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I. WHAT ARE DIOPHANTINE PROBLEMS? 

I don't know the answer. To feel our way around the question, let us first 
consider some miscellaneous problems that have been labelled " Diophantine" 
and then review some attempts towards a systematic organization of these 
"Diophantine problems". 

The point of such a preamble is to get us to appreciate why number-theorists 
are often so fondly devoted to the study of rational points on algebraic curves, 
and to sense the more general contexts which embrace that study. 

My aim will then be to discuss the recent progress made in the arithmetic of 
curves [Fa]',1 and to explain a few of the ideas involved without requiring 
substantial background in algebra, number theory, or algebraic geometry. 

This survey has been culled from my notes to the Colloquium Series 
Lectures at the 1984 winter meeting of the American Mathematical Society at 
Louisville, Kentucky, and from part of the Albert Lectures delivered at the 
University of Chicago this past fall. I feel very lucky to have had such engaging 
and stimulating audiences. 

I am very appreciative of the comments and suggestions of J.-P. Serre who 
read closely early versions of this survey. I am also thankful for the help and 
advice I received from many people in the course of writing it, among whom 
are: Mike Artin, Greg Call, Persi Diaconis, John Hsia, John Hubbard, Nick 
Katz, Serge Lang, Joe Mazur, David Mumford, Julia Robinson, Joe Silverman, 
John Tate, Jeremy Teitelbaum, and Don Zagier. 

1. Miscellaneous Diophantine problems. 

(a) |Chosen at random from Diophantus] (V.16) Find three numbers such that 
when each is subtracted from the cube of their sum, a cube remains. 

(b) (Diophantine approximation (of irrationals)] Since y[ï is irrational, 
x2 — 2y2 never represents 0 for integral values of JC and y, not both zero. But, 
for such values of x and y, x2 — 2_y2is integral, and therefore the smallest 
values it can assume are 

x2 - 2y2= ±1 

which is a type of equation that is universally (but wrongly, it turns out [Wl]') 
referred to as a Pellian equation.2 

*A prime after a reference (e.g. [Fa]') indicates that it is to be found in one of the first three 
sections of the bibliography. 

2The Archimedes Cattle Problem also reduces to Pell's equation. See [Wl, Fo]' for very readable 
accounts of this. 

Weil [Wl]' provides a beautiful account of the treatment that the Pellian equation received in the 
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Such an equation has been known since the 17th century to have an infinity 
of integral solutions 

X 

Ï 
3 
7 
17 
41 
99 
239 
577 

1393 
3363 

y 
1 
2 
5 
12 
29 
70 
169 
408 
985 

2376 

x/y 

1.0 
1.5 
1.4 
1.416 • • • 
1.4137 • • • 
1.41428 • • • 
1.414201 • • • 
1.414215 • • • 
1.4142132 • • • 
1.4142136 • • • 

and as the size of y increases, x/y provides better and better approximations 
to ]/2 . Specifically, since 

(x/y)2-2= ±\/y\ 

one can easily find a constant c (e.g., c = 1) such that 

\x/y-Jl\^c/y\ 

for all pairs (x, y) on our list. In fact, in a technical sense the above list is the 
complete collection of "best approximants" to Jl. 

There may be something daunting about being confronted with an " infinity" 
of different solutions to the same Diophantine problem. But for any Pellian 
equation and for this one in particular, all solutions (x, y) may be obtained 
systematically from the smallest one, the rule being in this case 

x + Jly={\ + Jl)N 

hands of the Indian mathematicians Brahmegupta (7th century A.D.) and Bhascara (12th century 
A.D.). They dealt with the general equation written in modern terms in the display below, each 
ingredient of which was known by its particular name (whose rough English translation is 
indicated) 

The multiplicative property of solutions was known by the name "bhâvanâ" which apparently 
means "production rules". The Indian mathematicians also had a process known as "kuttaka" (or: 
"the pulverizer") which brought, in effect, the Euclidean algorithm to bear on the problem of 
producing new solutions from old. Bhascara and earlier mathematicians were also aware of the fact 
that all solutions for m = ± 1 come from the smallest solution; the process enabling one to 
generate all from the smallest went under the name "cakravâla" (from cakra = a wheel). 
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where N runs systematically through all integers.3 

To what extent does the optimistic extension of this principle hold? Is it the 
case that whenever there are an infinity of solutions to a given Diophantine 
question, there is some systematic coherence to this infinite collection, which 
enables us in an orderly way to generate all of them from a finite subcollec­
tion? 

(c) |From geometry] 
—The famous Pythagorean problem of listing all right-angle triangles all of 
whose sides are integral was solved in antiquity. 

—The Congruence number problem (which dates, apparently, to an Arab 
manuscript of the 10th century) is to determine for a given natural number n 
whether there exists a right-angle triangle with all three sides rational and area 
equal to n (such a number n is called congruent). 

Two years ago, using a host of modern equipment (the arithmetic of elliptic 
curves, L-functions, modular forms of half-integral weight) Tunnell produced 
a beautiful and simple algorithm which (if a standard conjecture in the theory 
of elliptic curves were true) would determine all congruent numbers. For 
example, for odd integers «, Tunnell's algorithm simply requires you to check 
whether the number of triples (x, y, z) satisfying 2x2 + y2 + 8z2 = n is twice 
the number of triples satisfying 2x2 + y2 + 32z2 = n (conjecturally, an odd 
integer n is congruent if and only if this happens).4 

— Let W c C 2 be an algebraic plane curve. That is, W is the locus of zeroes of 
a polynomial in two variables with complex coefficients. Is it possible that 
there be an infinity of points on W all expressible as rational linear combina­
tions of a finite number of points in the plane C2?5 

—The intriguing problem of classifying finite subsets S of points in the 
Euclidean plane such that no three points in S are collinear and such that the 
distance between any two points in S is rational, is discussed in [Kl]'. The 
problem has a curiously "Diophantine ring" to it but one doesn't immediately 
see how to put it into a familiar category. Apparently, the case where S has 
cardinality 4 has been attacked by Brahmegupta, Kummer, and Mordell 
[Kl,Mo2]'. 

(d) (Representing integers, or rational numbers, by some given polynomial] 
Any positive integer is a sum of four squares. The number of ways in which a 
natural number n can be expressed as a sum of k squares (or, more generally, 
can be represented by a given positive-definite quadratic form) yields a 
fascinating array of arithmetic functions of n, and a profound understanding 

3Not to leave the reader with the impression that the "smallest solution" is always as small as 
our example above, let us cite the case X2 - 109 • Y2 = 1 whose smallest solution is 

(158071986249,15140424455100), 

as was known to Fermât (cf. discussion on p. 97 of [WI]'). 
4See Koblitz's book [Ko]', which is devoted to this problem. 
5Answer: Not if the genus is greater than one! This is essentially equivalent to Mordell's 

conjecture, recently proved by Faltings—the focus of these talks. 
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of these functions6 is one of the impressive achievements of classical number 
theory. 

I don't mean to say that we now fully understand these matters. Far from it: 
the richness of structure of these arithmetic functions has been a source of 
amazement to everyone who has encountered them, and their connections with 
some of the other great problems in mathematics7 are labyrinthine. 

There is also no dearth of problems involving polynomials of higher degree 
(Waring's problem being, perhaps, the most well known). Here are two 
problems (in " few variables") where in each case an affirmative answer would 
settle an important long-standing issue in the arithmetic of elliptic curves: 

(Silverman's problem.) For any natural number k, is there a cube-free integer 
that can be represented as a sum of two cubes in at least k way si 

Readers of Hardy's account of Ramanujan's last days will remember the 
taxicab license that settles this for k = 2. 

(Weil's "1929 problem" [W1929]'.) Is there a general algorithm to settle the 
question of whether or not a fourth-degree polynomial with rational coefficients in 
one variable represents the square of a rational number? 

(For any fixed number field one would also want a corresponding algorithm.) 

2. Systematic formulations. One does not have to wait long, in the history of 
the development of algebra to hear calls for the systematic treatment of the 
problems at issue. The modern inventor of algebra (François Viète) ends his 
treatise Introduction to the analytic art, which is dedicated to a contemporary 
[ ~ 1591] descendant of the "fairy Melusine", [Vi 1, 2]' with the bold: 

Finally the analytical art, having at last been put into the threefold 
form of zetetic, poristic, and exegetic, appropriates itself by right to 
the proud problem of problems, which is 

TO LEAVE NO PROBLEM UNSOLVED.8 

A clearer formulation of this sentiment is given by Hubert [Hi]' in his 10th 
problem. 

Determination of the solvability 
of a Diophantine equation 

Given a diophantine equation with any number of unknown quanti­
ties and with rational integral numerical coefficients: To devise a 
process according to which it can be determined by a finite number of 
operations whether the equation is solvable in rational integers. 

Readers are probably aware that some 15 years ago, Matijasevic showed that 

6 They also arise as Fourier coefficients of classical, and not-so-classical, modular forms. 
7For example, sphere-packing problems (of course), the structure of the Monster group, the 

representation theory of the group of automorphisms of the algebraic closure of the field of 
rational numbers, the infinite-dimensional representation theory of some linear algebraic groups 
(like GL2 ), to say nothing of a myriad of other (at first view unrelated) important Diophantine 
problems. 

8" fastuosum problema problematum ars Analytice... iure sibi adrogat, Quod est, NULLUM 
NON PROBLEMA SOLVERE" (the capital letters are Viète's). 
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no such process as envisaged by Hubert exists, at least if by process one means 
computing machine algorithm. An ironical element in Matijasevic's proof is 
that the very success that we have in enumerating all solutions of a Pellian 
equation [e.g., our example §l(b) would suffice for his purposes; cf. [D-M-R]'] 
is used as a lever to demonstrate the nonexistence of general algorithms. 

It is still unknown, however, whether or not there are general algorithms to 
determine whether equations are solvable in rational numbers (rather than 
rational integers).9 

Now a few words about Diophantine questions, organized by degrees: 

Degree 1 

Even here, where Cramer's rule completely takes care of the question of 
rational solutions, if one asks for the "smallest" integral solutions of a system 
of linear equations with integral coefficients in many variables, one finds one's 
self in difficult terrain, within the realm of the "geometry of numbers". Good 
asymptotic bounds are of considerable importance, for example, for the 
production of "auxiliary polynomials" to be used in the theory of transcenden­
tal numbers. See [B-V] for the latest and best bounds. 

Degree 2 

Homogeneous forms of degree two (quadratic forms) have the agreeable 
property that if you are given one nontrivial rational solution, you can get the 
rest by a systematic procedure. We shall see this later in a special case (the 
" method of sweeping Unes"). 

Definite quadratic forms have no nontrivial real solutions, and hence no 
rational ones. Indefinite quadratic forms with rational coefficients in 5 varia­
bles or more always have a nontrivial rational zero. There are, in general, 
effective procedures to determine whether or not a quadratic form has a 
rational zero. 

As mentioned above, the question of representing integers by quadratic 
forms is vast, and seems at present open-ended.10 So is the question of 

9In view of higher-dimensional Mordell conjectures of Lang [L 5], Bombieri and Vojta, it is 
tempting to pose some "effectivity problems" which are more pliable than the classical ones 
described in the text. For example, say that a polynomial equation ƒ ( Xx,..., XN ) = 0 is arithmeti­
cally dense if there exists a number field K such that the AT-solutions of ƒ [i.e., (al,... ,aN) e KN 

such that f(al,..., aN ) = 0] are so numerous that any polynomial q>{X^...,XN) vanishing on all 
AT-solutions, vanishes on all C-solutions as well. Is there an effective algorithm to determine 
whether a given polynomial ƒ is arithmetically dense? 

A technical note concerning arithmetic density. 
The notion of arithmetic density may be framed in the more general context of algebraic 

varieties. By Faltings' theorem, and known simple results, a curve is arithmetically dense if and 
only if its genus is < 1. As for varieties of arbitrary dimension, see an account of specific 
conjectures and results in this area in a forthcoming survey article by Lang. One has, for example, 
a conjecture due to Bombieri and Lang that arithmetically dense varieties are not of general type. 
One also has partial confirmation of this conjecture in the context of function fields (see [No]; see 
also the earlier related work of Bogomolov, e.g. [Des]). 

It seems fair to say, however, that at the present moment we lack sufficient experience to make 
definitive conjectures concerning arithmetic density, covering all varieties, or even covering all 
surfaces. Are there, for example, AT3 surfaces which are not arithmetically dense? 

10 It was only relatively recently proved by Siegel (1972) that this problem is effective. Other 
effective proofs have been given subsequently by Cassels [Ca]' and Benham-Hsia [B-H]. 
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classifying quadratic forms up to integral General Linear change of variables.11 

(The case of two variables alone, a study initiated by Fermât, Euler, Lagrange, 
and especially Gauss—in modern terms: "the ideal class group of quadratic 
number fields"—still presents innumerable mysteries.) 

Degree 3 

There are at present, no proved algorithms to determine whether a general 
homogeneous form in three variables with rational coefficients has a nontrivial 
solution (we will discuss this case at much greater length later). A theorem of 
Heath-Brown proved in this past year guarantees, however, that any smooth 
(nonsingular) such form in 10 variables or more does have a nontrivial rational 
solution. This improves upon prior results of Davenport and Birch; it is also 
"best possible" in the sense that there are such forms in 9 variables without 
nontrivial solutions. In contrast to the case of degree 2, finding one nontrivial 
rational solution does not end the matter: the fun only then begins, as we shall 
see later in the case of three variables. 

The theory of integral representations is in an incomparably more primitive 
state than for degree 2. It has been known for a long time, for example, that 
any natural number is representable by 9 (or fewer) perfect cubes, 9 being best 
possible, but we are in the dark about more refined questions (i.e., Silverman's 
problem described above). 

As for classification, there are the beginnings of a fascinating theory of 
binary (i.e., two-variable) cubic forms, initiated by Davenport, Heilbronn, and 
Shintani. 

Degree > 4 

Following the work of Matijasevic, J. P. Jones has produced a polynomial, 
fa(xl9..., xl53) = f (a; *! , . . . , x1S3), of degree 4 in 154 variables such that the 
question of whether or not, for a given integral value of the parameter a, fa 

has a positive integer zero can never be settled by a computing machine 
algorithm. 

As for rational solutions, although a theorem of Birch guarantees that for 
any odd degree d, there is a number N(d) such that a homogeneous form of 
degree d in N variables with rational coefficients (N > N(d)) has a nontrivial 
rational solution, one still doesn't have a good guess for the best N(d). Nor 
are there algorithms (even in cases as special as Weil's "1929 problem" above). 

For the rest of these lectures—after a digression on the question of integral 
solutions and their connections with Diophantine approximation—we shall 
concentrate on the problem of rational points on curves. 

3. Digression: Questions of integral solutions vs. Questions of Diophantine 
approximations. Let us return to the fact, discussed in §l(b), that there are an 
infinity of rational approximants x/y to yfl satisfying the inequality 

\x/y- i/2|< c/y2. 

The celebrated theorem of Roth underscores the fact that this infinity of 
approximants has just barely "squeaked through". That is, Roth's theorem 

11 Or the more general question of representing one quadratic form by another. 
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asserts that for a any algebraic irrationality and for (c, e) any choice of 
positive constants, there are only a finite number of approximants x/y to a 
satisfying the inequality 

\x/y - a|< c/y2 + E. 

A major drawback in our understanding of Roth's theorem is that the 
method of proof provides no effective way of determining the finite set of 
approximants in question.12 This drawback casts its shadow on all of the 
applications of Roth's theorem to questions concerning integral solutions, as 
we shall soon see. 

Perhaps the quickest way to see that Roth's theorem says something im­
portant about integral solutions is to consider a particular equation, like 

X3 - 1 -Y3 = m 
for some fixed integer m. The main requirement of the particular equation we 
choose is that, in contrast to the Pellian equation, its degree is > 2. By 
reasoning utterly analogous to that of §l(b) we may obtain a constant c (which 
depends upon the choice of m) such that if (X, Y) is an integral solution to our 
equation, then 

\X/Y- ff\^c/Y3. 
But, choosing e so that 2 + e < 3, Roth's theorem immediately implies that 

there are at most a finite number of such approximants, from which one 
deduces that our equation admits at most a finite number of integral solutions. 
By more elaborate arguments, but ultimately appealing to the same Roth's 
theorem13 Siegel proved the following general result: 

THEOREM (SIEGEL). Let f(X,Y) be an irreducible polynomial with integral 
coefficients. Then the equation f(X, Y) = 0 has only a finite number of integral 
solutions ( X, Y) except in the following special case: 

(a) The curve f(X,Y) = 0 can be rationally parametrized, i.e., there are 
rational functions X(t), Y(t) of a variable t, not both constant, such that 
ƒ(X(t),Y(t)) vanishes identically, and 

(b) the projectivized curve (see Part II below) has at most two points at oo. 

By virtue of the fact that Siegel makes use of Roth's theorem in his proof, no 
effective way is given to find the finite number of integral solutions of the 
equations ƒ ( X, Y ) = 0 covered by the theorem. There is an alternative method, 
due to Baker, which establishes the finitude of the number of integral solutions 
of a class of equations of the form ƒ( X, Y) = 0. Baker's method is based on an 
effective estimate for a lower bound satisfied by linear forms in logarithms, 
rather than on Roth's theorem. Its disadvantage vis a vis Siegel's theorem is 
that Baker's method covers only a restricted class of such equations. It would, 
in fact, be interesting to have a satisfying explanation as to why Baker's 

12 The number of approximants can, however, be bounded [D-R]. 
13 In fact, Siegel's theorem (1929) pre-dated the discovery of Roth's theorem (1955). Siegel was 

constrained to appeal to a weaker result, antecedent to Roth's theorem (his own sharpening of a 
theorem proved in 1909 by Thue) and had to resort to concomitantly more elaborate arguments. 
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method is inapplicable more generally, and, perhaps, to have a conceptual 
description for its precise domain of applicability. The great advantage of 
Baker's method is that, when it is applicable, it provides an effective result.14 

An example of an equation for which both Baker's method and (of course) 
Siegel's theorem applies is: 

AY2 + BX3 = M 
for fixed integer nonzero constants A, B and M. Such equations have been the 
focus of much study for various reasons: First, the nature (e.g. finiteness) of 
their solutions visibly bears upon the phenomenology of the placement of the 
set of "perfect squares" and "perfect cubes" in integers. Second, such equa­
tions arise as rather natural " next-most-simple cases" to contrast to the Pellian 
equations which exhibit vastly different behavior. But perhaps the most 
important reason to consider them in detail is that (for certain A, B) their 
solution plays a critical role in classifying certain structures of Diophantine 
importance. We shall touch upon this below, and in anticipation of the role 
that these equations play, we call them: generalized cubic discriminant equa­
tions. 

Applying Baker's method, Stark established the following "almost exponen­
tial" upper bound for the size of solutions to generalized cubic discriminant 
equations: 

For fixed A, B, and f or every e > 0, there is a constant c = c(e) such that if 
(X, Y) is an integral solution of AY2 + BX3 = M, then 

\X\<cMl+f. 

However powerful the above estimate may be, it is likely to be quite far from 
the actual phenomena. Specifically, M. Hall has conjectured: 

(?) For fixed A, B and for every e > 0, there is a constant C = C(e, A, B) 
such that if (X, Y) is an integral solution of A Y2 + BX3 = M, then 

\X\<C-\M\2+£}5 

We now devote ourselves to the study of rational points. 

II. CURVES 

1. Plane curves. Let AT be a subfield of C, the field of complex numbers. The 
most important examples for us are K = Q, the field of rational numbers, and 
K = C. We shall be dealing with polynomial equations in two variables with 
coefficients in K, <p(x, y) = 0. As a running example, let us take the Klein 
curve (Figure 1). 

If one's aim is to study K-rational solutions, i.e., points (a, b) in the "finite 
plane" K X K such that <p(a, b) = 0, one loses little and often gains some 
simplicity by passing to the projective plane. This is a truth universally 
acknowledged since the days of Poncelet, but notice that if we were interested 

14 But, the bounds provided are usually enormous. 
15 See [Hall] for computer evidence for this conjecture. See [Si] and [Ma] for its treatment and the 

treatment of analogous problems in the context of function fields. See [Vo] for the role that Hall's 
conjecture plays within the realm of more general conjectures of Vojta. 
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in the question of integral solutions, we could not "projectivize". To pass to 
the projective plane amounts to replacing the polynomial <p(jc, y) by its 
associated homogeneous form f(u, v,w). The associated form f(u, v,w) is 
characterized by the requirements that it be homogeneous, of the same degree 
as <p, and such that f(x, y, 1) = y(x, y). In the case of the Klein curve, the 
homogeneous form is 

(1) f(u,v,w) = u3v + v3w + w3u. 

X3Y+ 7 3 + X = 0 

FIGURE 1 

Digression about real points. In the above picture, the real locus of the Klein 
curve is seen to have two connected components in the finite plane. They 
"hook together" to make a single component in the projective plane. The 
number of components of the real locus of an algebraic curve, and their 
placement (possible nesting configurations) has been a topic of continued 
concern, and the problem of Hilbert devoted to this (the 16th problem) is far 
from settled. About a century ago, Harnack proved that a smooth real 
algebraic curve of degree d can have a maximum of 

(d- l ) ( < / - 2 ) / 2 + 1 

components and that for every degree this maximum is realized. 
I can't resist reproducing A'Campo's beautiful, intriguing picture of a real 

algebraic curve of degree 6 with the maximum number of components a curve 
of its degree can have (Figure 2). This appears in his account of recent progress 
towards Hubert's 16th problem [A]. 

Recall that the K-rational points of the projective plane are equivalence 
classes of triples (a, b,c) in K X K X K such that a, b, and c are not all zero, 
and where the equivalence relation is given by scalar multiplication by nonzero 
elements in K. As usual, we denote by P2(K) the set of ^-rational points in 
the projective plane. 

We shall reserve the term plane curve to refer to a curve C in the projective 
plane given by an equation: 

(2) f(u,v,w) = Q 
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FIGURE 2 (Reprinted, with permission, from Norbert A'Campo, Sur la 
première partie du seizième problème de Hubert (Séminaire Bourbaki, exp. 
537, Juin 1979), Lecture Notes in Mathematics, vol. 770, Springer-Verlag, 
1980, p. 216) 

where ƒ is a homogeneous irreducible form. The degree of C is the degree of 
the form ƒ. 

Two homogeneous forms which are nonzero scalar multiples of one another 
define the same curve. A curve C is defined over K if there is a homogeneous 
form ƒ defining C, all of whose coefficients lie in K. Equivalently, given any 
homogeneous form ƒ defining C, C is defined over K if the ratio of any two 
nonzero coefficients of ƒ lie in K. Our Klein curve, for example, is defined 
over Q. 

If the plane curve C is defined over K, then the set of AT-rational points on 
the curve C, denoted C{K)y is the set of AT-rational points in the projective 
plane which are solutions of (2); that is, a AT-rational point on C is an 
equivalence class of triples (0, b, c) in K X K X K such that f(a,b,c) = 0, the 
equivalence relation being given by scalar multiplication by nonzero elements 
of K. The question of determining C(K), even in specific instances, is 
notoriously difficult. If you wish to convince yourself of the difficulty of this 
problem, try to find all Q-rational points on our Klein curve! For the answer, 
see [Hu]. 

2. Algebraic curves. Why not consider, more generally, algebraic curves in 
projective space of any dimension NI We certainly can do so, and, moreover, 
all the work we are about to discuss will make reference, in essence, only to the 
intrinsic algebraic geometry of curves. No use will really be made of the way 
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the curve sits in projective space. Nevertheless, if you want to keep some 
"concrete model" in mind, there is little harm in sticking to plane curves, when 
studying A>rational points. This is because any algebraic curve X in projective 
iV-space may be linearly projected in a generically one:one way into the 
projective plane. There are, in fact, many such linear projections, and if X is 
defined over K, such linear projections may be found which are also defined 
over K. The image of X under such a projection (generically one:one on X 
and defined over AT) is a plane curve C defined over K, and (a matter of great 
importance for us), the ^-rational points of X and of C are closely related.16 

3. Smooth curves. Recall that the singular or nonsmooth points of a plane 
curve are those points on the curve at which all the partial derivatives 

d£ d£ d£ 
dx ' dy ' dz 

vanish. Our Klein curve, for instance, is smooth, since there are no simulta­
neous solutions of 

dx dy dz 

for ƒ as in (1). 
Any algebraic curve C in projective space is the (generically one:one) linear 

projection of a smooth algebraic curve X in some higher-dimensional projec­
tive space. Such a curve X is called a smooth model for C. 

If C is defined over K, it possesses a smooth model X defined over K such 
that the linear projection bringing X to C is also defined over K. It will 
usually be to our advantage to replace any curve C by its smooth model X as 
soon as possible. We will also reserve the letter X to denote smooth algebraic 
curves. 

4. Riemann surfaces. If A" is a smooth algebraic curve, its C-rational points 
X(C), viewed as imbedded in complex projective N-space, cuts out a compact 
Riemann surface. Conversely, if Z is any compact Riemann surface, Z is 
analytically isomorphic to the complex locus of an algebraic curve in projective 
space. This well-known, yet ever-mysterious connection between complex 
analysis and algebraic geometry is a very stringent "link" indeed: Given, for 
example, any Riemann surface analytically imbedded in projective TV-space, 
one may view it as the locus of common complex zeroes of a finite num­
ber of homogeneous polynomial forms (ƒ)• = 0) • and hence as the Riemann 
surface associated to an algebraic curve X This phenomenon is the simplest 
instance of Chow's theorem, which will serve us well, in its greater generality, 
later on. This "link" persists in the context of mappings between Riemann 
surfaces as well. If X and Y are two algebraic curves and ƒ: ^(C) -> Y(C) 
an analytic mapping between their Riemann surfaces, then ƒ "is" algebraic 

16 Questions pertaining to integral points, sometimes suffer much greater injury under such 
generically one:one projections. 
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in the sense that its graph, imbedded in X(C) X Y(C), and then in projective 
MN + M + AT + 1-space: 

graph(ƒ) c X(C) X Y(C) c P"(C) X P"(C) c p " " + " + " ( c ) 

"Segre imbedding" 

is the locus of complex points of an algebraic curve I\ 
Given X, Y two algebraic curves defined over K, a mapping ƒ : X -> Y 

defined over K will mean a mapping between their Riemann surfaces such that 
the algebraic curve Y is defined over K. It is important to notice that this 
concept of mapping is intrinsic to X, and in an essential sense it ignores the 
placement of X in projective space. Armed with this concept, we can of course 
define isomorphism between two algebraic curves defined over K. 

The smooth model of an algebraic curve defined over K is unique, up to 
isomorphism defined over K. 

5. Simplifying the singularities of a plane curve: 
If C is a plane curve and X is its smooth model in some high-dimensional 

projective space, the image of X under a generic projection to a 2-dimensional 
projective space yields another plane curve C' with at worst nodal (or ordinary 
double point) singularities. These are singularities which look (analytically) like 
X • Y = 0. 

EXAMPLE. The diagram (Figure 3) is a picture of a degree 5 plane curve with 
four singularities (all nodes). 

As we shall see below, it has genus 2. 

SP F I G U R E 3 
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Since C and C' share the same smooth model X (all defined over any field 
K over which C is defined) questions about ÀT-rational points of C and C' are 
closely related. So, again, one hardly loses any generality by restricting 
attention to plane curves C with only nodal singularities. For these curves 
passing from C to the smooth model X is easily envisaged: One simply 
separates the two sheets of each of the ordinary double points (see Figure 4). 

FIGURE 4 

6. Genus. If A" is a smooth algebraic curve, the genus gx may be defined to 
be the "number of handles" of the Riemann surface X(C). For example, in 
Figure 5, gx = 5. 

FIGURE 5 

More precisely, gx can be defined topological^ by the formulae 

gx:=l-x/2 = V 2 , 

where x is the Euler characteristic and bx is the first Betti number of the 
topological 2-manifold X(C). 

The genus can also be defined analytically as the number of independent 
analytic differential 1-forms on the Riemann surface A^C). If X is defined 
over K, it is also the number of ^-linearly independent regular (algebraic) 
differential 1-forms defined over K. 

If C is a plane curve with only nodal singularities, then gx, the genus of a 
smooth model X, is given by the formula: 

(3) „-^-'V'-2»-, . 
where d is the degree of C and v is the number of (nodal) singular points. 

EXAMPLES. This formula shows that smooth plane curves are a rarity, and 
that singularities on plane curves can be an unavoidable annoyance. For 
example, any plane curve whose smooth model is of genus two17 must have at 
least one singular point. Any smooth curve of genus two may be found in P3 , 
however, as an irreducible component of the intersection of a cubic and a 
quadric. 

17Or, more generally, whose genus is not a "triangular number". 
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As the genus grows, very little is known about the smallest degree that a 
(birational) plane curve model for a given algebraic curve may have. For the 
"general curve" of genus g, the smallest degree is [(2 g + 8)/3] and hence it 
will not fail to have singular points (if they are all nodal, then the number is 
asymptotic to 2g2/9). See the discussion of this in Lecture 1 of [Mu]'. 

For the Klein curve, d = 4, v = 0, so it is of genus 3. 

7. The fundamental trichotomy. Let I b e a smooth algebraic curve defined 
over K. The "trichotomy" to which I am referring is: the genus of X equals 
zero, one or is greater than or equal to 2. 

Genus zero 
Analytic structure. The associated Riemann surface X(0) is isomorphic to 

the Riemann sphere. It is a homogeneous space under the action of its 
automorphism group PGL2(C). 

Differential geometry. The Riemann surface X(C) carries a Riemannian 
metric of constant positive curvature. 

^-rational points. If X possesses a ^-rational point, then X is isomorphic 
over K to the projective line P1. In this case X(K) is rationally parametrized 
by (and is in one:one correspondence with) Pl(K). 

Summary. X( K ) is either empty or of infinite cardinality. If K is the field of 
rational numbers, or more generally a number field, then one can effectively 
determine which of the two possibilities occurs. 

FIGURE 6 

EXAMPLES. Take C to be defined by any irreducible conic in the projective 
plane, with a AT-rational point c on it. Let us realize Pl(K) as the set of 
( AT-rational) lines in the projective plane passing through c. Every such line L 
will intersect C in a unique point x "other than" c [if L is tangent to C at c, 
we take x to be equal to c]. The association L *-> x is the parametrization of 
C(K) by Pl(K) (the method of sweeping lines). 

For instance, we might take the famous conic X1 + Y2 — Z2 = 0 which 
expresses the problem of parametrizing Pythagorean triples. 
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Another example would be given by any irreducible cubic C with a singular 
point c. Such a singular point is necessarily unique, and is defined over any 
field K over which C is defined. The genus formula (3) then gives that gx, the 
genus of a smooth model of C, is zero. Using the method of "sweeping lines" 
based at the singular point c, one again gets a rational parametrization of the 
points of C. 

Genus one 
Analytic structure. The Riemann surface X(C) is isomorphic to a complex 

torus of dimension one. Let us take some time out to recall what a complex 
torus (of any dimension) looks like. 

A lattice Ü in C n (complex «-space) is a discrete subgroup which generates 
Cn as a real vector space; or, alternatively, it is a discrete subgroup which is a 
free abelian group on 2n generators. For example, the hexagonal lattice in the 
complex plane (Figure 7). 

m 
FIGURE 7 

A complex torus of dimension « is a complex analytic Lie group isomorphic 
to the quotient of C n by a lattice £2. 

For example, if n = 1, we are taking the quotient of the complex plane by a 
lattice (by "two periods") and we obtain a torus in the old-fashioned sense, 
e.g., for the hexagonal lattice we get the Riemann surface obtained by pasting 
(Figure 8) and this Riemann surface comes with a natural (analytic) group law 
on it. 

FIGURE 8 

An essential property of complex tori is that their group structure is 
determinable purely from their complex analytic structure, at least if you 
provide your complex torus with a "basepoint" to act as the origin for the 
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group law. Specifically, suppose 

7\ = C V O i , T2 = Cn*/iï2 

are complex tori, and /, in Tt are the image of the origin in each. Then any 
complex analytic mapping from Tx to T2 which brings tx to t2 is induced from 
a complex linear mapping from C"1 to C"2. 

Differential geometry. Any complex torus (of any dimension) carries a flat 
metric induced from complex «-space, hence so does ^(C). 

AT-rational points. As in the case of genus zero, it may happen that X(K) is 
empty. If not, choose a A^-rational point x0, and give X(C) its canonical group 
structure with x0 as origin. It then follows that X(K) is closed under the 
addition law, and so can be considered as a (commutative) group in its own 
right. The theorem of Mordell-Weil asserts that if K is the rational field, or, 
more generally, a number field, then X(K) is finitely generated. That is, 

X( K ) = Z r © [finite abelian group]. 

REMARK. When K is the rational field Q it is known that only fifteen finite 
abelian groups can occur as torsion subgroups of X(Q) for some X, and each 
of these fifteen groups do occur infinitely often. Far less is known about the 
mysterious number r, and at present we still do not have a (proved) algorithm 
for computing r. Nor do we have an algorithm (established, independent of 
any conjectures) to determine whether a curve X of genus 1 has any rational 
ÀT-rational solution points. If we could determine this latter question effec­
tively, then we could compute r effectively. John Tate brought to my attention 
the article [W 1929] of Weil, published in 1929, where he showed that an 
effective algorithm to determine whether any given quartic in one variable with 
coefficients in K represents a square in K (Weil's "1929" problem 1.2) would 
yield an effective solution to both questions discussed above. As for the 
possible values of r, it is generally expected that there are curves of genus 1 
over Q with arbitrarily large r, but this hasn't yet been shown. It is known that 
an affirmative answer to "Silverman's problem" (I. §2) would substantiate this. 
At present, an example due to Mestre (obtained via a quite interesting method) 
has r at least equal to 14 (see [Me 1] for r > 12; [Me 2] for r > 14). 

EXAMPLES. Let cp(x, y) = y2 — g(x) where g(x) is a cubic polynomial in x 
with distinct roots, and let C denote the plane cubic defined by the homoge­
neous form associated to (p. Then C is smooth, i.e., we may take X = C, and C 
has a unique point at infinity. Take JC0 to be this point at infinity. Since C is a 
cubic, any line in the projective plane intersects C in three points (counted 
with multiplicity). 

JC + y + z = 0 

FIGURE 9 
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The group law on ^(C) is characterized by the property that the sum of any 
three collinear points is equal to zero, i.e., to x0. 

This beautiful, geometrically defined, group law on smooth cubics has often 
been referred to as the chord-and-tangent method, because in a concrete sense it 
may be thought of as a way of generating new ^-rational points from old: 
Given two ^-rational points x and y, draw the Une L through x and y 
(viewed as a "chord" on C). Then L will intersect in a unique third point z on 
C (necessarily AT-rational again). Of course if you take x = y9 then L should be 
taken to be the tangent to C at x. In these terms, the Mordell-Weil theorem 
then guarantees that there is a finite set of AT-rational points, if K is a number 
field, such that any other ^-rational point can be obtained by assiduous 
iterated application of the "chord-and-tangent method" starting with this finite 
set. 

SUBEXAMPLE 1. An integral solution to 

y2 + y = x3 - x 

provides an example of a product of two consecutive integers being equal to a 
product of three consecutive ones. 

FIGURE 10. Rational points on the curve y2 + y = x3 - x. (Reprinted, with 
permission, from Algebraic Geometry, by Robin Hartshorne, Springer-Verlag, 
1977, p. 336. Artist: Richard Bassein.) 

Consider the plane cubic C which is the projectivized form of the above 
curve. Then C is smooth, i.e., we can take X equal to C, giving it a group 
structure with the unique point at infinity as origin. Clearly, (x, y) = (0,0) is a 
nontrivial point, call it P, in X(Q). It can be shown that X(Q) is free on the 
single generator P. An elementary exercise gives that if (a, ft) are the coordi­
nates of a point R on X, and a is nonzero, then the coordinates (#', ft') of 
R + P are given by 

, ft2-a3 « , * , 
a = :— ; ft = 1 a . 

a2 a 
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Here is a list of the absolute values of the numerators of the ^-coordinates of 
various multiples m • P (m running through even integers between 8 and 58). 

20 

116 

3741 

8385 

239785 

59997896 

1849037896 

270896443865 

16683000076735 

2786836257692691 

3148929681285740316 

342115756927607927420 

280251129922563291422645 

804287518035141565236193151 

743043134297049053529252783151 

3239336802390544740129153150480400 

2613390252458014344369424012613679600 

12518737094671239826683031943583152550351 

596929565407758846078157850477988229836340351 

2385858586329829631608077553938139264431352010155 

56186054018434753527022752382280291882048809582857380 

2389750519110914018630990937660635435269956452770356625916 

65008789078766455275600750711306493793995920750429546912218291 

8633815035886806713921361263456572740784038065917674315913775417535 

43276783438948886312588030404441444313405755534366254416432880924019065 

593076045469642658948956761739794324482729234687114512318727773285876671389 

SUBEXAMPLE 2. Curves of genus one also arise as the locus of intersection of 
two smoothly intersecting quadrics in projective three-space. For example, 
consider the projectivized curve obtained from the pair of equations: 

X2 - N = Y2; X2 + N = Z 2 , 
where N is a nonzero rational number. A (simultaneous) rational solution to 
the above pair of equations answers the problem of finding a rational square 
(r = X2) which augmented or diminished by N remains a rational square. I 
am thankful to D. Zagier for providing me with the example of N = 157 where 
the "simplest" rational square r = X2 which answers the problem is: 
50356938758080675904478428415148993121355253942510969278703974330010718396658421418332558705681 
317718665887162537529860429204893522122457849878951860106775096212089198787035991271029955600 " 

Here, "simplest" means smallest numerator and denominator. 
For more examples of curves of genus one with small coefficients yet whose 

simplest solution is impressively large, see [B-C]. 
EXERCISE. Find an analogue of the "chord-and-tangent method" valid for 

plane quartics possessing precisely two (nodal) singularities. To do this, define 
a special point on such a plane curve to be a point x0 for which there exists a 
conic passing through the two singular points and having order of contact 4 
with C at JC0. Now fix such a special point x0 and replace the use of lines in 
the chord-and-tangent method by conies passing through JC0 and the two 
nodes. 
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Genus > 2 
Analytic structure. The universal covering space of the Riemann surface 

X(C) is isomorphic to the Poincaré disc. The group of analytic automorphisms 
of X(C) is finite. Its order is < 84(g — 1) where g is the genus of X. 

Differential geometry. The Riemann surface X(C) carries a hyperbolic 
metric, i.e., a Riemannian metric of constant negative curvature. 

/^-rational points. Let K be the field of rational numbers, or more generally 
any number field. Then 

THEOREM OF FALTINGS (MORDELL'S CONJECTURE). X(K) is finite. 

REMARKS. The above theorem is, at present, ineffective: We lack a finite 
algorithm to determine whether or not a given curve X possesses a X-rational 
point. It is very likely, however, that we shall have in the near future a 
computable upper bound for the cardinality of X(K). (Consult [F-W]' and 
[Szp 2]'.) But since the computable upper bound provided by general argu­
ments is surely much larger than the actual number of rational points (in any 
case of interest) this bound may not be much help in the project finding all 
rational points in any instance. In this connection one might mention some 
recent results of Coleman who has obtained extremely good upper estimates 
for the number of ^-rational points on curves in very special cases, by 
developing a sharp effective version of an old result of Chabauty [Co]. 

We also lack significant numerical data (the principal reason being that this 
data is hard to gather). For example, for a given number field K (e.g., the 
rational field) and for a given g > 2, are there curves X of genus g defined 
over K with arbitrarily large X(K)1 (presumably yes). Or, fixing Xs how does 
the size of X(K) vary as K ranges though some specified (infinite) set of 
number fields? 

Before Faltings proved his theorem, for no curve X of genus > 2 was it 
known that X(K) is finite for all number fields K. 

EXAMPLE. Consider the Klein curve again (1) 

C: u3v + v3w + w3w = 0. 
Recall that C is smooth of genus 3. The automorphism group is isomorphic to 
PSL2(F7), the simple group of order 168, which is the largest order possible 
for the automorphism group of a Riemann surface of genus 3.18 By Faltings' 
theorem, C{K) is finite for any given number field K. 

There are many ways of seeing why the group of automorphisms of a 
compact Riemann surface of genus > 2 is finite. As John Hubbard said: the 
points on such a Riemann surface have a "rugged individuality"—there are a 
myriad of finite subsets of points, each subset defined by distinct special 
(analytic) properties, e.g., Weierstrass points, and their generalizations, and 
any symmetry of the Riemann surface must preserve all this structure. We shall 
prove a stronger result (de Franchis' theorem) which implies finiteness of the 
group of symmetries, de Franchis' theorem is used in Faltings' proof of 

18 The 168 automorphisms are rational over the field Q(f ) where f is a primitive 7th root of 1. 
An automorphism of order 7 is given by u -* Çu, v -* Ç4v, w •-> £2w. 
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Mordell's conjecture, and it also can be regarded as a special case of the 
geometric analogue of Mordell's conjecture (see §9), so it may be worth 
dwelling on. 

8. Interlude: geometric finiteness results.19 

THEOREM OF DE FRANCHIS. Let Y and Z be closed Riemann surfaces, with Z 
of genus gz > 2. Then there are only a finite number of nonconstant analytic 
mappings from Y to Z. 

There is also the more encompassing finiteness result: 

THEOREM OF DE FRANCHIS-SEVERI. Let Y be a closed Riemann surface. Then 
there are only a finite number of mappings f : Y -» Z {taken up to isomorphism) 
where Z ranges through all closed Riemann surfaces of genus > 2 and ƒ ranges 
through nonconstant (holomorphic) mappings. 

Both of the above results give effective upper bounds. 
a. The theorem of de Franchis. A common ingredient to all proofs of the 

theorem of de Franchis is the idea of replacing analytic mappings from Y to Z 
by their graphs T c Y X Z (Figure 11). 

FIGURE 11 

The curve T is isomorphic to Y via the projection to first coordinate. We 
must show that the number of curves on the surface Y X Z which can be the 
graphs of nonconstant mappings from Y to Z, is finite. 

Attached to any such curve T on Y X Z is its fundamental (cohomology) 
class c(T) e H2(Y X Z; Z). We have the following restrictions on the class 
c(T). If • denotes intersection number, then (since T is a graph of a function) 

(3.a) c(T)-pt .X Z = 1 

and, if d = degree( ƒ ), 

(3.b) c (T)- YX pt. = d. 

We also have that 

(3.c) c(T) • c(T) = d(2 - 2gz) 

191 am grateful to Ernst Kani for the help he gave me in writing this section. 
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as follows from the classical adjunction formula of the theory of algebraic 
surfaces. Note that if gz > 2, then c(T) • c(T) < 0. 

There are two principles that enable us to get a handle on the collection of 
possible graphs TinYxZ. 

(1) Rigidity principle. If gz > 2, then an analytic mapping Y -> Z is 
determined by its induced mapping on 1-dimensional homology 

H^Y) -» H^Z) 

{or on 1-dimensional cohomology). Equivalently: 

c ( r ) determines T. 

(QUICK PROOF. Given two graphs I\, T2 of nonconstant functions, then as 
shown above, c(I\) • c(I\) is negative. But c(T1) • c(I\) = c(I\) • c(T2) is the 
intersection number I\ • T2, which is nonnegative, I \ =£ T2.) 

(2) Boundedness of degree. If the genus of Z is > 2, then any analytic 
nonconstant mapping from Y to Z has degree which admits an a priori upper 
bound (specifically it is bounded by the ratio 

degree < * i l i 
X(Z) 

where x denotes Euler characteristic). 
PROOF. If ƒ: Y -> Z is such a nonconstant analytic mapping of degree d, 

then by the elementary properties of Euler characteristics, 

x(r) = </-x(z)- E K - i ) , 

where e is the ramification index of y with respect to the mapping ƒ. Since 
E ( ^ - 1) > 0, the inequality follows. 

A natural approach to obtaining the theorem of de Franchis is to use the 
rigidity principle, and simply to bound the number of algebraic cohomology 
classes c e H2(Y X Z; Z) which are subject to the constraints imposed by 
(3.a, b, c) and boundedness of the degree. Specifically, recall that an algebraic 
cohomology class in H2(Y X Z; Q) is a Q-linear combination of fundamental 
classes of curves in Y X Z, and note that the desired finiteness result is an 
immediate consequence of: 

LEMMA. There are only a finite number of algebraic cohomology classes c in 
H2(YX Z; Z) such that 

(*) c - p t . x Z = a, c - Y X p t . = 6, c-c=-e 

for given integers a, b, and e. 

To see the lemma we use a bit of the theory of surfaces. If K denotes the 
canonical class of Y X Z (which can easily be seen to be — x(Z) • Y X pt.— 
X(Y) • pt. X Z) we know that the intersection pairing on the subspace of 
algebraic cohomology classes perpendicular to K is negative-definite. But by (*) 
we have that 

C - K = -a.X(Y)-b-X(Z) 
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and, in particular, c • K is independent of c. The algebraic cohomology class 
c' = (K - K) - c — (c - K) - K is perpendicular to K, and c' • c' is a fixed (nega­
tive, immediately calculable) integer, independent of c. But by negative-
definiteness, there are only a finite number of such c"s and therefore also only 
a finite number of c's. This concludes the proof of the lemma, and hence the 
theorem. But the reader might note that there is a uniform upper bound for the 
number of c's: for if L is a free abelian group of rank r with a Z-valued 
negative-definite (or positive-definite) quadratic form, and if B is an integer, 
there is an n(r, B) depending only on r and B which is an upper bound for the 
number of c 's in L with c - c = B. 

There is a second approach to the theorem of de Franchis. It is more 
geometric and takes fewer words to describe, but it depends upon a more 
elaborate theory ("Chow coordinates of curves in projective N-space") and does 
not provide effective bounds. 

The idea is to imbed Y X Z in PN (some N) and use that the graphs T (as 
in the first approach above) have bounded degree in P N. Then by the theory of 
Chow coordinates they fall into a finite number of continuous algebraic 
families. 

But by the rigidity principle (1) each of these continuous algebraic families 
reduces to a single point. Hence the set of all such T is finite. 

b. The theorem of de Franchis-Severi. The basic idea behind this theorem 
[de F, Sev] is to associate to a given morphism ƒ : Y -> Z the composite 
mapping 

yf:=f*fm:H1(Y)'-lH1(Z)£H1(Y) 

and study it as a correspondence from Y to Y. Here, de Franchis and Severi 
prove only that there are at most a finite number of isomorphism classes of ƒ 's 
giving the same yf. This step (which was originally proved by Humbert and 
Castelnuovo) is, at least on the face of it, ineffective. Recently, Howard and 
Sommese [H-S], and independently Kani (whose paper will appear shortly) 
have produced effective versions of it. 

9. On Mordell's conjecture and its analogues. Mordell made his conjecture 
originally for K equal to the field of rational numbers. It was a natural step to 
generalize it to any number field. 

Lang described an analogue of Mordell's conjecture for the field of rational 
functions on a curve or more generally, a variety over a smaller field k. We 
shall give two equivalent verisons of this analogue, where we restrict ourselves 
to characteristic 0 even though there are analogues (somewhat harder to state) 
valid in all characteristics. 

(Algebraic version) Let k be an algebraically closed field of characteristic 0, 
and L the field of rational functions of a curve over k. Let X be a curve of genus 
^ 2 defined over L. Then either its set of rational points X(L) is finite, or: X is 
definable over k and all but a finite number of points in X(L) are in the image of 
X(k). 
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A direct paraphrase of the above, in more geometric terms is the following. 

(Geometric version) Let k be an algebraically closed field of characteristic 0 
and B a {not necessarily complete) smooth curve over k. Let V -> B be an 
algebraic surface defined over k together with a surjective projection to B. For 
each {k-rational) point b of B, suppose that the fiber Xb is a smooth curve of 
genus g> 2. Then either V -+ B admits only a finite number of sections B -> V, 
or: V is a product: 

V = B X Xb {for any choice of point b) 

and all but a finite number of sections B -> V are "constant sections", i.e., they 
project to a point in Xb. 

Note that when k = C, the last parenthetical remark boils down to the 
theorem of de Franchis! 

X* 

y^~ 
^ 1 

. B 
b 

FIGURE 12 

These equivalent versions were first proved (for k of characteristic 0) by 
Manin [Man]; see also [Grau].20 

III. JACOBIANS AND ABELIAN VARIETIES 

1. An extension of the chord-and-tangent method to curves of genus ^ 2: the 
jacobian of a curve. Recall that the rule: the sum of any three collinear points is 
zero gives rise to a group law on any smooth plane cubic (positioned so that 
there is a unique point at infinity). A glance back at the "exercise" of II.7 will 
convince you, however, that a naive attempt to generalize this group structure 
to curves of higher degree (even quartics) will not work. For example, if on the 
group generated by finite formal sums of points on a plane curve of degree d 
you impose the equivalence relation generated by the rule: the sum of any d 
collinear points is zero, you would get too stringent an equivalence relation 
which would be of little use (if d > 3). 

The useful generalization is close to this, but it has the advantage that by its 
very definition it is seen to be intrinsic (it depends only on the birational 

20 For higher-dimensional varieties over function fields see the recent work of Noguchi [No]. See 
also [Des]. 
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equivalence class of the curve and not upon its imbedding in the projective 
plane) and, moreover, three felicitous miracles occur (analytic, algebraic, and 
arithmetic) which make it an extraordinarily powerful tool. 

So, let Z be any Riemann surface. By a divisor on the Riemann surface is 
meant a finite formal sum 

(4) a j z j + a2[z2] + • • • + a m [ z j , 

where the z/s are points on the Riemann surface and the a/s are integers (to 
be thought of as "multiplicities"). Divisors form a (large) abelian group, where 
addition is given by the obvious law. If the newcomer is struck by the bizarre 
use of the word divisor for this notion, and thinks that there must be some 
story behind it, he is right. (See Chapter 2 of [Weyl].) 

Given any nonconstant analytic mapping ƒ: Z -> Pl of Z onto the Rie­
mann sphere (or, what amounts to the same thing: any rational function) one 
may obtain a divisor from ƒ (called the divisor of zeroes-and-poles off) by 
taking 

£ ordz(/)-[z], 
z<=Z 

where ordz( ƒ ) is the order of vanishing of ƒ at z if ƒ(z) = 0; it is minus the 
order of pole of ƒ at z if ƒ is a pole at z; and it is zero if ƒ has neither zero nor 
pole at z. 

Two divisors are said to be linearly equivalent if their difference is the divisor 
of zeroes-and-poles of a nonconstant analytic mapping ƒ. The reason for the 
modifier "linearly" is that any two linearly equivalent divisors fit into an 
algebraic family of divisors where the parameter space is IP1, i.e., a line. 

EXAMPLE. If X is a smooth plane curve of degree d and Z = X(C), then any 
sum of d collinear points (meaning, of course, the divisor comprising the 
points counted with their proper multiplicities in the intersection of X with a 
line) is linearly equivalent to any other sum of d collinear points. 

The degree of a divisor (4) is the sum of the multiplicities at. One knows 
that the divisor of zeroes-and-poles of any ƒ is of degree 0. 

Define the jacobian of Z (denoted J) to be the group of linear equivalence 
classes of divisors on Z of degree 0. 

If z0 is any fixed point on Z, we have a natural mapping (which we shall call 
the Abel mapping based at z0) 

4> : Z-+J 
z0 

z •-> the linear equivalence class of the divisor [ z ] — [ z0 ]. 

Clearly, / is generated as a group by the image of Z under any Abel 
mapping. Equally clearly, if the genus of Z is 0, then / = 0; otherwise any 
Abel mapping is injective (for if not, find an analytic mapping of degree one 
from Z to P1). 

In the next three sections, we shall talk about the analytic, algebraic, and 
arithmetic aspects of the jacobian. 

2. The analytic parametrization of J by algebraic integrals modulo periods. 
Recall that a Riemann surface Z of genus g possesses g, and no more than g, 
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linearly independent everywhere holomorphic differential 1-forms. Fix such a 
basis of holomorphic differentials wl9...,w. 

Recall that the one-dimensional homology of Z is of dimension 2g. Fix 
c 1 , . . . , c 2 g a system of 2 g linearly independent circuits generating the one-
dimensional homology of Z. 

For each circuit Cj define the period co(Cj) to be the vector in Cg given by 

o>(Cj)=lj Wl,j Wl,...,f 

and define the period lattice ti in C8 to be the subgroup generated by the 
periods w(cy) for j = 1 , . . . , 2g. 

EXAMPLE. Sometimes a natural choice of systems of holomorphic differen­
tials and circuits leaps to the eye. For instance, for the plane curve determined 
by the equation y2 = x(x - l)(x - 2)(x - 3)(x - 4), the smooth model X is 
of genus 2, and it is tempting to take 

dx xdx 

7' ~T 
as basis of differentials on Z = X(C) and to choose as circuits cy the inverse 
image in X of the real intervals: 

0 < x < 1, 1 ^ x < 2, 2 < x < 3, 3 < x < 4. 
One can show that the period lattice Q> is discrete in C g, and a free abelian 

group on 2 g generators. Therefore the quotient group Cg/£2 is a (g-dimen-
sional) complex torus. 

We are now ready to describe the analytic parametrization of / by the 
complex torus Cg/Q. Let y be any (sufficiently smooth) directed arc in X(C) 
beginning at a point x and ending at y. Define the vector in C 8 

(5) W ( Y ) = I ƒ *!, ƒ w 2 , . . . , ƒ wg 

and note that modulo the period lattice fi, co(y) depends only upon the points 
x and y and not on the directed path y between them. A fundamental theorem 
is that there is an isomorphism of groups 

(6) / s C y B , 

where the linear equivalence class of the divisor [y] — [x] corresponds to w(y) 
modulo £2. We identify J with the complex torus Cs/Q, via this isomorphism. 

The Abel mapping 0ZQ: Z -> J is easily seen to be an analytic mapping from 
the Riemann surface Z to the complex torus / . Moreover, $Zo satisfies certain 
universality properties: 

(a) Given any analytic mapping \p from Z to A, a complex torus, such that 
h 

\p(z0) = 0 ^ A, there is a unique analytic homomorphism J -> A such that 
h ° 02 = xf/. (The key to this is that there are no nonconstant analytic map­
pings of P 1 to a complex torus.) 

(b) The Abel mapping Z -> / induces an isomorphism on one-dimensional 

homology. (It is easy to deduce this from what we have already said.) 
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Equivalently: 
(b') Fullback via the Abel mapping induces a one: one correspondence between 

unramified finite Galois abelian coverings of the complex torus J and unramified 
finite Galois abelian coverings of the Riemann surface Z. 

By contemplating (4) you can convince yourself that the Abel mapping is an 
analytic mapping of the Riemann surface Z to the complex torus / . If g > 0 it 
is, in fact, an analytic imbedding. 

EXAMPLE. Since our Klein curve has such a large group of automorphisms 
one can show that its jacobian / (viewed as complex torus) has a particularly 
simple form. Specifically let l î ç C denote the lattice generated by 1 and the 
complex number (1 + i11^)/!. Then / = C/Q X C/B X C/Û. 

It is rare that the jacobian of a curve splits up like this. But there are a few 
other well-known examples (for instance, the jacobian of the modular curve 
X{\\) splits—up to isogeny—into a product of twenty-six elliptic curves). For 
more examples see forthcoming publications of T. Ekedahl, who informs me 
that he has a construction of a three-parameter family of genus 9 curves whose 
jacobians split—up to isogeny—entirely into products of elliptic curves. For 
other examples see the 1985 Ph.D. thesis of Bob Kuhn [Ku]. 

EXERCISE. Find a different proof of the "rigidity principle" of §8 based on 
the analytic theory of the jacobian that we have just described. 

Interlude: A theorem about Riemann surfaces equivalent to MordelPs conjec­
ture. Let y be a Riemann surface of genus > 2 and T any complex torus. Let 
<p: Y -> T be any analytic imbedding, and let T c T be any finitely generated 
group. 

Some years ago Lang proved (compare [L 4]) that the following assertion is 
equivalent to MordelPs conjecture, and hence is now a theorem, thanks to 
Fal tings: 

THEOREM. cp(Y) nT is finite. 

What is so spectacular is the extraordinary amount of algebraic geometry 
and arithmetic that goes into the proof of this ostensibly purely analytic 
assertion! 

Combining the above theorem with some recent beautiful work of Raynaud 
(his proof of the Manin-Mumford conjecture; see also Bogomolov, Coleman) 
one can say even more: 

If r c T is any subgroup of the complex torus T, define the division-point 
saturation of T to be the group 

f := [t G T such that there is a positive integer n with n • / e T]. 

Note that f contains all torsion points of T and therefore is never finitely 
generated. 

THEOREM (FALTINGS, RAYNAUD). If T is finitely generated, and f is the 
division-point saturation of T, then <p(Y) n f is finite. 

REMARK. Even when T is the trivial subgroup, the above theorem is deep 
(the Manin-Mumford conjecture: there are only a finite number of torsion 
points lying on any curve of genus > 2 analytically imbedded in a complex 
torus). 
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It would be very interesting to have some idea of what to expect in the way 
of uniform upper bounds. For example, is it reasonable to hope that the 
cardinality of the intersection <p(7) n f admits an upper bound that depends 
only on the genus of Y and the rank of T? 

3. The algebraic nature of the jacobian. If X is a curve and J its jacobian, 
viewed as complex torus, then there is a holomorphic imbedding of the 
complex analytic manifold / in projective space of some high dimension. One 
may even single out a canonical class of such imbeddings. 

For the precise definition of this canonical class, see Lecture III of [Mu]'.21 

By Chow's theorem, any complex analytic submanifold of projective JV-space 
is algebraic, i.e., is the common locus of zeroes of a finite set of homogeneous 
polynomial equations; 

fJ(Xo,...,XN) = 0 (j=l,...,m). 

Indeed, if V is an irreducible complex analytic submanifold of projective 
TV-space, of codimension d, we can find a family (/)),-i,...,/w °f homogeneous 
polynomial equations whose common locus of zeroes is V and such that for 
every point v e V there are d equations gx,..., gd in that family such that the 
N X d matrix dgi/dXk\v has rank d. Such a family (/i)/=i,...,m

 w e snan* can< a 

defining set of equations for V. 
Any complex torus which is algebraic in the above sense, i.e., which is the 

locus of zeroes of a defining set of equations, is called an abelian variety. 
In particular, the jacobian J of an algebraic curve X is an abelian variety: it 

has defining sets of equations for the projective imbeddings (in its canonical 
class). 

The reader should be warned, though, that these defining sets of equations 
are difficult to produce and it would be bad news if we were ever obliged to 
explicitly "inspect" such a defining set of equations when the genus is > 1. 
The most noteworthy achievement in this direction is Mumford's beautiful 
paper [M 2] in which, for certain classes of projective imbeddings he explicitly 
produces such a defining set for any abelian variety, where each of the defining 
equations is of degree two; in particular, any abelian variety can be realized as 
an intersection of quadrics in a suitable dimensional projective space. The 
classical fact that any elliptic curve may be represented as the intersection of 
two quadrics in P3 is a special case of this. 

Digression on polarizations. The question of imbeddings of complex tori in 
projective space is related to polarization, a notion which bears upon many of 
the results we shall be discussing later. To give some idea of one of the most 
important uses of polarizations, we shall define a polarization class of projective 
imbeddings22 of a complex torus T. A polarization class {T -> PN} is a family 
of holomorphic imbeddings in projective N-space, any member of which can 
be obtained from any other by composition on the left by a suitable translation 

21 An imbedding J ç PN is in the canonical class alluded to above if, as H c PN runs through 
all hyperplanes, H n J runs through all effective divisors in J which are linearly equivalent to 
(some fixed translate of) three times the Riemann 0-divisor. See [Mu]' for details. 

22A neologism. 
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of r , and on the right by a suitable projective linear automorphism of PN
9 and 

moreover, if T -> PN is a given member of the family, we require that as 
H ç PN runs through all hyperplanes, H n T runs through <a// effective 
divisors which are linearly equivalent to a fixed divisor in T. Given, then, a 
polarization class of projective imbeddings of T, one has a family of effective 
divisors (the intersections with hyperplanes) any one of which is, after suitable 
translation in T, linearly equivalent to any other. This family of effective 
divisors uniquely determines the polarization class of projective imbeddings 
from which it arose as intersections with hyperplanes. 

One can define a polarization as an equivalence class of divisors { D} in T 
under the equivalence relation generated by translation and linear equivalence, 
such that for some positive integer M the equivalence class {M • D } contain­
ing divisors which are M times D comes from a polarization class of projective 
imbeddings (by intersection with hyperplanes) as above.23 

What makes the notion of polarization manageable is the theorem (cf. §1 of 
[M 3]) which asserts that if T = V/L is a complex torus obtained as the 
quotient of the complex vector space V by the lattice L, polarizations of T as 
above are in natural one:one correspondence with positive definite Hermitian 
forms 

H:VXV-^C 
which have the property that if E = im(H) is the imaginary part of H, then E 
restricted to L X L takes values in Z c C. For later reference, define the 
degree of the polarization determined by H to be the determinant of the 
bilinear pairing E: L x L - > Z (compare the discussion at the end of Chapter 
III in [M 3]). 

The polarization of a jacobian given by the equivalence class of the Riemann 
0-divisor (cf. [M 3|) is of degree 1. 

EXAMPLE (The polarization on the jacobian of the Klein curve). We have 
already described in §2 above, the lattice Œ3 in C3 determining the jacobian of 
the Klein curve. Here we shall give a slightly different, but equivalent, lattice 
with respect to which the polarization is easily described, along with its full 
group of 336 automorphisms. 

Let a = (1 4- \ / - 7 ) / 2 and let â denote the complex conjugate of a so that 
aâ = 2. Let R = Z[a] be viewed as a subring of the complex numbers, so that, 
indeed, R is the lattice fl of the example of §2. Let A denote the lattice in C3 

defined as the sublattice of R3 c C3, of index eight, comprising all vectors 
x = (xl9 x2, JC3) G i£3 such that 

JCJ = x2 = x3 = 0 mod a and x1 + x2 + x3 = 0 mod â. 

One checks that if x • y denotes the standard Hermitian inner product on 
C3, then if JC, y e A, we have x • y e 2 • R. 

Define: 
(x,y):= x-y/2. 

23 E.g., if / is the jacobian of a curve X, a Riemann 0-divisor (cf. [Mu]') yields a polarization of 
J\ the "canonical polarization class of projective imbeddings" discussed in the previous footnote is 
determined by 3 times the Riemann 0-divisor. 
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Then (x, y) restricts to a Hermitian form on A with values in R and of 
discriminant 1 (because it is of discriminant 1/8 on R3). 

It is this Hermitian form (normalized by division by /7~/2, which is the area 
of a fundamental domain for £2) which gives rise to the polarization coming 
from the Riemann divisor on the jacobian of the Klein curve. Note that there 
are 42 vectors e in A such that (e, e) = 2; these come from coordinate 
permutations and sign changes applied to the vectors (2,0,0), (a, a,0), and 
(5,1,1). The group generated by the (21 distinct) reflections y •-> y — (e, y)e 
coming from these 42 vectors is the full group (isomorphic to ( +1) X PSL2(F 7)) 
of automorphisms of A preserving the Hermitian form ( , ). I am grateful to 
Serre for providing me with this example. 

A theorem of Torelli asserts that the isomorphism class of a smooth 
projective curve over C is determined by the isomorphism class of its jacobian, 
taken together with its polarization. 

Weil's proof of Torelli's theorem gives the following sharper statement:24 

(1) ("hyperelliptic case") Let Cx and C2 be smooth complete curves of genus 
> 2 over C which are hyperelliptic, i.e., they can be expressed as double covers 
of the projective line. Then the set of isomorphisms from Cx to C2 is in natural 
one: one correspondence with the set of isomorphisms from the polarized jacobian 
of Cx to the polarized jacobian ofC2. 

(2) ("nonhyperelliptic case") Let Cx and C2 be smooth complete curves over C 
which are nonhy per elliptic. Let f be an isomorphism of the polarized jacobian of 
Cx onto the polarized jacobian of C2. Then either +ƒor —f is induced from an 
isomorphism of Cx onto C2 {and not both). This establishes a one: one correspon­
dence between the isomorphisms of Cx onto C2 and half of the isomorphisms from 
the polarized jacobian of Cx onto the polarized jacobian of C2. 

EXAMPLE. The Klein curve over C is not hyperelliptic. Its group of automor­
phisms is PSL2(F7) while the group of automorphisms of its polarized jacobian 
i s ( ± l ) x P S L 2 ( F 7 ) . 

The use of Torelli's theorem plays a key role in the work of Zarhin-Parshin 
and of Faltings for it allows them to replace curves by their polarized abelian 
varieties, with no loss of information, and thereby to translate Diophantine 
questions about curves to questions about abelian varieties. 

The Torelli theorem brings to mind a natural question: Does the complex 
torus / itself (stripped, so to speak, of its canonical class of projective 
imbeddings) determine the isomorphism class of the algebraic curve XI The 
answer is: Almostl There are only a finite number of isomorphism classes of 
curves whose jacobians are isomorphic to any given complex torus (compare 
[De, 1.25, 1.26]' and [Na-No]). For examples of different (genus two) curves 
with the same jacobian (stripped of polarization), see [Ha-Ni] and [Hay]. 

4. The arithmetic nature of the jacobian. Suppose you are given any complex 
analytic submanifold M in P ^ C ) . Then by "Chow's theorem" M admits a 
defining set of equations (ƒ) = 0)y. Say that M is defined over K (a subfield of 
C) if you can find such a defining set of equations all of whose coefficients lie 

24 There is an analogous statement valid over any field. 
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in K. There is no difficulty in guessing what should be meant by an analytic 
mapping (between two complex analytic submanifolds in P^(C) and IP^C), 
respectively) to be defined over K—as in the case of Riemann surfaces (II.§4), 
one asks that the graph of the mapping admit a defining set of equations with 
coefficients in K. One can therefore also talk of isomorphism over K. 

If A is a complex torus in PN(C), that is, an abelian variety, we say that the 
abelian variety A is defined over A' if as a complex analytic submanifold it is 
defined over K and if its origin is a AT-rational point in projective space. 

Essentially by virtue of the fact that the group law on a complex torus is 
determined by the complex analytic structure alone, together with a choice of 
base-point (to be taken as origin), it turns out that if an abelian variety A is 
defined over K, then its group addition law A X A -> A and its inverse law are 
both also defined over K. Consequently, its set of ^-rational points, A(K), is 
a subgroup of ^4(C). The Mordell-Weil theorem, already encountered for 
algebraic curves of genus 1, holds in the more general context of abelian 
varieties defined over number fields: 

THEOREM. If A is an abelian variety defined over K, where K is the field of 
rational numbers, or more generally, a number field, then the group of K-rational 
points A(K) is finitely generated. That is: 

A ( K ) = Z r © [ finite abelian group ]. 

Now suppose given an algebraic curve X defined over a subfield K in C. 
The jacobian / may then be shown to possess a projective imbedding (in its 
"canonical" class) which gives it the structure of (polarized) abelian variety 
defined over (the same field) K. 

Although on the face of it, what has just been said may seem natural 
enough, it is worth pausing to absorb its implications for the simplest case of 
curves of genus 1. Let, then, X be an algebraic curve of genus 1 defined over K 
and J its jacobian. If X possesses a AT-rational point x0, then an Abel 
mapping ®XQ: X(C) -> J is defined over K and yields a iT-isomorphism 
between X and J. But if X does not possess any such ^-rational point, then J 
is surely not AT-isomorphic to X (since / always has, at least, the origin as 
AT-rational point); i.e., J is another curve. 

Integral structure. Now let us restrict attention to K a number field. Very 
little will, in fact, be lost if you think of K as the field of rational numbers. Let 
0 c K be the ring of algebraic integers in K (e.g., if K = Q, then 0 is just the 
ring of ordinary integers). Let P c 6 be a maximal ideal (e.g., if 0 = Z, then 
P is generated by p a prime number). 

Let k = 0/P, the quotient field (e.g., the integers modulo p). 
A complex submanifold M c P^(C) defined over K is said to have good 

reduction at P as imbedded in PN(C) if it has a defining set of equations 
(fjr = 0)j all of whose coefficients He in 0 and such that if we pass to the 
quotient field k = 0/P by taking fj to be fj with coefficients considered only 
modulo P, then the set of equations (fj = 0) • define a smooth algebraic variety 
over k of the same dimension as M. This boils down to requiring that the 
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matrix (dfj/duk)Jk have rank equal to the dimension of M at all points in the 
locus of common zeroes of (fj)j in P N(k) where ~k is an algebraic closure of k. 

For example: The Klein curve is defined by the homogeneous form ƒ = 
X3Y + Y3Z + Z3X which has coefficients in Z and which reduces modulo p 
to a smooth plane curve over the field of integers mod /?, for all primes p # 7 
(easy computation). So the Klein curve has good reduction as imbedded in the 
projective plane, at all primes p =É 7.25 

As we introduced it, the notion of having good reduction at P is with 
reference to a specific imbedding in P^(C). We can cut loose from any fixed 
imbedding by saying that an algebraic curve X defined over K (or an abelian 
variety A defined over K ) has good reduction at P if X is AT-isomorphic to an 
algebraic curve in some PN(C) with good reduction at P (or A is isomorphic 
to an abelian variety in P^(C) with good reduction at P) in the sense 
described above. 

Having good reduction is the "general rule" in the sense that if M c P^(C) 
is a complex analytic submanifold defined over K, then M has good reduction 
even as imbedded in P N(C) at all but a finite number of prime ideals P. 

The link between good reduction of curves and good reduction of their 
jacobians, considered as polarized abelian varieties is reasonably good: If X is 
defined over K and has good reduction at P, then its jacobian is defined over 
K and has good reduction at P as imbedded in P ^ C ) via any projective 
imbedding in its "canonical" class. 

The converse, however, is not necessarily true, i.e., there is a smooth curve 
over K whose jacobian has good reduction at P and yet the curve X itself does 
not have good reduction at P. 

For example, let p be a prime number > 5; let 6 be the ring of integers in 
K = Q(y^) ; and let P be the prime ideal generated by y[p . 

Take X to be the curve of genus 2 over K given by the model over (9\ 

y2 = (x + 2)(x + l)x(x + ap)(x + ftp), 

where a, ft, 0 ,1, 2 are all integers, distinct mod p. 
The reduction mod p of the above model is a curve with a cuspidal 

singularity at (JC, y ) = (0,0). The smooth model of this curve is the curve, E^ 
of genus 1 given by the equation y2 = (x + 2)(x + l)x mod p. 

But a "blow-up" of our model over 6 (at the point (JC, y) = (0,0) in 
characteristic p) gives us another model whose characteristic p fiber is a union 
of two curves of genus 1, Ev and a "new one", E2, given by the equation 
y2 = x(x + a)(x + ft). 

25 With a suitable imbedding of the Klein curve in projective space, and working over a number 
field sufficiently ramified at 7 one can produce a model for it which has good reduction also at the 
primes dividing 7. Indeed, Serre informed me that the reduction "modulo 7" of the Klein curve is 
the projective model of the hyperelliptic curve y2 = u1 - u. The action of the simple group 
PSL2(F7) on this curve is the evident action obtained by viewing the curve as the double cover of 
the projective line over F7 whose ramification points are precisely the eight points in P1(F7). 
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The jacobian of X over k has good reduction at /?, where the fiber of its 
smooth model in characteristic p is isomorphic to the product of Ex and E2. 

IV. CLASSIFICATION OF FAMILIES WITH BOUNDED BAD REDUCTION 

1. Kodaira's problem. Consider a family of Riemann surfaces of genus g 
parametrized by the complement of a finite set S in the projective line (Figure 
13). 

S= {a , /8 ,y} . 

FIGURE 13 

We assume that the family varies "analytically" in the sense that the various 
fibers sweep out an irreducible analytic variety V and the mapping ƒ is 
analytic. We also assume that the family is truly varying in the sense that not 
all the fibers are isomorphic (as Riemann surfaces). We shall refer to the finite 
set S as a bound for the bad reduction of the family. Kodaira's problem is to 
classify all families of fiber genus g with bad reduction bounded by a given set 
S. 

EXAMPLE. Consider the family of curves of genus one: 

Y2 = X3 4- X+ t. 
The negative of the discriminant of the above equation is 4 4- lit2 and 
consequently the bad reduction of the family is bounded by the set S 
consisting of the three points (oo, ±2/3VT). It is a general fact that any truly 
varying family must have at least three points of bad reduction over Pl (cf. 
Beauville's exposé # 6 in [Szp 3] for a quick proof of this well-known result, 
and for a discussion of related matters, among which being the situation in 
characteristic p > 0 where the analogous result is no longer true). 

In contrast to what happens over the base P1, Kodaira produced "truly 
varying" families V -> B of Riemann surfaces of genus g ( > 1) over a compact 
base Riemann surface (of genus > 1) with no bad reduction (i.e., where the set 
S may be taken to be empty). He did this, roughly, as follows: 

Step 1. If F is any Riemann surface of genus > 0, and P e F is a point on 
it, there is a finite connected covering F' -> F unramified outside P and 
ramified at P. For example, we shall restrict our attention to the subclass of 
such coverings of degree four which are obtained by first taking a connected 
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unramified covering F" -> F of degree 2 and then taking a connected covering 
F' -> F" of degree 2 unramified outside the inverse image of P, but definitely 
ramified. There are only a finite number of coverings in this subclass. 

Step 2. Let B be a compact Riemann surface (the candidate for our base) 
and let ƒ: B -> F be a nonconstant mapping. For each b ^ B, denote by 
Ph e F the image of Z? under ƒ. There are a finite number of coverings F£ -> F 
of degree four, as specified in Step 1 above, unramified outside Pb and 
ramified at Ph. 

Step 3. We seek to make a coherent global choice of those coverings F I -> F 
for 6 varying in B. This may not be possible globally over B, but after a finite 
base change B' -> i?, it can be done. This gives us an analytic family V = 
{Fb')b'^B' °f curves parametrized by B''. The fibers F^, are all nonsingular. 
Suppose that F is of genus > 1. The family is "truly varying" as can be seen 
by the fact that the locus of ramification of F# -> F is "truly varying". 

Kodaira's construction may be viewed as the precursor of Parshin's con­
struction, to be given in §3 below. 

2. Shafarevich's problems. It was Shafarevich in his 1962 address at the 
International Congress of Mathematicians in Stockholm who first called 
attention to the following important analogue of Kodaira's Problem, and who 
perceived its Diophantine importance: 

Shafarevich's problem for curves. Let S be a finite set of prime ideals in 0 the 
ring of integers of the number field K. Let g > 0. 

How many distinct K-isomorphism classes of curves X/K are there, of genus 
g > 2 and possessing good reduction at all primes P £ SI 

Shafarevich's problem for abelian varieties. How many K-isomorphism classes 
of abelian varieties of dimension g are there, defined over K, with good reduction 
at all primes P £ SI 

"Shafarevich's conjecture" is the assertion that in both cases, there are only 
a finite number.26 

By a refinement of Torelli's theorem and the discussion in §3 one shows that 
if Shafarevich's conjecture is true for abelian varieties, then it is true for curves 
of genus > 2. The work of Faltings [Fa] (with a slight improvement given by 
Zarhin [Zar 4]) established the conjecture: 

THEOREM (SHAFAREVICH'S CONJECTURE). Let K be a number field, and S a 
finite set of prime ideals in the ring of integers ofK. 

There are only a finite number of K-isomorphism classes of algebraic curves X 
of genus g > 2 defined over K and possessing good reduction outside S. 

REMARKS. 1. Prior work in the function field case. Replacing K by a field of 
rational functions on a curve B over C. Shafarevich's problem for curves 

26Although these assertions are generally referred to as Shafarevich's conjecture, Shafarevich 
only made the conjecture for curves in print. The first appearances of the conjecture for abelian 
varieties occurred in the a priori weaker form where the abelian varieties were required to be 
polarizable with a polarization of bounded degree (cf. [Se 4] for abelian surfaces and [Par 2]). The 
equivalence between the weaker and the full form of the conjecture for abelian varieties is obtained 
by something called "Zarhin's trick" (cf. [Zar 4]). See also [De]' for a discussion of polarizations. 
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(which then coincides with Kodaira's problem) was resolved by Arakelov in 
1971 [Ara]. Specifically, he showed that for a fixed genus g > 2 and finite set 5 
of points in B there are only a finite number of truly varying families of curves 
of genus g over B with bad reduction bounded by S. Arakelov's method is to 
prove a rigidity result (resembling the "second approach" to the theorem of de 
Franchis discussed in II.8.a above) for maps of B - S into the moduli space of 
curves of genus g. See the account of this in lecture II of [Mu]'. 

2. The case of curves of genus one. A curve of genus one over K may or may 
not possess a AT-rational point. If the curve does have a AT-rational point, and 
if we fix such a point as "origin", there is a unique way of endowing the curves 
with the structure of a A'-rational group law with identity element as the 
chosen origin. Thus a curve of genus one over K with a fixed A^-rational point 
gives rise to an abelian variety of dimension one over K, i.e., an elliptic curve. 

Shafarevich was the first to prove that there are only a finite number of 
AT-isomorphism classes of elliptic curves over K with good reduction outside S 
[Sbaf]. 

It is interesting to note that the question of classification of curves of genus 
one over K with good reduction outside S has a somewhat different status from 
the finiteness questions answered by the above theorem. Firstly, there are 
examples of number fields K and finite (nonempty) sets S such that an infinite 
number of genus one curves over K possessing good reduction outside S can 
be found, mutually nonisomorphic (over K). 

More precisely, if K = Q and S is any finite set of primes for which there 
exists an elliptic curve over Q possessing only a finite number of Q -rational 
points, and having good reduction outside S, then there are an infinity of 
mutually nonisomorphic curves of genus one over Q possessing good reduction 
outside S.21 

There are such examples if S contains 2 or if it contains 3, or 7, or 11, or 17, 
or 19, or 37 , . . . . 

Secondly, if S is empty, we await a different answer: the well-known 
conjecture of Shafarevich-Tate (for elliptic curves) together with the theorem of 
Shafarevich whose proof we shall give below imply: 

CONJECTURE. There are only a finite number of K-isomorphism classes of 
genus one curves over K with everywhere good reduction. 

Here is Shafarevich's argument which proves the finiteness of the number of 
AT-isomorphism classes of elliptic curves defined over K and possessing good 
reduction outside a finite set of primes S of K. For minor reasons, we give it 
only in the case K = Q. Any Q-isomorphism class of elliptic curves with bad 

27If E is an elliptic curve over Q with good reduction outside S and Mordell-Weil group finite, 
Tate provided the following argument to show that the group of principal homogeneous spaces for 
E over Q, trivial at nonarchimedean primes outside S, is infinite. 

First, S is nonempty, by Tate's theorem (see "examples" below). Next, if p is a prime in S, we 
may suppose that the /^-primary part of the Shafarevich-Tate group is finite; otherwise we are 
done. 

Now use finiteness of both the Mordell-Weil group and the /?-part of the Shafarevich-Tate group 
to evaluate the relevant portion of the exact sequence on p. 293 of [Ta]. 
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reduction bounded by S can be given a model of the form: 

y2 = jc3 + ax + b 

with a, b in Z and such that the discriminant, 

A = -21b2- 4a3, 
is divisible only by prime numbers in the set SU {2,3}. Since a suitable 
change of coordinates enables one to produce a model whose discriminant A is 
not divisible by any perfect sixth power, the coefficients a, b of our models are 
constrained to be integral solutions of a finite number of "generalized cubic 
discriminant equations" (see the Digression at the end of Part I): 

-4A3 - 21B2 = M, 
where M ranges through all integers divisible only by primes in S U (2,3} and 
free of perfect sixth powers. But (by SiegePs theorem, or, effectively, by 
Baker-Stark; see the Digression) each of these generalized cubic discriminant 
equations has only a finite number of integral solutions, and consequently there 
are only a finite number of isomorphism classes of elliptic curves over Q with 
bad reduction bounded by S. 

Since Siegel's theorem played a central role in Shafarevich's proof in the case 
of genus 1, the sentiment had, at times, been expressed (before Faltings' work) 
that a fruitful path to the general Shafarevich conjecture might be by establish­
ing a vastly more general higher-dimensional analogue of Siegel's theorem. 
This line of attack, formidable though it seems, may ultimately be viable (see 
the discussion in [Par 1]). Nevertheless, Faltings' work has offered the option 
of totally reversing directions! That is, instead of using Siegel's theorem to 
establish the genus 1 case of the above Shafarevich conjecture, one may choose 
to first establish this conjecture via Faltings' methods and then apply it to 
deduce Siegel's theorem! This has indeed been done [F-W, Chapter V, §5]. 

EXAMPLES. Explicit classification. The fact that there are only a finite 
number of Â'-isomorphism classes of algebraic curves of genus g, defined over 
K, and with bad reduction bounded by S raises the prospect of giving 
complete lists in some important cases. For example, by refining the methods 
used by Shafarevich in the case of elliptic curves, Tate was able to show that 
there are no elliptic curves defined over Q and possessing everywhere good 
reduction. Just this past year, Fontaine has proved the much more general 
result that there are no non trivial abelian varieties and only one curve (P1) 
defined over Q and possessing everywhere good reduction [Fon].28 This result 
had been conjectured by Shafarevich [Shaf]. 

Some years ago Grothendieck commented that the only algebraic varieties 
(of any sort) that come to mind which are defined over Q and possess good 
reduction at all primes are birationally equivalent to homogeneous spaces of 

28 Serre has pointed out that standard conjectures concerning the relevant L-functions and their 
functional equations have strong implications concerning the minimal conductor that an abelian 
variety of dimension d > 0 over Q can have. Mestre has refined this argument to show (modulo 
these standard conjectures) that this minimal conductor is > 10^, which is a remarkably sharp 
bound in that we have examples (e.g., X0(\\)

d) with conductor \\d. 
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linear algebraic groups. Nevertheless, even at present, it would be difficult to 
frame any general conjectures along these lines with firm conviction.29 

Returning to the case of elliptic curves defined over Q, but with bad 
reduction bounded by a given set S, the Weil-Tanyama conjecture asserts that 
any such elliptic curve is the quotient of the modular curve X0(N), where N 
can be explicitly given in terms of S. This enables us to (conjecturally) produce 
a complete list for many S. For the interesting case of S = {11}, see [A-C-H-P] 
and [Se 2]. 

3. Parshin's construction: Shafarevich's conjecture implies Mordell's conjec­
ture. The easiest way to understand the role played by Parshin's beautiful idea 
is to first consider the idea, divested of any detail. 

To any triple (g, K, S) where g is a "genus" > 2, K is a number field, and 
S a finite set of primes in K, Parshin associates another such triple (g', K\ S') 
and he defines a mapping: 

(*) 

( AT-isomorphism classes of 
pairs ( X, P ) where X is a 
curve of genus g defined 
over K and having good 
reduction outside S, and P 

{is a ^-rational point on X j 

( K '-isomorphism classes 

of curves X' of genus g' 

defined over K ' and 
having good reduction 

outside S' 

Parshin shows that his mapping is finite-to-one. 
Having done this, it is evident that Shafarevich's conjecture implies Mordell's 

conjecture. For, fix any curve X of genus g > 2 defined over K. There is a 
finite S of primes of K bounding the bad reduction of X. Now, let P range 
through all A^-rational points of X. For each such P, Parshin's construction a 
yields a AT'-isomorphism class X' = XP of genus g' curve defined over K' 
with bad reduction bounded by 5". 

But Shafarevich's conjecture affirms that there are only a finite number of 
such A^'s. Since a is finite-to-one, there are then only a finite number of such 
P's. 

It remains to sketch the definition of the mapping a, and to explain why it is 
finite-to-one. Before we begin, it should be remarked that the construction per 
se is somewhat ad hoc. There are a number of slightly different constructions, 
each with advantages and disadvantages. Here is one construction, given in 
two steps below. 

Step 1. Let Z be any compact Riemann surface of genus > 1 and Z(2) -> Z 
the maximal connected (unramified) covering space which is Galois, with 
Galois group G abelian of exponent 2 (i.e., the square of every element in G is 
trivial). 

29Especially so since newforms of level 1 (e.g., the classical modular form A of weight 12) yield 
nontrivial motives having everywhere good reduction. 
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One way of realizing such a covering is to use the universality property (b') 
of thejacobian: 

Choose a point z0 ^ Z and consider the pullback 

Z<2> -> Z 

/ 4. / 
where "2" means " multiplication by 2" in / , thejacobian of Z. 

Since the first Betti number of Z is 2g, Z(2) is a Galois covering of Z of 
order 22g. The genus of Z(2) is (g - 1) • 22* + 1. 

Now suppose that Z = X(C) is the Riemann surface associated to an 
algebraic curve X defined over K possessing good reduction outside S. Let S2 

denote the union of S with the set of all primes of K "lying over 2" (i.e., prime 
ideals containing the integer 2). One can show that there is an algebraic curve 
X(2) defined over K, possessing good reduction outside S2 whose Riemann 
surface is Z(2), and the covering X(2) -> X is defined over K. 

So far the rational point P has not entered into the construction. 
Step 2. Let us now fix (K, S, g) and give ourselves a pair (X, P) as in the 

display (*). Let Z = X(C). Let DP c Z(2) denote the full inverse image of the 
point P. There are, therefore, 22g points in D . We seek a Riemann surface 
covering 

ZP -* Z<2> 

which is of degree two, and which is ramified at the points of DP and nowhere 
else. By Riemann surface theory one shows that such a covering exists. Its 
genus can be computed to be g' = (g - l )2 2 g + 1 + 22g~l + 1. 

Moreover, by some standard algebraic geometric arguments and elementary 
algebraic number theory, one shows that there is a field K' which depends 
only on the triple (K, S, g) such that ZP is the Riemann surface of an 
algebraic curve Xp defined over K\ possessing good reduction outside S' = the 
set of primes of K lying over S2. Choosing such an XP for each (X,P) gives 
the ad hoc mapping 

(X,P)$XP. 

Now let g > 2. Why is the ad hoc mapping finite-to-one for any fixed XI 
The answer is given by the geometry of XP and X. The mapping XP -> X is 
ramified over precisely one point of X; namely P. If there were an infinity of 
points P such that Xp were isomorphic (say, to the same curve Y) then there 
would be an infinity of different mappings of Y onto X, violating de Franchis ' 
theorem. 

V. HEIGHTS 

1. Height of points. Points of the projective plane may be viewed as lines 
through the origin in 3-space, and a rational point a, i.e., a point of P2(Q) 
may be viewed as a line which contains at least one (and hence an infinity) of 
nonzero integral lattice points, i.e., points (a,b,c) where a, b, and c are 



ARITHMETIC ON CURVES 245 

integers. Define the height of such a point to be the logarithm of the distance 
to zero of the closest nonzero integral lattice point on a. Equivalently, 

h(a) = log\/fl2 + b2 + c 2 , 

where (a,b,c) is a nonzero integral point on a such that a, b, and c have no 
common factors. 

(picture in IPl(Q)) 

a 

Closest nonzero integral lattice point 

to the origin on the line a 

FIGURE 14 

Since there are only a finite number of integral lattice points in any ball of 
finite radius, 

Given any real number B, there are only a finite number of points 
a e P>2(Q) of height < B. 

If T: p 2 - » p 2 is any projective linear transformation, then T does not 
preserve height, but it almost does: 

\h(T(a)) - h(a)\ is a bounded function of a e P2(Q) [elementary 
exercise]. 

Now if C c P2 is a plane curve, the restriction of the height function to 
C(Q), defines the height of a rational point on C and hence also on X. 

Visible example. Turn back to our list of rational points on the plane curve 
y2 + y = x3 — x (Subexample 1 of II.7). As Tate once remarked, a rough 
measure for the height of such a point is the length of line on the page that it 
takes to write the point (expressed as a fraction in lowest terms, of course). 

Now let C be a plane curve of degree d defined over Q with X as smooth 
model. Let C(Q)B be the subset of rational points of height < log B. Then 
C(Q)B is finite; denote its cardinality by |C(Q)#|. We have the following 
asymptotic behavior for |C(Q)#|: 

Either X(Q) is empty or: 
Genus 0: \C(Q)B\ = c • B2/d + O ^ ^ l o g t f ) with c> 0. 
Genus 1: \C(Q)B\ = c • ( log£) ' / 2 + <9((log£)( '-1)/2). 
Genus 2: \C(Q)B\ = 0(1) (by Fallings).30 

30Before Faltings, one had the bound \C(Q)B\ = 0(loglog B) by a theorem of Mumford to be 
discussed presently. 
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In the genus 1 case the constant r is the rank of the Mordell-Weil group of 
the jacobian J of the smooth model X, i.e., r is that number such that J(Q) is 
isomorphic to Z r © [finite group]. The constant c appearing in the asymptotic 
genus 1 formula is also an important arithmetic invariant of the situation. It is 
a positive number, very likely a transcendental number if r > 0. It is easily 
expressible in terms of the degree d, and the regulator of / , a quantity to be 
introduced later. 

Of course there is a natural generalization of the notion of height to 
projective space of any dimension, and consequently, by restriction we obtain a 
height function on polarized abelian varieties over Q. We shall again denote 
this function by h: 

J(Q) - R . 
h 

A natural question to ask is: How does the height function behave with 
respect to the group structure on J(Q)1 

Answer (Néron-Tate). It is essentially quadratic! That is,31 there is a unique 
bilinear, symmetric (positive-definite) pairing 

J(Q) X J(Q) -> OS 

(u,v) -> (u,v) 

(the Néron-Tate canonical height pairing) 

such that \h(a) — (a , a ) | is a bounded function on /(Q). 
If we denote by h the quadratic function h(a) = (a, a), then h can be 

directly computed from h by the formula 

h(a)= lim h(lN • a)/22N 

7V->oo 

and, of course, the bilinear form (a , /?) can be reconstructed in the usual way 
from its associated quadratic function h. 

The visible example again. Tate has pointed out that the essential quadratic-
ity of the height is sometimes clearly visible in the profile of the data. Go back 
to our list of rational points for y2 + y = x3 — x (subexample of II.7) and 
note the shadow of a parabola on the page! 

Since the Néron-Tate canonical height pairing is also positive-definite, if 
Pv . . . , Pr is a basis for J(Q) modulo torsion, there is a natural Euclidean space 
structure on the r-dimensional real vector space PY • U © P2 • U © • • • © Pr • M 
with inner product given by the canonical height pairing. Or, to turn it around, 
we may think of J(Q)/[torsion] = PY • Z © P2 • Z © • • • ©Pr • Z as giving us 
a lattice (well-defined up to isometry) in Euclidean r-space. Consequently, any 
isometry-invariant of this lattice is a well-defined invariant of the polarized 
abelian variety / . The volume of the lattice is called the regulator of / . 

EXAMPLE. S. Deng and G. Call have made computations with the elliptic 
curve 

J: - 2 0 6 / = x3 - x2 + 1/4. 

31 Under the hypothesis that the divisor class of the embedding is symmetric. 
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The three smallest nonzero points in /(Q), the Mordell-Weil group over Q 
—smallest in the sense of Néron-Tate height—are: 

Point 

Pi 
Pi 
P, 

X 

- 1 5 / 8 
- 5 5 / 8 

-55 /98 

y 
7/32 
43/32 
47/1372 

Néron-Tate Height 

1.52009244 
2.05430703 
2.42706090 

These three points are independent in the Mordell-Weil group, and a descent 
calculation shows that the Mordell-Weil rank r is < 3. It follows that r = 3. 
Since one also sees that the torsion in J(Q) is trivial, the three "smallest" 
nonzero points Pl9 P2, P3 form a basis for the Mordell-Weil group, and also 
for the canonical lattice (discussed above) in Euclidean three-space. A funda­
mental domain for this lattice is a parallelopiped with vertices 0, Pl9 P2, P3 

together with the three other points whose x-coordinate and height are given 
below: 

Point 

P1 + P3 

^2 + ^3 

X 

-543/800 
-129/206 

-64287/151250 

Néron-Tate Height 

3.51935710 
2.82243761 
6.04387429 

The reader can visualize this parallelopiped by imagining cutting and folding 
the diagram in Figure 15. 

FIGURE 15 
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For a careful study of another elliptic curve whose Mordell-Weil rank is 3, 
see [B-G-Z]. 

In our discussion of heights up to this point, we have worked only in Q. 
More generally, however, we can define a "height function" h(x) for any point 
x = (JC0, * ! , . . . , xN) in PN(K) where AT is a number field (see, e.g., [F-W, p. 
34]' for the standard definition) which coincides with our definition for N = 2 
and K = Q, which is appropriately calibrated so that h(x) is independent of 
augmentation of the number field K containing the coefficients of x and which 
has the all-important finiteness property: 

For fixed N and K and real number C, there are only a finite number 
of points x inPN(K) such that h(x) < C. 

Similarly, the Néron-Tate height can be defined over any number field K. 
If A" is a curve of genus > 2 defined over a number field K and imbedded 

in its jacobian J by an imbedding defined over K, it is a natural question to 
ask about the "placement" of the rational points X(K) in the lattice in 
Euclidean r-space determined by the Néron-Tate height. An old theorem of 
Mumford asserts that if X has genus g > 2 and is imbedded in ƒ in a 
"normalized" way (cf. [L2, p. 120]), then 

2 - g - (x,y) < | * | 2 + M 2 ± 0 ( 1 ) , 

for x, y e X(K), x ¥= y, where (JC, y) is the Néron-Tate inner product \x\2 

= (JC, x). An important feature of Mumford's theorem is that the 0(1) can be 
made effective. 

Geometrically, the above inequality implies that there cannot be too many 
points x & X(K) of roughly the same distance from the origin, and, more 
specifically, that the number of points of X(K) of distance < R to the origin 
isO(\ogR). 

Although it may seem that Mumford's theorem has been superseded by 
Faltings, this is not entirely the case (see the discussion in [Szp 2, exposé XI, 
"un peu d'effectivité"]'). Indeed, it is the combination of Mumford's theorem 
together with Faltings' original techniques (plus extra work) that Parshin and 
Zarhin suggest as a program to effectively bound the number of ^-rational 
points on a curve X of genus > 2 (see Faltings [F-W, VI, §6]'). 

2. Normed vector spaces. Let us cut a few notational corners by describing 
this theory in the case where the number field K is the rational field. The 
generalization to any number field is straightforward. 

If p = 2, 3 ,5 , . . . is a prime number, recall the p-adic absolute value on Z: 

\\a\\p = Vpn 

if a is nonzero, where pn is the highest power of p dividing a. One extends 
this to Q by stipulating that \\0\\p = 0 and that the /?-adic absolute value be 
multiplicative. Thus a rational number is small in /?-adic absolute value if it is 
"highly divisible by /?". 

Letting ||tf H^ = \a\ denote ordinary absolute value, the product formula 

1114 = 1, fl6Q-(0), 
V 
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is immediate (where v ranges through all primes and oo). 
Let W be a vector space of dimension one over Q. To put a norm on W is 

to give functions 

|| 1 :̂ W -» R ('Vadic absolute value") 

for all v as above, such that: 
(i)\\a - w\\v = \\a\\v-\\w\\vlov a E:Q,w <ï W, 

(ii) if w e W is nonzero, then \\w\\0 = 1 for all but a finite number of v. 
From the product formula one immediately sees that if w is a nontrivial 

vector in W, then I I J M ^ is independent of the choice of w (it depends only 
on the normed vector space W). Define the degree of the normed vector space 

^ t o b e - l o g n j M L -
Any normed vector space (of dimension one over Q) has a unique pair of 

vectors ± w0 such that 

|| w0 \\v = 1 for all v # oo 

and consequently the subgroup (the 'lattice') W0 generated by w0 is de­
termined by the norm. 

Conversely, the norm on the vector space W is determined by the lattice W0 

together with the single real number HWQH ,̂. 

Important tautological example. If a G P2(Q) is a point in the projective 
plane, let Wa c Q3 be the line through the origin represented by a. We can put 
a norm on Wa by taking Wa(M? as lattice and defining || H^ to be the 
logarithm of Euclidean distance in Q3. One obtains directly from the defini­
tions that 

h (a) = degree(Wa). 

In other words, one can recapture the height of a point by the degree of an 
appropriate normed vector space. 

3. Heights of abelian varieties. Let T be a complex torus of dimension g. So 
T = C y ö where ti is a lattice in complex g space. Let zv...9z be the linear 
coordinates on Cg. Then the differential g-form dzxdz2 • • • dzg gives rise to an 
analytic nowhere vanishing differential g-form on T (invariant under trans­
lation). Conversely given any everywhere analytic differential g-form co on T, 
the ratio of <o by dzxdz2 • • • dzg yields an everywhere analytic function on the 
compact complex analytic manifold T9 i.e., a constant. 

Summary. Let D(T) denote the complex vector space of everywhere analytic 
differential g-forms. Then D{T) is one-dimensional over C, generated by dzxdz2 

• • • dz . 
u^g. 

If 4̂ is now an abelian variety of dimension g defined over K, there is an 
algebraic-geometric version of what we have just reviewed for complex tori. 
One may define algebraic differential g-forms defined over K. This forms a 
one-dimensional vector space over K, denoted D(A/K). If we extend scalars 
from K to C we get the space of everywhere analytic differential g-forms on 
the complex torus A/C 

EXAMPLE. If g = 1, then A (defined over K) has a representation as a cubic 
plane curve 

C: <p(x,y)=y2-h(x) = 0, 
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where h{x) is a third degree polynomial with no multiple roots (the origin of A 
is the unique point at infinity). One easily checks that dx/y has no poles on C, 
and consequently defines an everywhere analytic differential 1-form. It is a 
generator of the one-dimensional vector space D(A/K). 

When AT is a number field, one can do even better: Thanks to a theory of 
Néron {"Néron models of abelian varieties over the rings of integers of number 
fields") one can make intrinsic sense of the notion of an algebraic differential 
g-form being defined over 0, the ring of integers of K. It would lead us too far 
astray to dwell on this point right now, but the effect of Néron's theory is, for 
example, when K = Q to enable us to define a "lattice", i.e., a free abelian 
subgroup of rank one—the lattice of differential g-forms defined over Z— 

D{A/Z) c D(A/Q) 

in the one-dimensional vector space D{A/Q). 
We can put a canonical norm on the one-dimensional vector space D{A/Q) 

by taking as lattice D{A/Z), and for œ in D{A/Q) we define the oo-adic 
absolute value by the integral: 

1 /• _ 
I k lU = — — T ƒ |<o A co|. 

(27T)S JA(C) 

Here c5 is the complex conjugate to co and to A co is therefore a real analytic 
differential 2 g-form which we integrate over the topological 2g-manifold 
A{C). 

Summary. To any abelian variety A over Q we have associated in a canonical 
manner a normed vector space D{A/Q). 

DEFINITION. The raw height h{A/Q) of an abelian variety defined over Q is 
the degree of the normed vector space D{A/Q). 

The theory of raw height makes sense for any number field K. Properly 
calibrated, it has the property of decreasing under field extension, and remain­
ing unchanged under field extensions L/K provided that the points of A of 
order 3 (or of order any fixed integer m ^ 3) are rational over K. It therefore 
stabilizes. Define the refined height of A/K to be the stable raw height: 

h(A):= min h(A/L). 

The raw height is a good counting function for abelian varieties. Specifically, 
we have the 

FINITENESS PRINCIPLE. Given 
K: a number field, 
g: a natural number, 
B: a real number. 

Then there are only a finite number of K-isomorphism classes of abelian 
varieties defined over K, of dimension g, and whose raw height is less than B. 

The basic strategy of the proof of the finiteness principle may be divided 
into three parts: 
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(1) Reduction to a finiteness statement for abelian varieties admitting polariza­
tions of degree one and possessing bounded raw height'. This can be done via 
"Zarhin's trick" (see [De]', [Zar 4]).32 

(2) A study of the moduli space23 of abelian varieties {in characteristic zero 
and of dimension g) given with a polarization of degree one. 

For an introduction to that study, see the discussion in [F-W]' (especially 
Chapter 1, and the references cited there). This moduli space is an algebraic 
variety defined over Q, usually denoted j / g / Q . It is noncompact if g > 0, and 
the various methods used to compactify it are quite intricate. It is of dimension 
g(g + l ) / 2 (e.g. when g = 1, s/g/Q is the affine line over Q, parametrized by 
j , the elliptic modular function). 

A pair (A, a) where A is an abelian variety of dimension g and a is a 
polarization of degree one on A defined over K, a field of characteristic zero, 
gives rise to a well-defined point (call it J(A,a)) in the moduli space s/ , 
rational over K. The point J {A, a) only depends upon the ^-isomorphism 
class of the pair (A, a). 

In [F-W]' a specific imbedding of s/g is given in some high-dimensional 
projective space over Q. Consequently, we may define, for K a number field, 
the height of a ^-rational point of s/g as being the height in projective space 
of the image of that ^-rational point under this specific imbedding (cf. p. 43 of 
[F-W]'). 

DEFINITION. The "moduli-point"34 height of a pair (A,a) defined over a 
number field K is the height ofJ(A, a) e s?g(K). 

(3) A comparison of raw height and moduli-point height. The point is that 
they don't differ too much (cf. Theorem 3.1 on p. 44 of [F-W]'). Since there are 
only a finite number of isomorphism classes (A, a) over K, a fixed number 
field, with bounded moduli-point height, the finiteness principle follows. 

Needless to emphasize, the above three steps only outline the strategy of the 
proof of the finiteness principle; carrying out that strategy is quite a difficult 
undertaking. 

4. A block diagram. We have gotten to the point where it will be profitable to 
look ahead at a schematic representation of the whole proof of Mordell's 
conjecture, even though some of the blocks have not been discussed and some 
of the terms {isogeny, admissible35 isogeny, Tate's conjecture, the isogeny 
conjecture) have not yet been defined. The format that I am presenting follows 
Deligne's organization of the proof [D]. It owes much, as does Faltings' 
original presentation, to Zarhin's important work (1974, 1975) on the analo­
gous conjectures over function fields of finite characteristic [Zar 1, 2,3]. 

The blocks framed with bold lines represent statements in their final form, 
while the fine-line framed blocks represent intermediate results. Our field K 
will be a number field. 

32 This, in general, requires that one's abelian variety be replaced by an abelian variety of 8 times 
the dimension of the original one. 

33Technically, it is a "coarse moduli space". 
34 A neologism. 
35Another neologism. 
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Finiteness principle 
for raw height of 
abelian varieties © 

<D 

® 
t 

Abelian varieties admissibly 
isogenous to a given abelian 
variety over K have 
bounded refined height 

There are only finitely many abelian 
varieties admissibly isogenous to a 
given abelian variety over K 

| TATE'S CONJECTURE (in a strong form) | 

z 
© 

THE ISOGENY CONJECTURE 

z 
] 

There are only finitely 
many isogeny classes of 
abelian varieties of 
dimension g, defined 
over K, with bounded 
bad reduction 

There are only finitely many 
abelian varieties isogenous 
to a given abelian variety 
over K 

I SHAFAREVICH'S CONJECTURES I 

1 — i — • 
[ MORDELL'S CONJECTURE 1 

A homomorphism ƒ : A -> B from one complex torus to another is called an 
isogeny if it is surjective and if its kernel is finite. For example, for any 
complex torus A and any nonzero integer m, multiplication-by-m 

"m": A -+A 
is an isogeny. Its kernel, denoted A[m], is the group of w-division points in A9 

a group immediately seen to be isomorphic to 

(4) Z /mZ X Z/mZ X • • • XZ/wZ (where g = dimension of A). 

2 g times 

A is said to be isogenous to B, if there is such an ƒ. If A and B are abelian 
varieties defined over K, it makes sense to talk about isogenies defined over K. 
The relation "A is X-isogenous to B " is an equivalence relation. 

If A is defined over K, then, for any nonzero integer m, the isogeny "m" of 
A onto A is defined over K. One can show that the smallest field extension of 
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K over which each of the ^-division points is rational is an algebraic extension 
of K. If K is an algebraic closure of K, one then obtains that each of the 
points of A[m] (any m) is rational over K. Any Galois automorphism of K 
over K then acts in a natural way on the group A[m]. In this way we get a 
natural action of GK = Gdl(K/K) on A[m]. If you wish, using (4), you may 
think of this as a representation of GK into the General Linear Group 
GL2 g(Z/mZ). These representations have played and will continue to play an 
enormously important role in number theory. 

Since the Galois action on points of finite order is compatible with the 
"Weil pairing", a natural nondegenerate skew-symmetric form on A[m\ the 
image of GK is contained in the subgroup GSPg(Z/mZ) of symplectic simili­
tudes in GL2g(Z/mZ). 

The case of g = 1 has been the focus of attention for a long time. Here 
GSP^Z/mZ) = GL2(Z/mZ). In [Se 3] Serre showed that if the elliptic curve 
A does not have "complex multiplication" i.e., admits no nonscalar endomor-
phisms, then the index of the image of GK in GL2(Z/mZ) is bounded by a 
constant independent of m (depending only on A and K). 

Recently (see announcement in [Se5]), Serre has shown that if A is an 
abelian variety of odd dimension g not admitting any nonscalar endomor-
phism and K is a number field, there is a bound b (depending upon K and A) 
such that if m = p is a prime number greater than b, the representation of GK 

into GSPg(Z/raZ) obtained by the action of Galois on A[m] is surjective. In 
the special case g = 1 and K = Q, more is known about the image of GK. For 
example, there is a complete determination of the elliptic curves A and integers 
m such that the image of a conjugate of GQ in GL2(Z/mZ) is contained in a 
subgroup of the group of upper-triangular matrices36 (cf. [Maz, Ken, Me 3]). 

Given any homomorphism ƒ: A -> B of abelian varieties defined over K, 
one can restrict ƒ to m-division points to get a G^-equivariant homomorphism 
(between finite abelian groups) 

fm: A[m]-> B[m]. 

When does a G^equivariant homomorphism 

i//: A[m] -> B[m] 

actually come from a homomorphism of complex tori, i.e., when is \p equal to 
fm for some ml One's first instinct, perhaps, is to say: hardly ever! After all, \p 
is merely a mapping of finite groups, and why should the G^-representations 
on A[m] and B[m] have much bearing on the existence of complex analytic 
homomorphisms between the tori? Tate conjectured, however, and Faltings has 
recently proved the following extremely powerful "lifting criterion", which can 
be "read" in a number of ways to deduce important consequences about 
abelian varieties, as well as about the G^representations to which they give 
rise: 

36Equivalently, there is a complete classification of Q-isomorphism classes of isogenics of elliptic 
curves, defined over Q. 
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THEOREM (FALTINGS; a version of Tate's conjecture). Suppose that for each 
natural number k, the G^equivariant homomorphism \p: A[m] -* B[m] is the 
restriction of a G j^equivariant homomorphism A[mk] -> B[mk]. Then there is a 
homomorphism of abelian varieties 

ƒ: A^B 

defined over K, such that \p is the restriction of f to the group of m-division points. 

An important consequence, long sought after in its own right, is the closely 
related "isogeny conjecture". 

THEOREM OF FALTINGS (Isogeny conjecture). Let m be any integer > 2, and 
A, B abelian varieties defined over a number field K. If there are Gj^equivariant 
isomorphisms A[mk] -» B[mk] for every natural number k, then A and B are 
isogenous over K. 

We have explained all the terms of the block-diagram except for the 
technical term admissible isogeny which I coined to signal a certain broad class 
of isogenics which make their appearance in an intermediary stage of the 
proof. For those who have Deligne's Bourbaki account, I simply mean isog­
enics satisfying the hypothesis of either his Theorem 2.4 or 2.6. To give some 
idea of the broadness of this class, for any abelian variety A over K there is an 
integer M such that any isogeny A -> B defined over K whose kernel has order 
prime to M is admissible; lots of others are, as well. 

We conclude our account with a few words about each of the numbered 
transitions in the block-diagram—signaling some of the mathematical theories 
which come into play. 

(1) This uses Tate's theory of /^-divisible groups, some of Raynaud's results 
concerning finite flat group schemes, and the Weil conjectures for abelian 
varieties. 

(2) What is required here, of course, is some connection between raw and 
refined heights. It uses the theory of moduli of abelian varieties (cf. exposé IV 
of [Szp 3]). 

(3) The strategy of the proof of Tate's conjecture follows, to some extent, 
Tate's original proof of his conjecture in the context of finite fields, together 
with some ideas of Zarhin. 

In the grossest of terms, Tate's conjecture requires one to construct some 
AT-rational homomorphisms of abelian varieties A -> B under the hypothesis 
that there are loads of G^-equivariant homomorphisms of groups of m-division 
points A[m] -* B[m] (for loads of m's). 

There is no loss of generality in supposing that A = B, so one is faced with 
the problem of constructing ^-rational endomorphisms of A, under the 
hypothesis that one has "loads of' G^equivariant endomorphisms of groups 
of m-division points. But given any G^equivariant endomorphism of A[m\ 
passing to the quotient of A by the kernel of that endomorphism yields an 
abelian variety isogenous to A over K. In this manner, by our hypothesis, we 
obtain an infinite sequence Al,A2,... of abelian varieties ^-isogenous to A. 
The first part of the proof of Tate's conjecture uses some elegant algebraic 
arguments to show, in effect, that one may suppose the At are admissibly 
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isogenous to A. From the "previous block" in our diagram, there are only a 
finite number of ^-isomorphism classes among all the At's. Consequently we 
get quantities of ^-isomorphisms between the A/s. Composing these isomor­
phisms with the isogenics connecting the A/s gives quantities of endomor-
phisms of various of the A/s. But these "carry over" to endomorphisms of A 
itself—precisely the ^-endomorphisms that we are required to construct! 

(4) The isogeny conjecture assures that the isogeny class of an abelian 
variety is known once the G^representations on m*-division points are known 
(k = 1,2,... ). Faltings uses the Weil conjectures for abelian varieties, together 
with strong algebraic-number-theoretic implications of "bounded bad reduc­
tion" to bound the number of possible systems of G^representations in 
GL2g(Z/mkZ) that may occur. Hence he has also bounded the number of 
A'-isogeny classes. 
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