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Throughout history, developments in the sciences have caused people to 
change their views of man and his place in the universe. The Copernican 
Revolution placed man on a planet, adrift in space; the Darwinian Revolution 
changed our view of human origins. Computers, too, raise questions about the 
nature of man: can computers think the way we do, and, if so, are we—like 
them—just thinking machines? Of course the question "can a machine think?" 
has been raised before, as long ago as the seventeenth century: by Descartes 
and Pascal, who said no; by Hobbes, who said that thought was mechanical; 
and somewhat later by La Mettrie, who saw man himself as a machine. But 
only in our century, as a result of work in the mathematical sciences, has the 
question "can a machine think?" been given widespread and rigorous discus­
sion. Today computer scientists have devised programs that solve problems 
which, if solved by people, would seem to require intelligent thought. This 
point is made explicit by John McCarthy's name for the field: "artificial 
intelligence." As we shall see, the real controversy about artificial intelhgence 
(AI) is not about the nature of computers and programs; it is about the nature 
of man. 

But first, how would we possibly decide whether computers can think at all? 
Some 35 years ago, Alan Turing suggested a way of testing the assertion that a 
machine could think, without having to worry about the internal workings of 
the machine. If, he said, a machine could successfully imitate a human being in 
a full range of possible conversations, fooling its human conversational partner 
into believing the machine to be human, we ought to conclude that the 
machine was indeed thinking [39]. A machine that could do this would be said, 
in modern terminology, to have "passed the Turing test." Turing's proposed 
test has set the agenda for many subsequent debates over machine and human 
intellectual performance. 

The purpose of the present paper is to provide a historical perspective on 
recent controversies, from Turing's time on, about artificial intelligence, and to 
make clear that these are in fact controversies about the nature of man. First, I 
shall briefly review three recent controversies about artificial intelhgence, 
controversies over whether computers can think and over whether people are 
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no more than information-processing machines. These three controversies were 
each initiated by philosophers who, irrespective of what the programs of their 
time actually did, viewed with alarm the argument that if a machine can think, 
a thinking being is just a machine. I will then turn to the major business of this 
paper: to contrast two developments from within the field of AI which have 
been interpreted by some as successful steps toward simulating human thought, 
and also to contrast some reactions to that claimed success. Finally, we will 
look at some recent developments in the field of AI that suggest that the whole 
discussion about machine intelligence is at best premature and at worst 
irrelevant. 

Alan Turing himself expected that machines eventually would be able to 
pass his "imitation" test. One sophisticated objection, which he argued against, 
might be raised. Kurt Gödel had proved that there were limitations to the 
power of computers: any reasonably rich formal system is incomplete, and the 
consistency of such a system cannot be proved within the system. Turing in 
1937 had himself shown that formal systems are equivalent to the behavior of 
machines. But Turing's reply was that people, just like computers, may well be 
subject to the limitations that Gödel had established [39, pp. 2109-2110]. 
Thus, Turing extrapolated from the "machine equals man" analogy to propose 
a limitation on human thought. 

In 1961, the British philosopher J. R. Lucas, repelled by the idea that people 
are just instances of formal systems, refused to accept Turing's response to the 
Gödel-based objection. Lucas wanted to refute once and for all what he called 
"mechanism"—the view that the whole mind is just the sum of the operation 
of its separate parts. Lucas conceded that Gödel's incompleteness theorem 
applies to the machine. But, he argued, by standing outside the consistent, 
incomplete formal system, we can see some unprovable, meaningful formula to 
be true. The machine cannot produce the formula; we see the formula as true; 
so a human can beat the machine. Moreover, if the mind is just a formal 
system, Gödel's consistency theorem would say that the mind could not 
conclude itself to be consistent. But, Lucas continues, we do in fact assert our 
own consistency. Thus, no mechanical model of the mind can be adequate [24, 
pp. 115,124]. 

Lucas's attempt to show that Gödel's theorem refuted mechanism provoked 
impassioned responses. (For a fuller account of Lucas's view and the responses 
to it, see [16].) Most important for our present purposes is that some of his 
critics accused Lucas of holding too exalted a view of man. For instance, if a 
specific machine cannot assert the true-though-unprovable Gödel formula, 
people cannot always do this either [41, 44]. Further, rather than suggest that 
our self-knowledge shows we are not machines, one can reverse the argument 
and say that, since formal systems cannot know themselves, Lucas's argument 
really implies that human self-knowledge is impossible [2, p. 30]. Again the 
statement "machine equals man" is used to imply that man has all the 
limitations of machines. 

This controversy of the early 1960s made little reference to specific work on 
computer programs. But the 1960s saw the development of programs to play 
chess, to simulate human problem solving, and to carry out (at first in limited 
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areas) natural-language conversations. As often happens in an expanding new 
scientific field, some AI workers extrapolated their early successes, saying not 
"we have a chess program" or "we have a program that solves a class of 
puzzles like the 'cannibals-and-missionaries' problem," but "we're on the track 
of simulating thought." Thus the philosophical debate about what could be 
done, and about the nature of human thought, became bound up with the 
empirical questions of what had been done and of whether existing programs 
were intelligent. In response to the predictions of AI enthusiasts, philosopher 
Hubert Dreyfus said it couldn't be done, first in a paper provocatively entitled 
"Alchemy and AI" in 1965, and then in his book What computers can 7 do, first 
published in 1972. In the book, Dreyfus argued that not even the most highly 
touted AI programs of the time should be called "intelligent," and gleefully 
pointed out that the predictions for the field made by practitioners in 1960, "in 
ten years a computer will be the world's chess champion,... discover and prove 
an important new mathematical theorem," and translate natural languages, 
had not yet come to pass [11, pp. 81-82, 91-92]. These things had not 
happened, Dreyfus argued, because they could not. AI research, he said, rests 
on the false assumption that the human mind works by operating on bits of 
information and performs its operations according to formal rules. Not so, said 
Dreyfus. Computers, in contrast to people, lack the ability to distinguish 
between the essential and the inessential [11, pp. 107, 112]. Man is not "a fact 
or a set of facts," said Dreyfus, but "a being who creates both himself and the 
world of facts in the process of living in the world" [11, pp. 190-191]. If man is 
like this, programmed computers will never satisfy the Turing test. The partial 
successes of AI research are doomed to remain partial. Trying to imitate 
human intelligence with computers, in Dreyfus's view, is like trying to get to 
the moon by climbing trees [27, p. 180]. 

Practitioners in the field responded that Dreyfus's extrapolations about the 
limited future of AI research were the same kind of impossibility-argument as 
those of the seventeenth-century philosophers who denied that there could be a 
vacuum [45, p. 177]. For us, though, the key objection to Dreyfus will be about 
man, not programs. Dreyfus's alternate model of human thought was based 
not on neurophysiology or psychology, but on the philosophical school known 
as phenomenology, a position, according to his critics, neither empirically 
based nor intellectually rigorous. Dreyfus's point that we do not really under­
stand how people think, so we cannot model the process with computers, was 
turned against him by Yorick Wilks, who said that we were so far from 
understanding the processes people use in thinking that the only way we even 
know that other human beings think is by the Turing test [45, p. 183]. 

Attacks on Dreyfus's argument that computers can never pass the Turing 
test make especially interesting the controversy initiated in 1980 by John 
Searle, who argued that even if a computer passed the test, it would not 
necessarily understand [33, pp. 417-419]. Searle's celebrated argument begins 
by imagining a person, knowing no Chinese, locked in a room with a lot of 
boxes filled with Chinese ideographs and with a book of rules in English that 
tells how to match up one Chinese ideograph with another. People outside the 
room pass the man Chinese symbols; obeying the instructions in the book, he 



116 J. V. GRABINER 

passes other Chinese symbols back out to them. His thoughts about the process 
are just, "Oh, it's squiggle, so I must give back squoggle." But the rules in the 
book are so thorough that the man's response to the symbols given him are 
what one would expect from a fluent speaker of Chinese. Thus, the man passes 
the Turing test, but he does not understand Chinese. Therefore, any machine 
of which he and his "program" are an instance does not understand Chinese 
either. Accordingly, Searle concludes that the Turing test is inadequate and 
that the thesis that a computer with an appropriate program is really a mind, 
or the analogous thesis that the mind is just an appropriately programmed 
computer, is wrong. The Turing test, said Searle, is " unashamedly behavioris-
tic and operationalistic." People who accept its adequacy miss the distinction 
between simulation and duplication [33, p. 423]. 

One might think at first that Searle's point is irrefutable. After all, the man 
knows perfectly well that he does not understand Chinese. But the key 
responses to Searle's argument—that the total system (which includes the book 
of rules) understands Chinese, that rejecting behavioral equivalences and 
models would doom all science—were strong, and produced a robust debate 
[16, pp. 475-476; cp Behavioral and Brain Sciences 3, 1980, pp. 417-457]. 
However, for our present task, the major point is that the purpose of Searle's 
Chinese-room thought-experiment was to reaffirm the complexity of human 
thought and the primacy of human intention. What he objected to was not the 
idea that collections of metals and circuits could learn and think, but to 
equating human understanding with merely being a formal system [34, p. 453]. 

All three of the controversies just described are about this question: if some 
kind of machine can do what a person can, is a person that kind of machine? 
But all these discussions have concerned the realm of philosophical possibility. 
Let us now pursue the discussion in the realm of scientific practice; let us 
examine some actual programs, the claims made about them, and some 
reactions to those claims. 

In 1966, Joseph Weizenbaum of MIT described a computer program which 
could simulate, in limited circumstances, a natural-language conversation, 
playing an English-speaking psychotherapist of the school of Carl Rogers. This 
program, which Weizenbaum named ELIZA, impressed people tremendously. 
Here are some excerpts from Weizenbaum's published example of the program 
in action: 

(Patient): Men are all alike. 
(DOCTOR): IN WHAT WAY 

(Patient): They're always bugging us about something or other. 
(DOCTOR): CAN YOU THINK OF A SPECIFIC EXAMPLE 

(Patient): Well, my boyfriend made me come here. 

(DOCTOR): WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME 
HELP 

(Patient): Perhaps I could learn to get along with my mother. 
(DOCTOR): TELL ME MORE ABOUT YOUR FAMILY 
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(Patient): My father is afraid of everybody. 
(DOCTOR): WHAT ELSE COMES TO MIND WHEN YOU THINK OF 

YOUR FATHER 
(Patient): Bullies. 

(DOCTOR): DOES THAT HAVE ANYTHING TO DO WITH THE 
FACT THAT YOUR BOYFRIEND MADE YOU COME 
HERE 

[42, pp. 36-37][43, pp. 3-4]. 
This accomplishment—especially the DOCTOR'S last question!—looks im­

pressive, but is less so when the mechanism is revealed. The program has a 
script. It responds to specified cues in specified ways: for instance, to words 
like "mother" with "tell me more about your family"; to statements involving 
terms like "always" or "all" with requests for an example; and, most spectacu­
larly here, to statements that do not fit the predetermined script by fishing with 
"does that have anything to do with" some previous topic whose importance to 
the patient was signalled by having been prefaced by the word " my." 

Weizenbaum thought he had written a clever program, which did some 
interesting pattern matching. He didn't dream at first that people would 
believe that the program could actually think, much less act as though it were a 
caring therapist. But people did. It was suggested by some that the program 
had passed the Turing test [16, p. 476]. It was also suggested that such 
programs could practice therapy cheaply and on a large scale [43, p. 5; 9, 31]. 
([47, p. 37] suggested recently that Weizenbaum's intention was to show how a 
computer could act like a psychologist.) But, knowing so well how little 
intelligence was involved in the program's plausible performance, Weizenbaum 
was shocked by responses like these. He was shocked because he thought these 
responses implied such widespread acceptance of the view that human beings 
were basically just complicated machines. In his 1976 book, Computer power 
and human reason, Weizenbaum characterized the information-processing 
model of man as just one aspect of a common twentieth-century mind-set that 
views human beings as means, rather than as ends, which falsely regards 
human problems as having technical solutions, and which encourages people to 
eschew moral choices in favor of "just following orders" [43, pp. 11, 13-14, 
251, 275]. His book is an argument that the information-processing model of 
man is empirically false, and, even more important, that it is morally wrong. 
Like Dreyfus, Weizenbaum argued that people can do things machines cannot 
—for instance, we can understand natural language in a context of experiences 
like love and trust that machines cannot share [43, pp. 208-209]. Weizenbaum 
characterized even the most successful AI programs of the 1970s as lacking 
strong theory-based models of human intelligence, being instead collections of 
ad hoc programming tricks1 [43, p. 232]. Weizenbaum concluded his critique 
with a call to those involved in the computer science profession " to teach the 

1 Weizenbaum develops at some length the argument that a programmer can, through trial and 
error, make some process " perform" a task even without the programmer's thoroughly understand­
ing how it does it, in his ninth chapter, "Incomprehensible Programs." See, e.g., [43, pp. 234-236]. 
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limitations of their tools as well as their power" [43, p. 277], and not to 
promulgate a view of human beings which helps to further dehumanize them. 
"What," he asks, "could it mean to speak of risk, courage, trust, endurance, 
and overcoming when one speaks of machines?" [43, p. 280]. 

Weizenbaum's book, like Dreyfus's, provoked outrage, and, what is more, 
attacks on Weizenbaum's scientific competence [27, p. 318]. His views on the 
potentially harmful directions in some AI research caused him to be confused 
with romantic critics of science and technology like Theodore Roszak, and 
provoked responses to his critique of AI which are in fact general defenses of 
the benevolence of technology. But Weizenbaum grants the value to mankind 
of science in general and computer science in particular. In any case, these 
responses do not vitiate Weizenbaum's central point: thinking of people as 
programmed machines will affect the decisions we make about how to treat 
people. To understand the nature of man, Weizenbaum defends the legitimacy 
of philosophy, literature, and emotion—which he calls "softer ways of know­
ing," concluding, "The computer is a powerful new metaphor for helping us to 
understand many aspects of the world, but . . . it enslaves the mind that has no 
other metaphors and few other resources to call on" [43, p. 277]. 

We now turn from Weizenbaum's work to a development in the field of AI 
from the 1980s. Gary Bradshaw, Pat Langley, and Herbert Simon have devised 
a family of computer programs called BACON (after the seventeenth-century 
philosopher Francis Bacon, who promoted inductive logic) that make scientific 
discoveries [36, 4, 23, 35]. That is, given data, these programs discover "a set of 
generalizations, or theory, to describe the data parsimoniously or to explain 
them" [36, p. 7]. This is not just a matter of fitting curves to points on a graph. 
The program generates hypotheses according to a set of heuristics, tests the 
hypotheses against data, and when necessary generates new theoretical terms 
to formulate the relevant law. The programs are not limited to one subject; 
they have been tested on a range of examples including Ohm's law, the ideal 
gas law, Snell's law of refraction, Kepler's third law of planetary motion, and 
Joseph Black's law of temperature equilibrium of mixtures [4, 23, 35, 36]. In 
particular, in discovering Black's law, the program invents a new theoretical 
term—one which Black, too, invented, and which we now call specific heat2 [4, 

2 Described at greatest length in [4, pp. 972-973], but also described elsewhere, e.g. [36, p. 19; 23, 
p. 125; 35, 257-258]. In [4], Bradshaw, Langley, and Simon take Black's law to predict the final 
temperature of the mixture of two liquids and state it as follows. Consider substances # 1 and # 2, 
with masses mx and m2 , specific heats cx and c2, and initial temperatures 7\ and T2. Let the final 
temperature after they are mixed be ƒ. Then Black's law states: 

q m ^ + c2m2T2 = (clml + c2m2)f. 

The data available to the program in discovering the law, then, includes three classes of variables: 
some way of designating the substances involved (say by the subscripts 1 and 2), their respective 
masses, and the corresponding initial temperatures. As the authors point out, " the equation can be 
interpreted as saying that the total heat is conserved" [4, p. 973, my italics]. The authors then 
sketch a path followable by the computer, a path " that does not differ in essential respects from 
those that were tested." This "path" to the discovery I will simply quote [4, p. 973]: 

Initially, we employ identical volumes of the same substance (for example, 
water). In the first experiment, we vary the temperature of the first compo­
nent, holding all other variables constant. We discover that the equilibrium 
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pp. 972-973]. (See also [23, 35, 36].) This work has attracted widespread 
attention in the scientific community far beyond AI circles.3 

A program which makes scientific discoveries would indeed be a remarkable 
achievement, and its makers are well aware of the potential importance of what 
they are trying to do. They have made two major historical claims: first, that 
their program comes close to doing what Snell or Kepler or Black actually did; 
second, that their simulation helps us to understand some apparent philosophi­
cal difficulties raised by the real history of scientific discoveries. These claims 
are sufficiently important to quote exactly: "We confront the program with 
discovery problems that scientists have encountered, and we observe whether 
the program can make the discovery, starting from the same point the scientists 
did " (my italics) [4, p. 971]. (This is a sort of Turing test for scientific-dis­
covery programs.) And, "The BACON experiments help to explain... how 

temperature is a linear function of the independent variable, with a slope of 
\. In the second experiment, we vary the second temperature, using symme­
try between the two volumes to conjecture that the equilibrium temperature 
will also vary linearly with this new independent variable, with a slope of \. 
The data confirm this relation. 

In the third experiment, we vary the mass of the first component to determine 
how that mass enters the function determining the equilibrium. We now 
conjecture that a symmetric function will describe the joint effects of both 
masses. The data confirm this conjecture. 

In the fifth experiment, we change the composition of the first component 
(for example substitute mercury for water). BACON finds that a new 
coefficient must be introduced into the equation, whose value changes with 
change in the composition of the component. In the sixth experiment, we 
change the composition of the second component, and, by symmetry, intro­
duce another new coefficient into the equation. The equation, thus modified, 
again fits the data. The coefficients introduced in the fifth and sixth experi­
ments are, of course, the quantities that Black called specific heats. 

The authors state that cl and c2 are " new intrinsic properties" discovered by the program [4, p. 
972]. (They are, of course, what we call the specific heats of the two substances; the term Black 
introduced was "capacity for heat." [30, p. 24] quotes Black's introduction of the latter term, after 
which Black added, "if I may be allowed to use this expression.") 

As the authors claim, their search for the appropriate law for the given data is guided by a 
number of fruitful heuristics: that "extensive quantities" will be conserved [35, p. 258]; that the 
first relations to be looked at should be mathematically simple; that "similar variables will enter 
into laws symmetrically" [35, p. 258]; that "if two quantities covary (countervary), test their ratio 
(product) for invariance" [35, p. 254]; etc. These are, indeed, among the heuristics hard-won by 
centuries of work in the exact sciences. But they do not include heuristics for identifying the initial 
set of variables—a crucial task whose historical importance we shall discuss below. 

3 Witness the publication of their work in Science [4], Simon's Gibbs lecture at the American 
Mathematical Society's St. Louis meeting, January 1984, subsequently published in the Bulletin of 
the American Mathematical Society [35]. See also the report from a psychologist that "a computer 
program, given access to data available to past scientists, was able to rediscover such things as 
Ohm's law, Galileo's law of falling bodies, and one of Kepler's laws of planetary motion By all 
indications, this progress will continue and computers may soon far surpass human capability" [13, 
p. 143]. Psychologist Paul E. Meehl, in his foreword to [13], warns us not to be shocked by "the 
notion of using a computer to invent theories" just because the idea "is deeply threatening to the 
scientist's self-image." The possibility, he says, "is music of the future" [13, xxii]. 
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some of the important laws of modern science [e.g., Kepler's third law] could 
antecede by decades or even generations the theoretical structures that subse­
quently rationalized them and took them out of the category of brute empirical 
generalizations." (As they point out, Kepler's laws long preceded Newton [4, p. 
974].) 

To these historical claims, Bradshaw, Langley, and Simon add a psycho­
logical one: that the computer model is adequate, not only for ordinary 
thought, but even for the thought of creative scientists. They grant that 
scientific discovery differs from ordinary problem solving in some ways: in 
being social, not individual, and in having indefinite goals rather than pre-
specified ones. Nonetheless, they maintain that there is "no reason to believe 
that the discoveries of human scientists cannot in time be explained within the 
information processing paradigm for problem solving" [36, p. 26]. We are 
certainly back at the heart of AFs claim to simulate how people really think. 
Bradshaw, Langley, and Simon base their confidence in this psychological 
prediction on the present accomplishments of their program. Have they now 
done what they claim? That is, does the BACON program in fact simulate real 
scientific discoveries like those of Black, Snell, or Kepler? I think not. To 
evaluate the claim, let us look at what is known about these discoveries. 

Joseph Black, unlike the program, was in part guided to his discovery by 
what we now think of as a false theory of heat—that heat behaved like a 
substance which was conserved.4 Even more important, Black's discovery was 
not merely a matter of applying this idea about heat to data about masses and 
temperatures of mixtures—the data the program uses for its "discovery." The 
essential difference between Black's discovery and the program's is that the 
program had its variables chosen for it. Black did not. In fact, before Black the 
very distinction between heat and temperature was not understood.5 Further­
more, Black had to examine a wide range of phenomena, including experi­
ments of his own and experiments reported in the literature.6 These experi­
ments were not conveniently labelled as to which would be important for a 

4One evidence of this is Black's term "capacity for heat" rather than our modern "specific 
heat." The most readable account of Black's discovery in its historical context, along with lengthy 
quotations from the original sources, is that in [30]. The most relevant work of Black's predecessors 
is described in [30, pp. 20-29], and Black's own discussion is excerpted in [30, pp. 20-26]. 
Especially instructive is Black's discussion of theories of heat [30, pp. 42-45]. Black's work is also 
extracted in [26, pp. 134-139], a source Bradshaw, Langley, and Simon cite in their own 
bibliography in [4]. The classic historical account is that in [28], and good discussions may also be 
found in [18] and [20, pp. 75-79, especially p. 78]. These authors differ about the degree and date 
of Black's commitment to the theory of heat as a material substance, but all agree about his 
commitment to the idea that heat is conserved. 

5 The clear distinction between heat and temperature does not precede, but arises from, Black's 
work; see [30, pp. 17-18], showing where Black built on the work of Francis Bacon and G. 
Fahrenheit. 

6 Black culled key experiments from the writings of men like Herman Boerhaave, Pieter v. 
Musschenbroeck, George Martine, and others [30, pp. 23-28]; compare [28, pp. 13-15]. Heilbron 
[20, pp. 75-78] and Guerlac [18, pp. 178-179] point out in addition that Black seems to have 
discovered latent heat first. Thus, his experiments on specific heat were conditioned by that earlier 
work, and by the precise measurements of heat of fusion—premised in turn on the conservation of 
heat—that accompanied it. 
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yet-undiscovered law. In fact, Black had to disentangle those in the literature 
from theory-laden descriptions by authors whose views he did not fully share.7 

Moreover, a number of well-known experiments involving the transfer of heat 
had to be neglected by Black. For instance, the mixture could not allow 
changes of state.8 Again, blacksmiths beat an iron rod over and over until the 
rod becomes hot enough to light fires. Black could not explain this experiment, 
but he dismissed it anyway as not sufficiently general to refute the theory of 
conservation of heat, pointing out that such an increase in temperature does 
not occur when one bangs equally hard on a similar rod of very elastic steel.9 

Thus, Black was guided to the specific experiments that shed light on the 
phenomena by theory. His discovery was not made by looking for regularities 
in a given set of data. Once one has chosen the appropriate data, the job of 
discovering Black's law is essentially over. Thus, the claim of BACON's 
creators that " the initial conditions for the simulation" are " what was already 
known at the time the discovery was made"10 [4, p. 971] is false. 

What of SnelPs seventeenth-century law of refraction? SnelFs law was 
"discovered" by the BACON program from data on the ratios of the path 
lengths of light beams and the perpendicular distances to the interface between 
the media, thus, the authors claim, avoiding any need for the program to know 
trigonometry [23, p. 124]. This is in fact perfectly fair; the law was stated by 
Snell himself (though the authors seem unaware of this) using lines and their 
ratios (though not the same Unes), without explicit reference to sines [38, 10, 
pp. 389-390]. But even in this relatively simple example, some key conceptual 

7Boerhaave, for instance, had argued (as had Musschenbroeck) that the "substance" heat was 
uniformly distributed in bodies at the same temperature. This, Black observed, was contradicted by 
the experiment of Fahrenheit, as reported by Boerhaave himself, of the result of mixing mercury 
and water at different temperatures; in this experiment, it was necessary to mix " three measures 
[volumes, by the way, not masses] of quicksilver with two of water, in order to produce the same 
middle temperature that is produced by mixing equal measures of hot and cold water" [26, p. 136; 
30, p. 23]. Boerhaave's theory is explained at length, with full attention to its Newtonian origins, in 
[7, pp. 214-234, esp. pp. 230-232]; a good, brief account, including its importance for Black's 
discovery, may be found in [20, pp. 61-63, 78]. The key point is that heat, for Boerhaave (he calls 
it "fire"), is a nondestructible substance made of particles [7, pp. 227, 230]. Only from the 
standpoint that heat is something that is conserved is Fahrenheit's experiment anomalous in the 
light of Boerhaave's theory; thus, Black's recognition of the conservation of heat is essential to his 
recognizing that Fahrenheit's experiment is important at all. 

8As we have already pointed out, Black knew the law governing changes of state; he measured 
what he called the latent heat required to melt ice, giving the value of 143 Btu/lb [30, p. 37] in a 
paper read at Glasgow in 1762. 

9 Roller [30, p. 43] cites this experiment with iron, and the counterexample of steel [30, p. 44], 
from Black's works, pp. 33-34. 

10 [4, p. 971] Occasionally Bradshaw, Langley, and Simon appear to moderate their claims in 
specific cases, suggesting a role for theory. But the role they describe does not seem to exceed 
suggesting that certain variables represent "extensive magnitudes" which are conserved, for a 
nonetheless predetermined class of what they call the experimental or empirical data, e.g. [4, p. 
974; 35, pp. 250, 257-258]. This does not do justice to the role of theory in Black's work in 
selecting data and experiments, and even defining what heat and temperature meant, as we have 
discussed above. The passages just cited from [4 and 35] are outweighed by the repeated claims of 
the authors that they are modeling the historical processes of significant scientific discoveries [35, 
pp. 260-261; 4, especially title and abstract, p. 971; 23, p. 25]; etc. 
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steps have been made for the program. Refraction had been studied for 
hundreds of years before Snell, but scientists of the caliber of Ptolemy thought 
that the angles, not the Unes and their ratios, were the relevant variables; 
Ptolemy found no law relating them [8, pp. 271-281]. Moreover, in the 
seventeenth century Johann Kepler tried unsuccessfully to find a trigonometric 
relation between the angle of incidence and the angle of refraction. Unfor­
tunately, he used as the "angle of refraction" the angle between the refracted 
ray and the (prolonged) incident ray. He didn't find Snell's law either [3, pp. 
186-187]. Of course, Snell's law is not expressible as an elementary function 
even of the "correct" angles. Thus, the hard thing, historically, was looking for 
the ratio of the sines and identifying the relevant angles. Once we know to look 
for trigonometric functions of these particular angles, or for ratios involving 
precisely these lines, the job of discovering Snell's law is essentially done. 

Let us now examine Bradshaw, Langley, and Simon's second historical 
claim: that they can explain how, in the history of science, a discovery can long 
antedate the theory that makes sense of it. We will use their example of 
Kepler's third law, which they call "a product of pure Baconian induction" [4, 
p. 973]. The relevant numerical variables, they say, are a planet's distance from 
the sun, Z>, and the period of its orbit, P. The program then discovers that D3 

varies as P 2 , which is Kepler's law [36, pp. 13-14]. They say that these 
numerical variables are "observables"11 [36, p. 13]. But they are not. What is 
observable in nature are planetary positions in the sky. Kepler had some very 
accurate ones, recorded by Tycho Brahe. But Kepler in 1619 had something 
else—a controversial theory, published in 1543 by Copernicus, that the planets 
went around the sun, and not, as was widely believed, around the earth. Given 
this theory and those observations an accomplished mathematician like Kepler 
could calculate the orbits, conclude that they were ellipses (Kepler's first law, 
1609), and then determine the planetary periods and distances relative to the 
sun. Kepler also believed that a force from the sun was needed to push the 
heavy planets around, a force that diminished as one got farther from the sun, 
so that the speeds of the planets might well depend on their distance from the 
sun.12 Then, guided by his strong belief in mathematical harmonies [6, pp. 
138-139]—a belief shared by the BACON program—Kepler looked for the 
relationship between period and distance, and discovered his third law. Kepler's 
discovery was not a "brute empirical generalization"13 [4, p. 974], but guided 
by theory. The history of science is full of examples of discoveries guided by 
theories, some personal and idiosyncratic, others widely held, which modern 

11 The context is a table of planets: "Each row of the table... represents an individual 
observation Each observation consists of the value of a nominal variable, which identifies the 
planet, and of two numeric variables, its distance from the sun, D, and the period of its orbit, P. 
All of these variables are observables" (my italics) [36, p. 13]. 

12An easily accessible account of Kepler's cosmology and work on the Third Law may be found 
in [6, pp. 132-147]. 

13 Compare [35, p. 253], where Simon repeats this point, saying that the discovery of Kepler's 
laws "provides one of the most important and striking examples in the history of science of 
data-driven discovery No theory was available to explain this regularity until Newton" (my 
italics). 
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scientists no longer believe. This does not make the discoveries retroactively 
empirical. 

Given a set of data, the BACON program does, as its creators say, use a set 
of fruitful heuristics and thus embody "discovery principles with a wide range 
of application" [23, p. 126]. Such a program could well outperform people in 
finding regularities in masses of data, allowing for experimental error, and 
postulating new terms, like specific heat, when needed to find such regularities. 
These are real accomplishments. But the major scientific discoveries BACON's 
authors discuss have not been made the way the program makes them. 

It is instructive to contrast the reactions to Weizenbaum's ELIZA program 
and the BACON program on the part of their inventors. In each case, a 
program seems to some observers to be performing at a high level, though its 
accomplishments are really more modest. But Weizenbaum is appalled that 
people conversing with his program came to treat it like a person, while Simon 
and his collaborators argue that human scientists like Black, Snell, and Kepler 
did science the way their program does. These contrasting reactions exemplify 
not only two different attitudes toward the man-machine equation, but also 
toward the scope of individual scientific achievements. 

Over and over again in the history of science one finds people involved in a 
major scientific breakthrough who claim that their new way of looking at 
things has finally settled some major moral or philosophical questions about 
the nature of man. In a striking parallel to the present case, Darwinian theory, 
in establishing its legitimacy as a mature field of science, had to contend not 
only with attacks on evolution from those horrified by the idea of man as an 
animal, but also with some Darwinists who used evolution as a basis for 
doctrines of white supremacy, robber-baron economics, and atheistic materia­
lism.14 Similarly, while some AI researchers have painted their critics as 
know-nothings, undervaluing or opposing all AI research, their critics have 
seen AI researchers as ideologues extrapolating successful researches in limited 
areas into a dehumanizing world-view for which there is no scientific support. 
Thus, Alan Turing's work—notably the abstract concept of the Turing 
machine—and the increasing capabilities of computing machines in the 1950s 
made it seem urgent to Lucas to use logical tools to defend a nonmechanistic 
view of man. The early successes of AI research in the 1960s produced a round 
of enthusiastic predictions about computers soon being able to duplicate the 
problem-solving and information-handling capabilities of the brain. It was 
these predictions and their nonfulfillment, not just the philosophy of phenome­
nology, that gave Dreyfus's critique its force. Again, the success of Weizen­
baum's ELIZA program produced more enthusiastic predictions, and these 
produced in turn Weizenbaum's impassioned plea for respect for human 
reason. In the 1980s, Bradshaw, Langley, and Simon extrapolated from the 
"success" of their BACON program to claim that programs could simulate 
scientific discoveries and thereby duplicate some of the highest examples of 
human reason. The pattern described in this paragraph is, as I have argued 

14See, e.g., [21 and 25]. I have discussed the generality of this pattern, together with its 
applicability to the recent history of AI in [17]. 
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elsewhere [17], often characteristic of the early stages of a subject—but not of 
its maturity. 

Meanwhile, more has been going on of a technical nature within the field of 
AI. Considerable research, especially since the late 1970s, has concentrated not 
on general problem-solving, but on programs limited to specific fields like 
diagnosing infectious diseases or prospecting for minerals—programs based on 
incorporating large amounts of systematized human knowledge. Of course, 
more generally-directed research continues as well. But this new direction, in 
what is called "expert systems," and related research in areas such as the 
representation of knowledge, has seen enormous growth. Expert-systems re­
search, to quote a recent textbook, "has concentrated on the construction of 
high-performance programs in specialized professional domains, a pursuit that 
has encouraged an emphasis on the knowledge that underlies human expertise 
and has simultaneously decreased the apparent significance of domain-in­
dependent problem-solving theory" [19, p. 3]. There is overwhelming evidence 
for this shift in direction. One sees it from a content analysis of Computing 
Abstracts or Computing Reviews; by a comparative scan of successive Proceed­
ings of the Joint International Conferences on Artificial Intelligence; by the 
appearance of new journals; and by the appearance of textbooks and collec­
tions of readings in the field of expert systems. One can see it also in many 
explicit statements from a new generation of practitioners, whose goal in a 
recent review article has been stated thus: "to provide tools that exploit new 
ways to encode and use knowledge to solve problems, not to duphcate 
intelligent human behavior in all its aspects" [12, p. 266]. (cp [15, p. 903].) 

A number of these expert programs have been strikingly successful; in fact, 
they can sometimes outperform human experts on their designated tasks. Some 
measure of their success in practical terms is the great interest in business and 
government in developing expert systems [46]. Perhaps surprisingly, the very 
power of such knowledge-based programs strengthens the hand of critics of AI 
like Weizenbaum and Searle. For instance, contrast this description of an early 
program to devise molecular structures in organic chemistry from mass-spec­
trum data and empirical formulas with the claims made for BACON by its 
creators: "It [DENDRAL] searches for plausible hypotheses in a small subset 
of the total hypothesis space according to heuristic rules learned from chemists" 
[5, p. 209]. Thus, immense practical achievements, which are modest theoreti­
cally, have at least temporarily reinforced an attitude of public modesty about 
the nature of machine intelligence. To cite one more of a plethora of possible 
examples, James Albus writes in a recent text on robotics, "The answer to the 
question of whether machines ever will, or even can, possess a general level of 
intelligence comparable to humans, is unknown and may be unknowable" [1, 
p. 299]. 

However, some computer scientists still describe the computers of the near 
future as essentially involved in all aspects of intellectual life [14, especially 
part 3]; as potentially able to read newspaper accounts about terrorism and to 
come up with a solution to the problem [32, p. 220]; or as becoming conscious 
life forms [37, p. 25]. Thus, the modesty described in the previous paragraph is 
by no means universal. 
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Interestingly, much of that expert-systems research is indebted in important 
ways to the earlier, more general research in AI, especially in areas like the 
symbolic representation of knowledge and heuristic search. Perhaps the en­
thusiasm of many AI researchers, their desire to show that all human thought 
could be simulated by computer, was psychologically necessary in order to 
produce the successes that occurred.15 As we have seen in the examples of 
Black and Kepler, the history of science abounds with examples of lasting 
achievements which were produced by theories and world-views no longer 
held. But the ideologies which produced the discoveries are not automatically 
validated thereby. Presumably, as AI continues to develop, it will more closely 
resemble a mature science. It will improve its successes in solving problems in 
its own sphere of competence, while ceasing to claim that it can find the 
ultimate truth about the nature of human intelligence. 
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