COMPACT RIEMANNIAN MANIFOLDS WITH POSITIVE CURVATURE OPERATORS

BY JOHN DOUGLAS MOORE

The Riemann-Christoffel curvature tensor R of a Riemannian manifold M determines a curvature operator

$$\mathcal{R}: \Lambda^2 T_p M \to \Lambda^2 T_p M$$
,

where $\Lambda^2 T_p M$ is the second exterior power of the tangent space $T_p M$ to M at p, by the explicit formula

$$\langle \mathcal{R}(x \wedge y), z \wedge w \rangle = \langle R(x, y)w, z \rangle.$$

M is said to have positive curvature operators if the eigenvalues of \mathcal{R} are positive at each point $p \in M$. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the following stronger result.

THEOREM 1. Let M be a compact simply connected n-dimensional Riemannian manifold with positive curvature operators, where $n \geq 4$. Then M is homeomorphic to a sphere.

Theorem 1 is actually a consequence of another theorem which makes a weaker hypothesis on the curvature tensor. To describe this hypothesis, we extend the Riemannian metric $\langle \ , \ \rangle$ in two ways to the complexified tangent space $T_pM\otimes {\bf C}$: as a complex symmetric bilinear form $(\ ,\)$ and as a Hermitian inner product $\langle \langle \ ,\ \rangle \rangle$. Similarly, we extend the metric in two ways to $\Lambda^2T_pM\otimes {\bf C}$. An element $z\in T_pM\otimes {\bf C}$ is said to be *isotropic* if (z,z)=0. A complex linear subspace $V\subseteq T_pM\otimes {\bf C}$ is totally isotropic if $z\in V\Rightarrow (z,z)=0$.

Finally, we extend the curvature operator \mathcal{R} to a complex linear map $\mathcal{R}: \Lambda^2 T_p M \otimes \mathbf{C} \to \Lambda^2 T_p M \otimes \mathbf{C}$.

DEFINITION. The curvature operator \mathcal{R} is positive on complex totally isotropic two-planes if whenever $\{z, w\}$ is a basis for a totally isotropic subspace of $T_pM \otimes \mathbb{C}$ of complex dimension two,

$$\langle\langle \mathcal{R}(z \wedge w), z \wedge w \rangle\rangle > 0.$$

(Note that M has positive sectional curvatures if and only if its curvature operator \mathcal{R} is positive on *real* two-planes.)

By means of a purely algebraic argument, it is possible to prove that if the sectional curvatures $K(\sigma)$ of a Riemannian manifold M of dim ≥ 4 satisfy the inequality $1/4 < K(\sigma) \leq 1$, then the curvature operator of M is positive

Received by the editors November 1, 1985.

1980 Mathematics Subject Classification. Primary 53C20.

280 J. D. MOORE

on complex totally isotropic two-planes. Hence the following theorem implies not only Theorem 1, but also the Rauch-Berger-Klingenberg sphere theorem for manifolds of dim ≥ 4 [**GKM**, §7.8].

THEOREM 2. Let M be a compact simply connected n-dimensional Riemannian manifold whose curvature operator is positive on complex totally isotropic two-planes, where $n \geq 4$. Then M is homeomorphic to a sphere.

SKETCH OF PROOF OF THEOREM 2. Let $S^2 = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere with the standard complex coordinate z = x + iy. If $f: S^2 \to M$ is a conformal branched minimal immersion, and V is a C^{∞} section of f^*TM , then the second derivative of the energy in the direction of the variation field V is given by the index form

$$\begin{split} I(V,V) &= \int_{S^2} \{ |\nabla_{\partial/\partial x} V|^2 + |\nabla_{\partial/\partial y} V|^2 \\ &- \langle R(V,\partial f/\partial x)\partial f/\partial x, V \rangle - \langle R(V,\partial f/\partial y)\partial f/\partial y, V \rangle \} \, dx \wedge dy. \end{split}$$

It is convenient to extend this index form to a Hermitian symmetric form on C^{∞} sections of $f^*TM \otimes \mathbb{C}$. If W = U + iV, where U and V are smooth sections of f^*TM , then integration by parts (as in [M]) yields the formula (2)

$$I(W,W) = I(U,U) + I(V,V)$$

$$= 4 \int_{\mathbb{S}^2} \{ \| \nabla_{\partial/\partial \overline{z}} W \|^2 - \langle \langle \mathcal{R}(W \wedge \partial f/\partial z), W \wedge \partial f/\partial z \rangle \rangle \} \, dx \wedge dy.$$

In this formula, $\partial f/\partial z$ is the section of $f^*TM \otimes \mathbb{C}$ defined by

$$(\partial f/\partial z)(p) = (1/2)(f_{*_p}(\partial/\partial x|_p) - if_{*_p}(\partial/\partial y|_p)), \text{ for } p \in S^2.$$

 $f^*TM \otimes \mathbf{C}$ can be made into a holomorphic vector bundle over S^2 in a unique fashion so that the local holomorphic sections of $f^*TM \otimes \mathbf{C}$ are exactly the sections annihilated by $\nabla_{\partial/\partial\overline{z}}$. When this is done, the fact that f is conformal and harmonic implies that $\partial f/\partial z$ is an isotropic holomorphic section of $f^*TM \otimes \mathbf{C}$. A theorem of Grothendieck $[\mathbf{G}]$ implies that $f^*TM \otimes \mathbf{C}$ can be decomposed into a direct sum of holomorphic line bundles, $f^*TM \otimes \mathbf{C} = L_1 \oplus L_2 \oplus \cdots \oplus L_n$, where

$$c_1(L_1) \ge c_1(L_2) \ge \cdots \ge c_1(L_n), \qquad c_1(L_{n-i}) = -c_1(L_i).$$

(Here $c_1(L_i)$ denotes the first Chern class of L_i evaluated on the fundamental cycle of S^2 .) This direct sum decomposition allows us to give a lower bound on the dimension of the space of isotropic holomorphic sections of $f^*TM \otimes \mathbb{C}$, and this bound, together with formula (2), can be used to establish

PROPOSITION. If $f: S^2 \to M$ is a nonconstant conformal branched minimal immersion into a Riemannian manifold whose curvature operator is positive on complex totally isotropic two-planes, then the index form (1) at f has index $\geq (n/2) - (3/2)$.

(By the *index* of a symmetric bilinear form, we mean the dimension of a maximal linear subspace of the domain on which the form is negative definite.)

Now we utilize the α -energy of Sacks and Uhlenbeck [SU], the real-valued C^2 function on the Banach manifold $L_1^{2\alpha}(S^2, M)$, where α is slightly greater than 1, defined by

 $E_{\alpha}(f) = \int_{S^2} (1 + |df|^2)^{\alpha} d\mu.$

Here S^2 is given the metric of constant curvature having volume one, $d\mu$ is the area element with respect to this metric, and $|df|^2$ is the energy density. We regard M as isometrically imbedded in an ambient Euclidean space E^N , and set

$$T_f L_1^{2\alpha}(S^2, M) = \{V: S^2 \to E^N \mid V(p) \in T_{f(p)}M, \text{ for all } p \in S^2\}.$$

To any critical point f for E_{α} is associated its Hessian, a continuous symmetric bilinear form

$$d^2E_{\alpha}(f)$$
: $T_fL_1^{2\alpha}(S^2,M)\times T_fL_1^{2\alpha}(S^2,M)\to \mathbf{R}$.

LEMMA. Let k be the least integer, $2 \le k \le n$, such that $\pi_k(M) \ne 0$. Then there is a nonconstant critical point f for E_{α} such that the Hessian of E_{α} at f has index $\le k-2$.

Indeed, if E_{α} did not have any nonconstant critical points of index $\leq k-2$, it could be approximated by a function whose nonconstant critical points were weakly nondegenerate (in the sense of Uhlenbeck [U, p. 432]) and of index $\geq k-1$. Then Morse theory on Banach manifolds [U, T] would imply vanishing of the relative homotopy group

$$\pi_{k-2}(L_1^{2\alpha}(S^2, M), \hat{M}) = 0,$$

where \hat{M} is the subspace of constant maps from S^2 to M. This would contradict $\pi_k(M) \neq 0$.

By the lemma, we can choose a sequence of nonconstant critical points $f_{\alpha(i)}$ for $E_{\alpha(i)}$ of index $\leq k-2$, with $\alpha(i) \downarrow 1$. By [SU], we can assume that $E_{\alpha}(f_{\alpha}) \leq (1+B^2)^{\alpha}$ and energy $(f_{\alpha}) \geq \varepsilon$, where B and ε are positive constants independent of α . After passing to a subsequence, we can arrange that the $f_{\alpha(i)}$'s will C^1 -converge on S^2 minus a finite number of points to a conformal branched minimal sphere [SU, Theorem 4.4]. If the limiting sphere is nonconstant, it can be shown that its index form has index $\leq k-2$. (We can neglect the finite number of points at which convergence fails by an argument of Gulliver and Lawson [GL, Proposition 1.9].)

If the limiting sphere is constant, then a nontrivial branched conformal minimal sphere must "bubble off" as $\alpha \to 1$ [SU, Theorem 4.6]. In this case, a nontrivial bubbled-off sphere must have index $\leq k-2$.

The proposition now implies that $k-2 \ge (n/2) - (3/2)$. Hence $\pi_i(M) = 0$, for $1 \le i \le n/2$. It thus follows from Poincaré duality that M is a homotopy sphere, and by the resolutions of the generalized Poincaré conjecture when $n \ge 4$, M must be homeomorphic to a sphere.

More details will appear in a subsequent article.

ADDED IN PROOF. The author has recently been informed that Micallef has independently obtained results similar to Theorems 1 and 2.

REFERENCES

- [GM] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne, J. Math. Pure Appl. 54 (1975), 259-284.
- [GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., vol. 55, Springer-Verlag, Berlin, 1968.
- [G] A. Grothendieck, Sur la classification des fibres holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138.
- [GL] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces near a singularity (to appear).
- [M] J. D. Moore, On stability of minimal spheres and a two-dimensional version of Synge's theorem, Archiv der Math. 44 (1985), 278-281.
- [SU] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), 1-24.
- [T] A. Tromba, A general approach to Morse theory, J. Differential Geom. 12 (1977), 47-85.
- [U] K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972), 430-445.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BAR-BARA, CALIFORNIA 93106