory, removable singularity theory, 
and boundary regularity theory (Wiener criteria) for partial differential equa­
tions. Of course, the L^-methods are much different than the classical ones. 
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The nonlinear potential theory used in Multipliers is pre-1980. In 1983 with 
the publication of [11], T. Wolff removed an inherent difficulty in the theory. 
One consequence of this theory for Multipliers is that certain capacities based 
on the Besov spaces in Chapter Three need not be introduced, or to say it 
another way, the capacities based on the Besov spaces of Chapter Three are 
equivalent to the corresponding capacities for the Bessel potential spaces for all 
1 < p < oo (see Proposition 3, p. 115). This would improve the treatment of 
the fractional-order derivative case in Chapter Three. It is unfortunate that the 
Hedberg-Wolff results could not have been incorporated into the fabric of 
Multipliers. 
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