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COMPACT RIEMANNIAN MANIFOLDS WITH POSITIVE
CURVATURE OPERATORS

BY JOHN DOUGLAS MOORE

The Riemann-Christoffel curvature tensor R of a Riemannian manifold M
determines a curvature operator

R:A’T,M — AT, M,

where A2T, M is the second exterior power of the tangent space T, M to M
at p, by the explicit formula

(R(z A y), z Aw) = (R(z, y)w, 2).

M is said to have positive curvature operators if the eigenvalues of R are
positive at each point p € M. Meyer used the theory of harmonic forms
to prove that a compact oriented n-dimensional Riemannian manifold with
positive curvature operators must have the real homology of an n-dimensional
sphere (GM, Proposition 2.9]. Using the theory of minimal two-spheres, we
will outline a proof of the following stronger result.

THEOREM 1. Let M be a compact simply connected n-dimensional Rie-
mannian mantfold with positive curvature operators, where n > 4. Then M
18 homeomorphic to a sphere.

Theorem 1 is actually a consequence of another theorem which makes a
weaker hypothesis on the curvature tensor. To describe this hypothesis, we
extend the Riemannian metric {, ) in two ways to the complexified tangent
space T,M®C: as a complex symmetric bilinear form ( , ) and as a Hermitian
inner product ((, )). Similarly, we extend the metric in two ways to A2T,M ®
C. An element z € T,M ® C is said to be isotropic if (2,2) = 0. A complex
linear subspace V C T,M @ C is totally isotropic if z€ V = (z,2) = 0.

Finally, we extend the curvature operator R to a complex linear map
R:A?T,M ® C — A?T,M ® C.

DEFINITION. The curvature operator R is positive on complez totally
1sotropic two-planes if whenever {z,w} is a basis for a totally isotropic sub-
space of T,M ® C of complex dimension two,

((R(z Aw),z Aw)) > 0.

(Note that M has positive sectional curvatures if and only if its curvature
operator R is positive on real two-planes.)

By means of a purely algebraic argument, it is possible to prove that if the
sectional curvatures K(o) of a Riemannian manifold M of dim > 4 satisfy
the inequality 1/4 < K (o) < 1, then the curvature operator of M is positive
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on complex totally isotropic two-planes. Hence the following theorem implies
not only Theorem 1, but also the Rauch-Berger-Klingenberg sphere theorem
for manifolds of dim > 4 [GKM, §7.8].

THEOREM 2. Let M be a compact simply connected n-dimensional Rie-
mannian manifold whose curvature operator is positive on complezx totally
1sotropic two-planes, where n > 4. Then M 1is homeomorphic to a sphere.

SKETCH OF PROOF OF THEOREM 2. Let S2 = CU {co} be the Riemann
sphere with the standard complex coordinate z = z + 1y. If f: 52 — M is
a conformal branched minimal immersion, and V is a C* section of f*TM,
then the second derivative of the energy in the direction of the variation field
V is given by the index form
(1)

IV,V) = /Sz{|Va/an|2+ Va0,V |?

It is convenient to extend this index form to a Hermitian symmetric form on
C® sections of f*TM ® C. If W = U + ¢V, where U and V are smooth
sections of f*TM, then integration by parts (as in [M]) yields the formula
(2)

IwW,W)=IUU)+I(V,V)

= 4/SZ{HVa/azW||2 — ((R(W ABf]32),W AOf/Dz))} dx A dy.

In this formula, 3f/0z is the section of f*TM ® C defined by
(8f/82)(p) = (1/2)(f+,(8/02l) — if.,(8/Bylp)), forpe >

f*TM ® C can be made into a holomorphic vector bundle over S? in
a unique fashion so that the local holomorphic sections of f*TM ® C are
exactly the sections annihilated by V5/593. When this is done, the fact that
f is conformal and harmonic implies that df/9z is an isotropic holomorphic
section of f*TM ®C. A theorem of Grothendieck [G] implies that f*TM ®C
can be decomposed into a direct sum of holomorphic line bundles, f*TM ®
C=L1®Ly&®---® Ly, where

c1(Ly) 2 e1(Lzg) > -+- > ¢1(Ln), c1(Ln—s) = —c1(Ly).

(Here c1(L;) denotes the first Chern class of L; evaluated on the fundamental
cycle of S2.) This direct sum decomposition allows us to give a lower bound
on the dimension of the space of isotropic holomorphic sections of f*TM ® C,
and this bound, together with formula (2), can be used to establish

PROPOSITION. If f:82 — M is a nonconstant conformal branched mini-
mal tmmersion into a Riemannian manifold whose curvature operator is pos-
ttive on complez totally isotropic two-planes, then the indez form (1) at f has
indez > (n/2) — (3/2).

(By the indez of a symmetric bilinear form, we mean the dimension of a
maximal linear subspace of the domain on which the form is negative definite.)
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Now we utilize the a-energy of Sacks and Uhlenbeck [SU]J, the real-valued
C? function on the Banach manifold L2%(5%, M), where « is slightly greater
than 1, defined by

Ea(f) = /S (U4 Jdf?) .

Here S? is given the metric of constant curvature having volume one, du is
the area element with respect to this metric, and |df|? is the energy density.
We regard M as isometrically imbedded in an ambient Euclidean space EV,
and set

TyL3%(S%, M) ={V:§* - BN | V(p) € Ty M, forall p€ §7}.

To any critical point f for E, is associated its Hessian, a continuous symmetric
bilinear form

d?E,(f): TyL3*(S%, M) x Ty L3*(S2, M) — R.

LEMMA. Letk be the least integer, 2 < k < n, such that (M) # 0. Then
there 13 a nonconstant critical point f for E, such that the Hessian of E, at
f has index < k — 2.

Indeed, if £, did not have any nonconstant critical points of index < k—2,
it could be approximated by a function whose nonconstant critical points
were weakly nondegenerate (in the sense of Uhlenbeck [U, p. 432]) and of
index > k — 1. Then Morse theory on Banach manifolds (U, T] would imply
vanishing of the relative homotopy group

Tr—2(L3%(S%, M), M) =0,

where M is the subspace of constant maps from S2 to M. This would con-
tradict (M) # 0.

By the lemma, we can choose a sequence of nonconstant critical points
fa(i) for Eqy of index < k — 2, with a(z) | 1. By [SU], we can assume
that E,(fs) < (14 B%)* and energy (fo) > €, where B and ¢ are positive
constants independent of a. After passing to a subsequence, we can arrange
that the f,(;)’s will C'-converge on S? minus a finite number of points to a
conformal branched minimal sphere [SU, Theorem 4.4]. If the limiting sphere
is nonconstant, it can be shown that its index form has index < k—2. (We can
neglect the finite number of points at which convergence fails by an argument
of Gulliver and Lawson [GL, Proposition 1.9].)

If the limiting sphere is constant, then a nontrivial branched conformal
minimal sphere must “bubble off” as @ — 1 [SU, Theorem 4.6]. In this case,
a nontrivial bubbled-off sphere must have index < k — 2.

The proposition now implies that k —2 > (n/2) — (3/2). Hence m;(M) = 0,
for 1 <17 < mn/2. It thus follows from Poincaré duality that M is a homotopy
sphere, and by the resolutions of the generalized Poincaré conjecture when
n > 4, M must be homeomorphic to a sphere.

More details will appear in a subsequent article.

ADDED IN PROOF. The author has recently been informed that Micallef
has independently obtained results similar to Theorems 1 and 2.



282 J. D. MOORE

REFERENCES

[GM] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différ-
entielles d’une variété riemannienne, J. Math. Pure Appl. 54 (1975), 259-284.

[GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im
Grossen, Lecture Notes in Math., vol. 55, Springer-Verlag, Berlin, 1968.

[G] A. Grothendieck, Sur la classification des fibres holomorphes sur la sphére de
Riemann, Amer. J. Math. 79 (1957), 121-138.

[GL] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces
near a singularity (to appear).

[M] J. D. Moore, On stability of minimal spheres and a two-dimensional version of
Synge’s theorem, Archiv der Math. 44 (1985), 278-281.

[SU] J. Sacks and K. Uhlenbeck, The ezistence of minimal immersions of 2-spheres,
Ann. of Math. (2) 113 (1981), 1-24.

[T] A. Tromba, A general approach to Morse theory, J. Differential Geom. 12 (1977),
47-85.

[U] K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972),
430-445.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BAR-
BARA, CALIFORNIA 93106



