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AN ALMOST-ORTHOGONALITY PRINCIPLE 
WITH APPLICATIONS TO MAXIMAL FUNCTIONS 

ASSOCIATED TO CONVEX BODIES 

BY ANTHONY CARBERY1 

1. Introduction. Let B be a convex body in Z2n, normalised to have vol­
ume one. Let M be the centred Hardy-Littlewood maximal function defined 
with respect to B, i.e. 

Mf(x)=supt-n [ \f(x-y)\dy. 
t JtB 

Let M be the lacunary maximal operator, 

Mf(x) = sup2-*n [ \f(x-y)\dy. 
k J2kB 

Considerable interest has recently been shown in the behaviour of these op­
erators for large n, see [1,2,8,9,10]. When B is the ball, Stein has shown 
[8] that M is bounded on Lp(Rn), 1 < p < oo, with a constant Cp depending 
only on p, and not on n; Stein and Strömberg [10] have shown that for p larger 
than 1, the Lp operator norm of M is at most linear in the dimension. More 
recently Bourgain has proved that the L2 operator norm of M is bounded by 
an absolute constant independent of the body and the dimension [1]. It is the 
purpose of this note to extend this result to p > 3/2, and to all p > 1 if we 
instead consider M. 

THEOREM 1. (i) Letp > 3/2. Then there exists a constant Cp, depending 
only on p and not on B or n, such that | |M/| |P < Cp\\ f\\p. 

(ii) Let p > 1. Then there exists a constant Dp, depending only on p and 
not on B or n, such that | |M/| |P < Dp\\ f\\p. 

It has recently been brought to the author's attention that part (i) of the 
theorem has been proved by Bourgain2 in the special case that B is the cube 
[2]. Here we show that Theorem 1 in fact follows from Bourgain's previous 
analysis together with a general almost-orthogonality principle for maximal 
functions, Theorem 2. A weaker version of this principle appears in [6], where 
it is also applied to various operators including maximal functions and Hilbert 
transforms along curves. A similar principle due to Michael Christ appears 
in [4]. 

Full details of the proofs, together with further applications, will appear 
elsewhere. 
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2. An almost-orthogonality principle. Let Tjv, j' € Z, v G 5, be a 
family of linear operators (multiplier operator in our application). Here S 
is any indexing set. Suppose there are linear operators Rj (j € Z) such that 
YlRj — I- Consider the maximal operator T*/(x) = supJV \Tjvf(x)\. 

DEFINITION, (i) T* is weakly bounded (with respect to Rj) on Lq if 

sup 
k 

sup\TjvRj+kf\ 
jv 

<c\\f\\q. 

(ii) T* is strongly bounded on Lq if for some sequence ak satisfying 
X X <oo, 0 < t < 1, 

a\xp\TjvRj+kf\ 
jv 

<ak\\ 

With this definition it is clear that strong boundedness on Lq implies 
boundedness on Lq, which implies weak boundedness on Lq, provided of 
course that the Rj'a are uniformly bounded on Lq. Moreover, if T* is strongly 
bounded on some Lqo space and weakly bounded on Lqi, then T* is bounded 
on Lq for all q strictly between qo and q\. 

DEFINITION. A family Tjv of linear operators is essentially positive if there 
exist linear operators Sjv and UjVi with Sjv > 0, Ujv > 0, 5* bounded on L r , 
1 < r < oo, and such that Tjv = Ujv - Sjv. 

THEOREM 2. Let 1 < p < 2, and let Tjv be an essentially positive family 
of linear operators. Suppose there exists a q ^ p (we shall assume q > p) such 
that T+ is strongly bounded on Lq, and suppose there exists an e > 0 such 
töatsupJsupjTiv/|||r < C r | | / | | r and | | ( £ |^-/ |2)1 / 2 l lr < C r | | / | | r f or r in 
(p, p + e). Then T* is bounded on Lr for all r in (p, q]. 

REMARK. There is a similar but simpler principle when p > 2, whose 
statement and proof we omit. 

PROOF. We first assume that for all but finitely many j , Tjv - 0 for all v, 
and we shall obtain a bound for T* independent of this finite number N. So, 
fixing an r with p < r < g, we may assume that ||T*/||r < A(iV)||/||r. 

We consider first inequalities of the form 

(*) sup \Tjvgj\ <C.it||||fo-||i.||L* 
L* 

By assumption, (*) holds for s = t in (p,p + e). It also holds with t = r 
and s = oo, with constant B(N) depending on A(N) since UJV and Sjv are 
positive. Thus by interpolation there exists an f, p < r < r, such that (*) 
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holds for t = r and 5 = 2. Now, 
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sup\TjvRj+kf\ 
jv 

< J2™P\T3vRj+kf\* 

<D(N) 

1/2 

1/2 

£l*WI2 

<CrD{N)\\f\\r. 

So T* is weakly bounded on U and hence by the comment preceding the 
theorem it is bounded on II with constant E(N). However, keeping track 
of constants, we see that for some 0 < t < 1 and some numbers a and 6, 
E(N) < a+bA(Ny. Thus A(N) < c, for some c independent oîN, concluding 
the proof of the theorem. 

3. An auxiliary proposition. We now specialise to operators of the 
form (T i t / ) A (0 = m ( 2 ^ 0 / A ( 0 f ° r 3 € % and 1 < t < 2. We wish to apply 
Theorem 2 in the case 9 = 2, and so we need simple criteria for determining 
when a maximal operator is bounded on L2, and when a maximal operator 
of the form sup 1 < t < 2 \Kt * ƒ | is bounded on Lp. 

PROPOSITION. Let KA = m e L°°. Then 
(i) || sup0 < a < o o \Kt * f\ h < C\\f\\2 if for some a > \ we have 

\ i / 2 
< 00. 

weSn 
sup ( f°° \ua+\d/du)a[u-lm{uw)}\2 du/v) 

;GS^-i \JO ) 

(ii) || sup!< t<2 \Kt * ƒ I ||p < C\\ f jlp if for some a > 1/p {or a = 1 if p = 1) 
both m and (£ • V) am are Lp multipliers. 

REMARKS, (i) Here, (d/du)a is the fractional differentiation operator de­
fined for example in [3], and 

(t • V)am(£) = (d/du)am(uO\u=i = f {2nix • QaK{x)e2™ Ux. 

(ii) When m is radial, part (i) of the proposition is in [3]. Other similar 
criteria for L2 boundedness of maximal operators appear in [1, 5 and 7]. 

PROOF. Write 

m(tt) 
t 

/•OO 

Ca / {u - t^id/du^imiu^/u] du. 
Jo 

Therefore, 
/•OO 

\Kt * ƒ| < Ca / (1 - t/u)%-H/u\PSf\ du/u, 
Jo 

where (P,?/)A(0 = ua+1(d/rfw)a[m(w^)/u] /A(£) . Thus, if p = 2 and a > i , 

0/-OO \ 1/2 

' | P« / | 2 d U / u , 
0 / 
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sup \Kt * ƒ | 
Kt<2 

and so 

II sup \Kt*f\\\ <Ca\\f\\2 
||0<t<oo II2 

if the hypothesis of part (i) is fulfilled. If p ^ 2 and t > 1, 

( poo \ 1/9 / /-co \ l / p 

y \(i-t/n)%-H/u\"duj ^y ii^/i"d«/ti"j 

( /•oo \ 1/P 

/ |Pu
a ƒ |p du/wp ) , if l /p + 1 / 9 = 1 and a > l/p. 

Hence 

( /•oo \ 1/P 

y iiptt
a/ii?d«/«pj . 

But the Lp operator norm of Pa is controlled by the Lp multiplier norms of 
m and (£ • V)am. 

4. Proof of Theorem 1. At this point we shall assume that the reader 
is familiar with the contents of [1], where, amongst other things, Bourgain 
proves that there exist a number L = L(B) and an A G SL(n, R) such that if 
K = XA(B), then 

(*)\K*(t)\<C(\i\L)-\ 
(b)\K»(t)-l\<C\t\L, 
(c)|e-vxA(OI<c, 

with C an absolute constant. 
We shall obtain a Littlewood-Paley decomposition of Rn, I = J^-Ry, such 

that | | (£ l#i / l 2 ) 1 / 2 l lp < Cp\\f\\p, 1 < p < 2, with Cp independent of n, 
then observe that the essentially positive family of operators (K — Pzjtx) has 
maximal function strongly bounded on L2 with respect to this decomposition, 
with constant independent of everything. Here P is the Poisson kernel; it is 
of course true that P* is bounded on Lp(Rn), 1 < p < 00 with constant 
independent of n (see [8]). Finally we show that || sup 1 < t < 2 \Kt * ƒ | ||p < 
Cp\\ ƒ ||p, with Cp independent of B and n if p > 3/2, which will conclude 
the proof once we apply Theorem 2; for the case of M this third step is not 
required since \\K\\i = 1. 

Each of these steps is easy; for the first we merely take Rj = P23 + 1 — P23] 
then ( E l # i / I 2 ) 1 / 2 < 0og2)1/2^i(/)(x), g± being the classical Littlewood-
Paley function, which Stein has shown [9] to satisfy ||<7i(/)||p < Cp||/| |p, 
1 < p < 2, with Cp independent of n. 

For the second step, one may apply part (i) of the proposition to each of 
the operators (K — PL)R^ k G Z, using (a)-(c) to obtain \\[K — PhlRkAh ^ 
CojkH ƒ H2, with ^2 al. < 00, 0 < t < 1. This is not exactly what being strongly 
bounded on L2 means, but a slight modification of this argument will give 
precisely what we require. 

Finally, observe that KA has L1 multiplier norm 1, and by (c) above 
(£ • V)KA has L2 multiplier norm dominated by an absolute constant; af­
ter setting up the appropriate complex-analytic interpolation argument, one 
obtains that (£ • V)aKA has Lp multiplier norm dominated by an absolute 



AN ALMOST-ORTHOGONALITY PRINCIPLE 273 

constant if a < 2/p'', 0 < a < l , l < p < 2 . An application of part (ii) of the 
proposition yields ||sup1< t<2 \Kt * f\ \\p < Cp\\f\\p, with Cp depending only 
on p if 1/p < 2/p', which is p > 3/2. 

5. Concluding remark. The reader will observe that only the last of the 
three steps does not work for all p > 1; if the method is to succeed further, 
results of the form (£• V)KA having Lp multipler norm not depending on B or 
n, p T̂  2, would be useful. Of course the L1 multiplier norm of this operator 
is essentially n. Is it possible to do better than interpolation between p = 1 
and p = 2 for this operator? Such results, if true, would give a new expression 
to the philosophy that, for large n, "most of the mass of a convex body is 
situated near its boundary". 
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