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In this survey we consider Kobayashi hyperbolicity, in which there is an 
interplay between five notions: 

analytic notions of distance and measure; 
complex analytic notions; 
differential geometric notions of curvature (Chern and Ricci form); 
algebraic notions of "general type" (pseudo ampleness); 
arithmetic notions of rational points (existence of sections). 

I am especially interested in the relations of the first four notions with 
diophantine geometry, which historically has intermingled with complex dif­
ferential geometry. One of the main points of this survey is to arrive at a 
certain number of conjectures in an attempt to describe at least some of these 
relations coherently. 

Throughout this article, by an algebraic set we mean the set of zeros of a 
finite number of homogeneous polynomials 

Pj(x0,...,xN) = 0, j = l , . . . , m 

in projective space Plover C, so x0,..., xN are the projective coordinates. An 
algebraic set will be called a variety if it is irreducible—that is, the polynomials 
can be chosen so that they generate a prime ideal. If X has no singularities, 
then X is also a complex manifold. In any case, X has a complex structure. 
From now on, we let X denote a variety. 

Among the possible complex analytic properties of X we shall emphasize 
that of being hyperbolic. There are several equivalent definitions of this notion, 
and one of them, due to Brody, is that every holomorphic map of C into X is 
constant. At the beginning of this article, we shall give three possible char­
acterizations, including Kobayashi's original definition, and prove the equiva­
lence between them, following Brody. 

On the other hand, X also has an algebraic structure. For one thing, taking 
the algebraic subsets of X as closed subsets defines the Zariski topology. Thus 
the Zariski closure of a set S is the smallest algebraic set containing S, and is 
equal to the intersection of all algebraic sets containing S. Furthermore, the 
polynomials Pj have coefficients in some field F0, finitely generated over the 
rational numbers, and this gives rise to diophantine properties as follows. 
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Let F be a field containing F0. A point with projective coordinates 
(x0,..., xn) is said to be rational over F if the affine coordinates 

X0/Xj> • • • > X
n/Xj 

lie in F for some index j such that x • # 0, and hence for every such index. 
The set of F-rational points of X is denoted by X(F). When we speak of 
rational points, we shall always mean rational points in some field of finite type 
over the rationals, that is, finitely generated over the rationals. No other 
qualification will be made. 

We shall say that X (or a Zariski open subset) is mordellic if it has only a 
finite number of rational points in every finitely generated field over Q 
according to our convention. I once conjectured that a hyperbolic variety is 
mordellic. We shall put this conjecture in a much broader context. 

Let X be any variety. We define the analytic exceptional set Exc( X) of X to 
be the Zariski closure of the union of all images of non-constant holomorphic 
maps f:C->X. Thus X is hyperbolic if and only if this exceptional set is 
empty. In general the exceptional set may be the whole variety, X itself. I 
conjecture that X — Exc( X) is mordellic. 

It is also a problem to give an algebraic description of the exceptional set, 
giving rise to the converse problem of showing that the exceptional set is not 
mordellic, and in fact always has infinitely many rational points in a finite 
extension of a field of definition for X. We define the algebraic exceptional set 
Exc^gCA") to be the union of all non-constant rational images of P1 and 
abelian varieties in X. (An abelian variety is a variety which is complex 
analytically isomorphic to a complex torus.) I would conjecture that the 
analytic exceptional set is equal to the algebraic one. A subsidiary conjecture is 
therefore that Excalg(X) is closed, and that X is hyperbolic if and only if every 
rational map of P1 or an abelian variety into X is constant. Similarly, until the 
equality between the two exceptional sets is proved, one has the corresponding 
conjecture that the complement of the algebraic exceptional set is mordellic. 

Observe that the equality 

Exc(X) = ExCalg(X) 

would give an algebraic characterization of hyperbolicity. Such a characteriza­
tion implies for instance that if a variety is defined over a field F0 as above, 
and is hyperbolic in one imbedding of F0 in C, then it is hyperbolic in every 
imbedding of F0 in C, something which is by no means obvious, given the 
analytic definitions of "hyperbolic" in §§1 and 2. 

We wish to characterize those varieties such that the exceptional set is a 
proper subset. We shall give conjecturally a number of equivalent conditions, 
which lead us into complex differential geometry, and algebraic geometry as 
well as measure theory. 

The properties having to do with hyperbolicity from the point of view of 
differential geometry have been studied especially by Grauert-Reckziegel, 
Green, Griffiths, and Kobayashi. Such properties have to do with "curvature". 
In §4 we reproduce the proof that under certain "curvature" conditions, the 
variety is hyperbolic. Also in §4 we consider a weakening of this notion, 
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namely measure hyperbolic, due to Kobayashi. The difference Hes in looking at 
positive (1, l)-forms or volume («, «)-forms on a variety of dimension n. One 
key aspect is that of the Ahlfors-Schwarz lemma, which states that a holomor-
phic map is measure decreasing under certain conditions. 

In §3 we describe how to associate a (1, l)-form, the Ricci form Ric(^), to a 
volume form ^ . The positivity of the Ricci form is related in a fundamental 
way to hyperbolicity. In the differential geometric part of this article, the 
Schwarz lemma and the formalism attached to the positivity of the Chern form 

ddc\og\o\\ 

where \o\ is a length function of some sort, provide a uniform thread weaving 
through all the questions. 

We shall also be led to weaken certain properties. Roughly speaking, given a 
property, the weakening of this property obtained by requiring that it holds 
only outside a proper algebraic subset may be called its pseudofication. Thus 
we shall deal with pseudo volume forms, for which we allow zeros on a proper 
analytic subset. The precise definition is given in §4. We can also say that X is 
pseudo hyperbolic if the exceptional set is a proper subset. We say that X is 
pseudo mordellic if there exists a proper algebraic subset Y such that X — Y is 
mordellic. 

In the direction of algebraic geometry, let T = Tx be the complex tangent 
bundle, and T v the cotangent bundle dual of T, assuming now that X is 
non-singular. Let 

be the canonical bundle of differential forms of top degree. We say that X is 
canonical if there exists a positive integer m such that a basis (s0,..., sN) for 
the space of sections H°(X, K®m) gives an imbedding 

x -> (s0(x)9...,sN(x)) 

of X into P^. We say that X is pseudo canonical (or of general type) if there 
exists some m such that the map is defined outside a proper algebraic subset, 
and gives a projective imbedding of the complement. A singular variety is 
called pseudo canonical if a desingularization is pseudo canonical. 

Then the problem is to determine whether the following conditions are 
equivalent: 

PI . X is pseudo canonical. 
P2. X is pseudo mordellic. 
P3. X is pseudo hyperbolic. 
P3'. The algebraic exceptional set is a proper subset. 
P4. If X is non-singular, there exists a pseudo volume form ^ such that 

Ric(^) > 0. 
P5. X is measure hyperbolic. 
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Without the pseudo, the problem is whether the following conditions are 
equivalent: 

1. Every sub variety of X (including X itself) is pseudo canonical. 
2. X is mordellic. 
3. X is hyperbolic. 
3'. Every rational map of P1 or an abelian variety into X is constant. 
4. If X is non-singular, there exist a positive (1, l)-form <o and a number 

B > 0 such that for every complex one-dimensional immersed sub-
manifold Y inX, 

Ric(<o|Y)^ Bœ\Y. 

5. Every subvariety of X (including X itself) is measure hyperbolic. 

No two properties in each column are known to be equivalent. Some 
implications are known, and will be discussed at length. In order to make this 
article as accessible as possible to a broad audience, I reproduce complete 
proofs for several basic results of Brody, Grauert-Reckziegel, Griffiths, and 
Kobayashi-Ochiai complemented by Kodaira, proving some of the above 
implications. But I also survey other matters, with the selections made for their 
application to certain diophantine questions. Kobayashi's survey [Ko 3] takes 
other directions. As usual, I would like to remind the reader that a choice made 
here is not meant to exclude other points of view, and is only dictated by 
logistical boundary conditions. 

Evidence for the diophantine conjectures comes from their self-coherence, 
rather than special cases. I remind the reader that until Faltings' theorem, there 
was not known a single example of a curve (variety of dimension 1) which was 
proved to be mordellic. 

Some of the listed conditions, like PI, P2, P3' and 1,2,3' are algebraic. The 
others are analytic. Different readers can thus be interested in different 
combinations of them. 

In this article, I concentrate on the finiteness of rational points, and I omit 
the whole area of intermediate hyperbolicity involving holomorphic maps of 
balls of intermediate dimension—between 1 and the dimension of the mani­
fold—originally defined by Eisenman in his thesis (1969), see [E]. Results 
analogous to those mentioned here have been obtained, and similar conjectures 
can be made, especially concerning the dimension and parametrization of the 
exceptional set discussed in §8. For an extensive bibliography of papers and a 
good survey of results on the analytic aspects of this intermediate-dimensional 
situation, see a forthcoming paper of Graham-Wu [G-W]. 

The conjectures of this paper concerning mordellic properties are qualitative. 
I refer the reader to Vojta [Vo] for the extraordinary connection which he 
established conjecturally between diophantine analysis and the Second Main 
Theorem of Nevanlinna theory. Vojta's conjectures amount to quantitative 
estimates for the heights of rational points in the higher-dimensional case, and 
involve diophantine approximations in an arithmetic-geometric setting. Some 
of the conjectures of this article can be viewed as providing more information 
on the sets where Vojta's conjectured inequalities do not hold. 
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In addition, parallel to the absolute diophantine questions there has also 
been progress in higher-dimensional results in the context of sections of 
algebraic families, e.g. by Kobayashi-Ochiai [K-O 2], Noguchi [No], and 
Riebesehl [Ri], following Manin and Grauert. I shall mention this work more 
precisely in an appendix. 

I am very grateful to Artin, Friedman, Green, Griffiths, Harris, Siu, Sommese, 
and Vojta for useful conversations which have helped me sort out the literature 
and clarify my ideas. I especially thank Green and Griffiths for communicating 
to me their conjecture in §8, and explaining to me various matters pertaining 
to their paper [Gr-Gr]. 

Contents 

1. Kobayashi hyperbolicity 
2. Brody's criterion for hyperbolicity 
3. Volume forms; the Ricci form, and the Griffiths function 
4. Distance and measure decreasing maps; Ahlfors-Schwarz lemma 
5. Pseudo canonical varieties (general type) 
6. Minimal models 
7. Length functions, ampleness and hyperbolicity 
8. Jet differentials 
Historical Appendix: algebraic families 

§1. Kobayashi hyperbolicity 

Let D be the open unit disc. The Poincaré metric, also called the hyperbolic 
metric, on D is defined by the form 

dzdz 

The tangent space TZ(D) at a given point z can be identified with C, and if 
v e TZ(D) = Cz under this identification, then the hyperbolic norm of v under 
the metric is 

I I \V\ eue 
\V hyp,r = - , 

where |u|euc is the ordinary absolute value on C. Instead of C, we write Cz to 
specify the Poincaré metric on C at the point z of D. Note that for z = 0, the 
Poincaré metric is the euclidean metric. 

Similarly, for any positive number r, we let Dr be the disc of radius r, with 
the Poincaré metric corresponding to the form 

dzdz 

(i-wV)2' 
The hyperbolic norm of a tangent vector u at z is then given by the similar 
formula as above, replacing \z\2 by \z\2/r2. 
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We shall investigate the behavior of the Poincaré metric under holomorphic 
maps. We begin with a classical result, at the level of elementary complex 
variables. 

Proposition 1.1 (Schwarz-Pick Lemma). Let ƒ: D -> D be a holo­
morphic map of the disc into itself. Then 

l - | / ( z ) | 2 l - | z f 

Proof. Fix a e D. Let 

( \ Z + a A 1 ( \ Z ~ f(a) 

* < * > - r + * and "M-T^M;-
Thus g and h are automorphisms of the disc which map 0 on a and f (a) on 0 
respectively. We let 

F=hofog9 

so that F: D -> D is holomorphic and F(0) = 0. Then by the chain rule, 

F'(0) = h'(f{a))f'(a)g'(0) 

1 _ | û | 2 ƒ'(«) 
1 - | / ( « ) | 2 

by a direct computation. By the ordinary Schwarz lemma, we have 

1 (̂0)1 S l , 
with equality if and only if F is an automorphism, so ƒ is an automorphism. 
We also get the reformulation 

!ƒ'(«)! . i 
i - | / ( « ) | 2 i - M 2 ' 

which proves the proposition. 

As already remarked in the proof of the proposition, we have equality at one 
point if and only if ƒ is an automorphism. In particular, we can express the 
lemma invariantly in terms of the differential of ƒ as follows. 

Let ƒ : D -> X be a holomorphic mapping into a complex hermitian mani­
fold. Then we have an induced tangent linear map for each z e D: 

df(z):T2(D) = C2-+Tf(z)(X). 

Each complex tangent space has its norm: Tf{z) has the hermitian norm, and 
TZ(D) = Cz has the hyperbolic norm. We can define the norm of the linear map 
df(z) as usual: 

\df(z)\= sup\df(z)u\/\v\ 
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for v e TZ(D), v =£ 0. Then the Schwarz-Pick Lemma can be stated in the 
form: 

Corollary 1.2. (i) A holomorphic map ƒ : D -> D is distance decreas­
ing/or the hyperbolic norm. 

(ii) An automorphism of D is an isometry. 

Unless otherwise specified, the norm on the tangent space Cz will be the 
hyperbolic norm. 

Let I be a complex space. Let x, y e X. We consider sequences of 
holomorphic maps 

ft D->X, i = l , . . . , m 

and points pi9 qt e D such that fi(px) = x, fm(qm) = y, and 

fi(<Ii)=fi+i(Pi+i)> 

In other words, we join JC to y by a chain of discs. We add the hyperbolic 
distances between pt and qt, and take the inf over all such choices of ƒ), pi9 qt 

to define the Kobayashi semi distance 
m 

i = i 

Then dx satisfies the properties of a distance, except that dx(x, y) may be 0 if 
x =£ y9 so dx is a semi distance. 

Example 1. If X = D is the hyperbolic disc, then dx on X coincides with the 
hyperbolic distance by Corollary 1.2 (the fact that a holomorphic map of D 
into itself is distance decreasing). 
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Example 2. Let X = C with the euclidean metric. Then dx(x, y) = 0 for all 
je, y e C. Indeed, given x # / there exists a disc of arbitrarily large radius 
imbedded in C such that 0 maps to x and y - x maps to y. By a dilation, we 
can map ƒ: D -> C such that /(O) = x and f(q) = y where # is very close to 
0. But the hyperbolic metric is very close to the euclidean metric near 0, so 
dx(x9 y) is arbitrarily small, so equal to 0. 

It will be useful to consider the following generalization. Let X be a subset 
of a complex hermitian manifold Z. We can define dx on X (rather than on 
Z) by taking the maps f to lie in X, and to be holomorphic as maps into Z. 
Then we obtain a semi distance on X. We say that X is Kobayashi hyperbolic 
in Z if this semi distance is a distance, that is if x =£ y implies dx(x, y) ¥= 0. 
For simplicity, we shall say hyperbolic instead of Kobayashi hyperbolic. We 
need Z only to be able to define a holomorphic map of D into something. 
From now on, unless otherwise specified, we suppose that we deal with this 
situation. When we speak of a holomorphic map ƒ : D -> X we mean a 
holomorphic map ƒ : D -» Z whose image is contained in X. 

The foundations of complex analytic spaces actually allow one to define 
analytic maps from one such space to another. Furthermore, if X is an analytic 
space imbedded in a complex manifold Z, then a map into X is analytic if and 
only if it is analytic viewed as a map into Z. Therefore the definition of the 
Kobayashi semi distance on X is intrinsic, independent of the imbedding of X 
into a manifold. 

We shall also consider hermitian metrics, and for this it is useful to have the 
analytic space imbedded in a manifold so that we can use norms on a tangent 
space (which does not exist when X has singularities). For instance in 
Theorem 2.2 below, we give Brody's criterion for a compact subspace of a 
complex hermitian manifold to be hyperbolic. Without mentioning the norms, 
this result will imply the following statement. 

Let X be a compact analytic space. Then X is hyperbolic if and only if 
every holomorphic map f:C-+X is constant. 

In this context, it is useful to define an analytic space X to be Brody hyperbolic 
if every holomorphic map of C into X is constant. The above statement then 
can be rephrased to say that for a compact analytic space, Brody hyperbolic is 
equivalent with Kobayashi hyperbolic. Let ƒ : D -> X be a holomorphic map. In 
line with Royden's approach [Ro] we define 

c ( / ) = s u p | # ( z ) | , 
Z 

where the sup is taken over all z e D. We also define 

c ( * ) = supc( / ) , 
/ 

where the sup is taken over holomorphic maps ƒ : D -» X (so, according to our 
conventions, holomorphic maps ƒ: D -» Z whose image is contained in X). 
We do not exclude that c(f) and c(X) are equal to oo. Since, however, 
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automorphisms of the disc operate transitively on the disc, it follows that we 
have 

c ( * ) = sup |# (0 ) | , 
/ 

where the sup is taken as before. Obviously c{ f ) g c( X). 

Lemma 1.3. Let f: D -* X be holomorphic. Let zv z2 e D. Then 

dhM(zilf(zi)) S c(f)d^zltz2) Z c(X)dbyp(z1,z2). 

Proof. Let y: [0,1] -> D be a geodesic between zx and z2 in D. Then ƒ ° y is 
a curve joining /(z1) and f(z2) and its length is 

f I t f M O M O L * ^ / ) / 1 |y'(0lhyp^ 

so length of ƒ o y ^ c( ƒ ) length of y, whence the lemma follows. 

Theorem 1.4 (Brody [Br]), /ƒ c(JQ is finite then X is hyperbolic. 
Conversely, if X is compact and hyperbolic then c( X) is finite. 

Proof. Suppose c( X) finite. By Lemma 1.3 for x # y in X we obtain 

dx(x9y)^(l/c)dham(x9y)>09 

whence the first part of the theorem follows. 
Conversely, suppose c( X) = oo and X compact. There exists a sequence of 

holomorphic maps 

ƒ„: D -» * 

with \dfn(Q)\ increasing to oo. By compactness, say Hm /„(O) = x. Take a chart 
at x 

U c Ucl c K, 

where £/, F are open balls, say, centered at 0, and Ud is the closure of U. Let S 
be the boundary of U and let s be the radius of S. Let r < 1 be a positive 
number such that /„(Dr

cl) c (/. Then 

Since the hyperbolic metric at z = 0 is the same as the euclidean metric, it 
follows that if |/„'(0)| is large, then r = r(n) has to tend to 0. Therefore, given 
a positive integer m, there exists n such that /„(D1/m) is not contained in U 
and therefore intersects the boundary S. Hence we can find a point xm on S 
such that xm = /„( /?J with pm e D 1 / m . Then 

</*(*,* J = dx(fH(0)Jn(Pm)) â <**yp(0, flj "> 0 

as m -* oo. But a subsequence of xm converges to a point J / G S S O dx(x9 y) 
= 0 and X is not hyperbolic. This proves the theorem. 
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In the compact case, Brody's criterion can be taken as a definition. Similarly, 
Theorem 2.2 in the next section will give another important equivalent condi­
tion. Thus from the start, we have three valuable characterizations of hyper­
bolic varieties, which exist on an equal footing. The Kobayashi condition and 
Theorem 1.4 put special emphasis on mapping discs into the manifold. 

Remark 1. This context also allows transposing certain questions from the 
theory of transcendental numbers. For instance if ƒ : D -» X is a holomorphic 
immersion into a hyperbolic variety X defined over a number field, if df (0) is 
algebraic, and /(O) is an algebraic point, then is f(z0) transcendental for z0 

algebraic ¥= 0? Is the radius of the disc transcendental? See [La 3], and results 
of Wolfart [Wo], Wolfart-Wustholz [Wo-Wu] for special Riemann surfaces, 
relating the radius to special values of the gamma (beta) function which also 
arise as periods. 

Remark 2. Instead of using the unit disk and having \df(0)\ -> oo, in the 
next section we shall use \df(0)\ = 1, say, with discs of increasing radius. If the 
variety is hyperbolic, then this radius is bounded. For Riemann surfaces, this is 
the classical Landau-Schottky theorem, and a variation is due to Bloch. In this 
article dealing with the higher-dimensional case, I give one formulation of the 
generalizations in terms of the Schwarz lemma. For the other possible formula­
tions and variants, explaining the historical motivation, see Griffiths [Gri]. One 
can again ask for the arithmetic nature (including transcendence) of the sup of 
radii r such that there is a holomorphic map 

ƒ : Dr -* X 

into a hyperbolic variety with \df(0)\ = 1. This sup could be called the 
Landau-Schottky constant associated with the metric. 

Similarly, one can ask for the arithmetic nature of the constant c(X), which 
also depends on the metric. 

Remark 3. Consider a holomorphic curve ƒ: D -» X into a hyperbolic 
variety. The finiteness of rational points in a field F amounts to the property 
that if Dr is a closed subdisc, then there are only a finite number of values 
z G Dr such that f(z) e X(F). In the theory of transcendental numbers, one 
considers such parametrizations, proving the transcendence of a uniformiza-
tion map ƒ at certain points. But Siegel in some cases also proved that the 
images of certain points if algebraic must have a high degree [Si]. I have had 
the impression for a long time that the methods using approximating functions 
should apply to this case to yield the finiteness. 

Remark 4. Using Cp instead of C and the theory of rigid analytic spaces, it 
should be possible to translate /?-adically the various characterizations of 
hyperbolicity. It then becomes a problem to determine the relations between 
the various possible definitions of /?-adic hyperbolicity, and to relate these 
analytic properties with the algebraic characterization of Conjecture 5.6 and 
the diophantine properties listed in §5. 
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§2. Brody's criterion for hyperbolicity 

If X is hyperbolic, then directly from the definition of the Kobayashi pseudo 
metric and Example 2 of §1, there cannot be a non-constant holomorphic map 
ƒ: C -> X. The converse is due to Brody [Br], and is the main goal of this 
section. We start with: 

Lemma 2.1 (Brody's reparametrization lemma). Let X be a subset of 
a complex hermitian manifold. Let ƒ : Dr -» X be holomorphic. Let 
c> 0 and for 0 ^ / ^ 1 letf(z) = f(tz). 

(i) If \df(0)\ > c then there exists t < 1 and an automorphism h 
of D such that if we let 

Z=ft°h> 
then 

sxxp\dg(z)\ = \dg(0)\=c. 
2€=Dr 

(ii) If \df(0)\ = c, then we get the same conclusion allowing 
t<\. 

Proof. Let mt\ Dr -> Dr be multiplication by t, so that ft can be factored: 

Then dmt(z)v = tv, so 

mt f 

n -*Dr-*x. 

Let 

\dft(z)\ = \df(tz)\tl | z | / r 2 

l -\tz\ A 2 

5(r)= sup|rf/,(z)|. 
ZGD, 

Then 5(0 is increasing for 0 <£ f ^ 1. Indeed, if tl < t2 < 1 and zx is such that 

*(/!>-1^,(^)1, 
then we let z2 = /1z1 / /2 so that f2

z2 = *izi- A simple comparison of the extra 
factor then shows that 

\dfh(^)\<\dfh(z2)\^s{t2). 

If / < 1 then the extra factor 

r 2 _ M 2 

is less than 1, .2 
r2 -\tz\ 

and if / = 1 then this extra factor is equal to 1, so s(t) is also increasing up to 
t = 1. Also we can write tz = w. Taking the sup for z e Dr amounts to taking 
the sup for w e tDr. If r < 1, we can even take the sup over the closure /Dr

cl. It 
follows that s(t) is continuous for 0 ^ t < 1. Also s(/) -> ,s(l) as t -> 1, even 
if 5(1) = oo. By assumption in the first part, 1 /̂(0)1 > c, and hence s(l) > c. 
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Hence there exists 0 ^ / < 1 such that s(t) = c. Hence there is some z0 e tBf 
such that \dft(z0)\ = c. Now let h: Dr -> Dr be the automorphism such that 
h(Q) = z0 and let g=ft°h. Then 

\dg(0)\ = \dft(zQ)\\dh(0)\ = \dft(zo)\=c, 

thus proving the first part. The second part is proved similarly, allowing t = 1. 

Theorem 2.2 [Br]. Let X be a relatively compact complex subspace of 
a complex hermitian manifold, and suppose X is not hyperbolic. Then 
there exists a non-constant holomorphic map ƒ : C -> Xcl such that 

\df{z)\eucSl forallzeCand\df(0)\=l. 

In particular, the hermitian area off(Dr) is ^ nr2. 

Remark. Since f'.Q^X has domain C, we are using the euclidean 
hermitian metric on C, so the norm of df(z) is now measured as going from 
the euclidean norm to the hermitian norm in X. This is the reason for putting 
the subscript on this norm in the statement of the theorem. 

Proof. By Theorem 1.4, there exists a sequence of maps 

ƒ„: D -> X such that \dfn(0) | -> 00. 

Without loss of generality, making a dilation, we may consider a sequence of 
maps 

fn:Drn^X such that | # „ ( 0 ) | = 1 

and the radii rn increase to infinity. By Lemma 2.1 there exist holomorphic 
maps 

gn: Drn -> X such that \dgH(0) | = 1 = sup \dg„(z)\. 
z6D f f l 

We want to show that given a compact subset K of C there exists a 
subsequence of { gn } which converges uniformly on K. This is a simple matter, 
based on the following arguments. 

Let z0 e C. By compactness it suffices to prove that there is a neighborhood 
of z0 on which a subsequence converges uniformly. After passing to a 
subsequence, we may assume without loss of generality that {gn(z0)} con­
verges to a point x0 of X. Now pick a chart at x0, say an open set V and a 
holomorphic isomorphism 

where Bs is the open ball of radius s centered at 0. We may assume that the 
closure of V is contained in another chart, isomorphic to a ball of bigger 
radius. Then by hypothesis, there is a positive number C such that 

|(<p o g j ' ( z ) \^C for all z e g-\V*) and all n. 
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g(wn) 

The arguments which follow are concerned with this simple situation: We 
have a sequence gn: U -> X of holomorphic maps of some open U in C into X, 
a point z0 e U such that g„(z0) converges to x0, and charts as above, such 
that the derivative (<p <> gn)f is bounded on g'1^01). We now prove equicon-
tinuity statements for this situation. 

1. There exists a disc Dfl(z0) such that gn(Da) c V for all «, that is 
D.(z0)cg;1(K)foraIl / i . 

Proof. Otherwise, there exists a sequence {zn} tending to z0 such that 
gn{zn) € V for arbitrarily large n. On the segment from z0 to zn, let wn be the 
first point such that g„(wn) lies on the boundary of V, so <p <> gn(w„) lies on the 
sphere bounding B5. Then 

(»-&)K)- r(v •«„)'(««, 

where the integral is taken over the line segment between z0 and w„. Thus we 
obtain the bound 

\<P°gn(Wn)\£\*n-Zo\C-

As n -> oo, the left side approaches .y and the right side approaches 0, a 
contradiction. 

2. The sequence {gn} is equicontinuous at z0. In fact for z, z' e Da(z0) 
(where Da(z0) is the disc as in the previous statement), we have for 
all/i: 

W°8n(z) -<P°gn{z')\^\z- Z'\C' 

Proof. Immediate from the integral formula, which can now be applied 
uniformly for all n. 
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This proves that the sequence { gn} converges uniformly on compact sets, by 
Ascoli's theorem. 

Going back to Theorem 2.2 proper, we get a subsequence of { gn } converg­
ing uniformly on Dx to a map ƒ. A further subsequence converges uniformly on 
D2, and so on. We can then extend ƒ analytically to all of C. Furthermore ƒ is 
not constant since 

| # ( 0 ) | - lim | # „ ( 0 ) | = 1 . 
n-* oo 

Finally, consider the euclidean metric on Dr c C, together with the holomor­
phic map ƒ: C -> A" just obtained. The tangent map 

df(z): T,(C) = C ^ Tf(t) 

is a linear map with euclidean norm on TZ(C) and hermitian norm on Tf(z) (of 
the ambient manifold). Let z0 e C. Then 

k / U ) L c = lim \dg„U0)L^ lim (l - UolV^2)"1 - 1-
«—•oo n-* oo v ' 

Finally, the area of /(D r) is bounded by the euclidean area of Dr, which is mr2. 
This concludes the proof of the theorem. 

I once made the conjecture [La 1]: 

Conjecture 2.3. Let X be a projective variety. If X is hyperbolic, then 
X is mordellic. 

To make the conjecture imply that a sub variety of an abelian variety has only a 
finite number of rational points unless these are contained in translated 
abelian subvaneties, I conjectured that a subvariety of an abelian variety which 
does not contain translations of abelian subvarieties # 0 is hyperbolic. This 
conjecture was proved by Mark Green [Gr] as follows. 

Theorem 2.4. Let X be a closed subset of a complex torus T, with 
standard hermitian metric induced from a representation T = Cd/K, 
where A is a lattice. Assume also that X is an analytic subvariety, 
that is X is equal to its complex analytic closure. Then X is hyperbolic 
if and only if X does not contain a translated complex subtorus =£ 0. 

Proof. A complex subtorus in X would give a complex line C -> X which 
would contradict Brody's Theorem 2.2. 

Conversely, if X is not hyperbolic, then Brody's theorem yields a holomor­
phic map f:C^>X such that \df(z)\ ^ 1 and \df(0)\ = 1 (euclidean norms). 
Then ƒ lifts to a holomorphic map into the universal covering space of T, 
making the following diagram commutative: 

(A. •••-/.) 

T = C / A 
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and we have Ef=i|//|2 ^ 1. Hence ƒ/ is constant for all i by Liouville's 
theorem, so f is linear. After a translation of X we may assume without loss of 
generality that /(O) = 0, and ƒ is a one-parameter subgroup. Since X is 
assumed to be a complex analytic variety, the complex analytic closure of the 
image of ƒ is itself a complex analytic group, which is therefore a complex 
subtorus contained in X. This concludes the proof. 

Remark. We have used an elementary lemma: 

Let G be a group with a topology (not necessarily Hausdorff, since in 
the applications it may be a Zariski topology). Assume that given 
X Ê G , translation by x is bicontinuous, and also that x »-> x'1 is 
bicontinuous. Let H be an abstract subgroup of G. Then the closure H 
is a subgroup. 

Proof. The closure of a subset S is the intersection of all closed subsets of G 
containing S. Since x «-» x~l is bicontinuous, it follows that H~l is a closed set 
containing H~l, so 

H = closure (H) = closure^"1) c H\ 

Applying the inverse map to this inclusion yields H'1 c H, so 

H = Hl. 

Next let h e H. ThenJiH c H, so Hjp h^H, which is closed, so H c h~lH, 
whence finally hH c_ff. Therefore HH c H. Similarly, HH c H. Finally let 
h_& H. Then hH c H_by what we have just proved, and hence H c h~lH so 
H c h~lH so finally hH c H. So we have proved 

HHcH. 
This concludes the proof of the lemma. 

Note that we did not assume G to be a topological group because, in 
applications, the composition map G X G -> G is not continuous. Only trans­
lation by single elements is bicontinuous. 

We give another application also due to Green [Gr]. 

Lemma 2.5. Let T be a complex torus, and let X be an effective 
divisor on T, not containing non-trivial translated complex subtoruses. 
If T — X is not hyperbolic, then there exists a translation of a 
one-parameter group 

g:C-+T-X. 

Proof. As in Theorem 2.2, there exists a sequence of holomorphic maps 

with rn -> oo and such that 

|< /g w (0) |= l= sup \dg„(z)\. 

By a diagonal selection, after picking subsequences we may assume without 
loss of generality that { gn } converges uniformly on compact subsets of C (each 
compact set is contained in Dr for n sufficiently large), and the convergence is 
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to an analytic function 

g: C - T. 

The problem is now whether the image of g can intersect X. 
If g(C) is contained in X then g is constant by Theorem 2.4 and Theorem 

2.2, but this is not possible since \dg(0)\ = lim|^g„(0)|. Hence g(C) is not 
contained in X. Suppose that g(C) intersects X. We first prove that g~l{X) 
consists of isolated points in C. Suppose X is defined locally on an open set V 
by a function <p = 0. Let x e l n F and let U be a connected component of 
g~lV. Then <p ° g is a holomorphic function of £/ into C and hence its zeros are 
isolated or this function is the constant <p(x) = 0. If <p ° g(U) = 0 this means 
that g(U) c X Suppose this is the case. Let U' be a small disc such that g(U') 
is contained in a chart where X is defined by one equation <p' = 0, and such 
that U n U' is not empty. Then <p ° g(U n (7') = 0, and hence by analytic 
continuation, g(U') is contained in X. In this way, we can see that every 
compact disc in C is mapped into X by g, and so g(C) c X, which is a 
contradiction. 

It then follows that g~l(X) consists of isolated points in C. We shall now 
prove that g(C) does not intersect X. Suppose there is some z0 e C such that 
g(z0) e X. Let 5 be a small circle centered at z0 such that g(S) c T - X. 
Such a circle exists since g~l(X) consists of isolated points in C. We pick S 
small enough that g(S) c V, where V is a small open set containing g(z0), in 
which x is defined by the equation <p = 0. Let the winding number 

W(<p° g(S),0) = number of zeros of <p <> g inside S 

and 

W(<P ° gn(S)>Q) = 0 because gn(j)rn) does not intersect X 

Then 

0 = lim W(<pogn(S),0)=W(<pog(s),0), 

so <p o g has no zeros inside S, whence g~\X) C\ Int(S) is empty, contradict­
ing the hypothesis that g(z0) e X. This proves that 

g(C) c T - X. 

By Theorem 2.2 we have \dg(z)\ ^ 1 for all z G C and, as in Theorem 2.4, we 
conclude that g is the translation of a one-parameter subgroup in T. This 
proves the theorem. 

We recall that for an algebraic complex torus, that is, an abelian variety, if X 
does not contain a translated abelian subvariety of dimension > 0 then X is 
ample. Cf. my Abelian Varieties, Chapter IV, §2. The converse is false. For 
instance, the Jacobian of a curve which is a quadratic extension of an elliptic 
curve, of genus 3, ramified at infinity (in the Weierstrass form) has a theta 
divisor which contains an isogeneous image of the elliptic curve by pull-back. 
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Sometimes (see the end of Weil's thesis), people are not aware of this 
possibility. When it happens, the theta divisor contains infinitely many rational 
points in some finite extension of a field of definition. 

Theorem 2.6. Let T be a complex torus imbedded in projective space. 
Let X be an effective divisor which does not contain a translated 
abelian subvariety of dimension > 0. Then T — X is hyperbolic. 

Proof. Suppose T - X is not hyperbolic. After replacing X by a suitable 
multiple, we may assume without loss of generality that X is very ample, so is 
a hyperplane section in some projective imbedding. In Lemma 2.5, let T' be the 
Zariski closure of g(C). Then T' is a complex subtorus (abelian subvariety), 
and X n T' = X' is a hyperplane section of T' in this imbedding. In particular, 
X C)Tf is not empty. The fact that g(C) is contained in T' - X' now 
contradicts Theorem 3 of [Ax], which implies that if a holomorphic curve in a 
projective variety is Zariski dense, then the intersection with a hyperplane is 
not empty, and is infinite if and only if the curve is not algebraic. This 
concludes the proof. 

Remark 1. Green's theorem gives an example when both the compact X and 
the non-compact T — X are hyperbolic. Note that T — X may have infinitely 
many rational points, while Conjecture 2.3 says that X cannot. Green's 
original proof of Theorem 2.6 did not rely on Ax's theorem, and proved 
somewhat more concerning the hyperbolic imbedding of T - X in T. The 
variation of the proof given here is also due to Green (oral communication). 

Observe that the argument used to prove Lemma 2.5 for the most part has 
nothing to do with complex toruses, and in fact proves the following state­
ment: 

Let Z be a variety and let X be a proper algebraic subset. Assume 
that X is Brody hyperbolic. If Z — X is Brody hyperbolic, then 
Z — X is Kobayashi hyperbolic. 

Remark 2. I had conjectured Ax's result via the theory of transcendental 
numbers, in the context of analytic parametrizations. This shows another 
interrelation between number theory and complex differential-algebraic geom­
etry. 

The last two theorems of Green give examples of hyperbolic manifolds, 
including a non-compact case. Brody and Green give other examples of 
non-singular hypersurfaces which are deformations of the Fermât surface 
[Br-Gr]. The Fermât surface is not hyperbolic since it contains lines. The 
Brody-Green example is the variety Xt given by the equation 

z* + z( + zi + zi+(tzo2y
/2 +(tz0z2)

d/2 = o 
where d is even ^ 50. Thus X0 is the Fermât surface, which is non-singular, 
and Xt is a non-singular hypersurface for small t. Recall that all non-singular 
hypersurfaces of the same degree are C°°-isomorphic, but of course not 
complex analytically isomorphic. Furthermore, such hypersurfaces are simply 
connected in dimension > 2. Brody and Green show that Xt is hyperbolic for 
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all small / # 0. Thus we have three classes of hyperbolic varieties: 

(i) Compact quotients of bounded domains by a discrete group operating 
freely, 

(ii) Subvarieties of abelian varieties not containing translated subtoruses of 
dimension > 0. 

(iii) The Brody-Green family of perturbations of Fermât hypersurfaces. 

In this connection, it is worth while to note that Brody [Br] showed that the 
space of hyperbolic complex structures on a given C00 manifold is open for the 
ordinary topology. I do not understand clearly the extent to which hyperbolic-
ity is open for the Zariski topology. However, since a neighborhood of a point 
for the ordinary topology contains a generic point over some field of definition 
FQ, if one had an algebraic characterization of hyperbolicity, it would follow 
that when a special member of a family is hyperbolic, then the generic member 
of that family is also hyperbolic. 

Pseudo-hyperbolicity. 

As mentioned in the introduction, we can pseudofy hyperbolicity. Let X be 
a variety. Kiernan and Kobayashi [K-K] discuss the notion of X being 
hyperbolic modulo a subset 7, meaning that the Kobayashi semi distance in X 
satisfies dx(x, y) =t 0 unless x = y or x, y e 7. In the present system, I would 
define X to be pseudo Brody hyperbolic if the exceptional set Exc(X) is a 
proper subset; and X is pseudo Kobayashi hyperbolic if there exists a proper 
algebraic subset 7 such that X is hyperbolic modulo 7. It is not known if the 
two definitions are equivalent, although I would certainly conjecture that they 
are, with 7 = Exc(X). In fact, it is likely that the following should be true: 

Let x^hybe distinct points such that dx(x, y ) = 0. Then there exists 
a non-constant holomorphic map f:C-*X such that y lies in the 
ordinary closure off(C), and similarly for x. 

I have tried to make Brody's argument work to prove this, but without 
success. 

In analogy with Green's Theorem 2.6,1 would make the: 
Conjecture 2.7. The complement of the exceptional set is hyperbolic. 

In the introduction, we defined the algebraic exceptional set Excalg(A
r). To 

make the terminology functorial with respect to the ideas, we could define X 
to be algebraically hyperbolic if every rational map of P1 or an abelian variety 
into X is constant. (Actually, since P1 is a rational image of an elliptic curve, 
we could avoid mentioning P1 in this definition.) Then we say that X is pseudo 
algebraically hyperbolic if the algebraic exceptional set is a proper subset. 
Conjecturally, all these pseudo conditions are equivalent. Until the equiva­
lences are proved, one can make various subsidiary conjectures, for instance 
that the complement of the algebraic exceptional set is hyperbolic. 

§3. Volume forms; the Ricci (Chern) form and the Griffiths function 
We shall be interested in one-dimensional manifolds to the extent that they 

shed light on the higher-dimensional case, in many ways. We give here basic 
definitions of the "curvature" to be used. 
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Let X be a complex manifold and let L be a line bundle. A metric p on L 
consists in giving a norm on each fiber, varying smoothly. If U is the open set 
of a (coordinate) chart, and s is a section represented by the function Sfj on U, 
then the norm is represented by a function pu such that 

i i 2 i i 2 / 
M = \su\ /Pu> 

where |%| is the ordinary absolute value. 
As usual, we let 

d=d + d and dc = — ^ = r J ( 3 - 3 ) . 

Then 

We define the Chern form of the metric to be the real (1, l)-form 
2 

cx{p) = -ddc\og\s\ = ddc\ogpu onU. 
Let ^ be a volume form on X. This is the same as a metric on the canonical 

line bundle Kx. In terms of complex coordinates zv..., z„, such a form is one 
which can be written 

n r~r 
^ ( z ) = p(z)$(z) where $ ( z ) = PI "^— dz\ A ^ / > 

7 = 1 i 7 7 

and p is real > 0. In practice one often has 
2 

p(z) = a ( z ) | g ( z ) | , 
where g is holomorphic invertible, and a is real > 0. We define the Ricci form 
of ^ to be the Chern form of this metric on Kx, so that 

Ric(^) = cx(*) = ddc\ogp = ddc\ogo. 

Since a holomorphic change of charts changes the volume form precisely by a 
factor gg where g is holomorphic, and since 

^ l o g ( g g ) = 0, 

it follows that Ric(^) is independent of the choice of complex coordinates, 
and defines a real (1, l)-form. In important cases, this real (1, l)-form will be 
positive, but we do not yet assume this. (By positive, we mean strictly positive 
throughout.) 

Remark. If C is a constant, then 

Ric(C^) = Ric(*) . 

If u is a positive function, then 

Ric(w^) = Ric(^) + ddc\ogu. 

Both assertions are trivial from the definition. 

A 2-form commutes with all forms. By the nth power 

Ric(*)w 
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we mean the nth exterior power. Then Ric(^)w is an («,«)-form, and in 
particular a top degree form on X. Since ^ is a volume form, there is a unique 
function G on X such that 

- i r Ric(^) , I = G*. 

We may also write symbolically 

G - ^ R i c ( * ) 7 * . 

We call G the Griffiths function, associated with the original ^ , so we may 
write 

G=G* or G(*), or Gr(*). 

The letter G also suggests Gauss, as we now see. 

Special Case. Let dim X = 1, and let z be a complex coordinate. 
Then the Griffiths function is given by 

1 82logp 
p dzdz ' 

Proof. This follows immediately from the definition. 

The function -G is called the Gauss curvature. Note that when dim X = 1, 
then 

' * ( z ) = 7' 

G = R i c ( * ) / * . 

Classically, up to Chern and Kobayashi, the Gauss curvature is used. Griffiths 
started using a notation in which the minus sign is systematically obUterated 
(see his footnote in [Gri]), and I strongly approve. 

Example 3.1. Let X = Da be the disc of radius a with the volume 
form 

2a2 i/=T , 
% = r r ^ — dz A dz. 

a ( 2 I i 2 \ 2
 2TT 

Ric(*J = ¥fl AW/JO G (*J = 1. 

Proof. Immediate from the definitions. 

In classical terms, the Gauss curvature of the disc is - 1 . We put the factor 
2a2 in the definition of ^a so that we would come out with G = 1 and Gauss 
curvature -1 for the hyperbolic disc. We may call ^a the normalized hyperbolic 
form on the disc Da. 

Example 3.2. Similarly on the poly disc, let a = (av..., an) be a sequence of 
positive numbers; 

D ; = D-(fl) = Döi X . . . xD f l , 
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We let ^a
(M) be the product of the normalized hyperbolic forms on each factor, 

so that 

7 = 1 

where the product is of course the alternating product. Again we call ^n) the 
normalized hyperbolic volume form on the polydisc. For this volume form we 
have 

-^Ric(*û
( w ))n = * j ' I ) so G(*fl

(n)) = l . 

Indeed, the variables separate, and 

Ric(* a<->)(2 1 , . . . ,z„)-ERic* a y (z y ) . 
7' 

Taking the nth power and using Example 3.1 in one variable, we get the 
desired relationship. 

Unless otherwise specified, all the numbers al9...,an will be assumed equal 
to the same number a, in which case we also write ^ j M ) for the volume form. 

Example 3.3. In the case when G(¥) is constant and the Ricci form is 
positive, the manifold is called Einsteinian. A positive constant multiple of the 
Ricci form is then taken as defining a hermitian metric, which is called an 
Einstein-K'âhler metric. 

Functoriality 3.4. Let X, Y have the same dimension. Let ƒ: Y -> X 
be a holomorphic mapping. Let ^x be a volume form on X. Then 

R i c ( / * ^ ) = / * R i c ( ^ ) 

wherever f *<frx is positive. 

If ^ Y w a volume form on Y then there is a function u ^ 0 such 
that f*^x = w^y, and we have 

Ric( ƒ*•*) = Ric(^ y) 4- ddc log u wherever u * 0. 

Both assertions are immediate from the definitions. 
Maximum Principle 3.5. Let u be a real function > 0 on Y. Let 
y0 e y be a point such that u(y0) is a maximum. Then 

(ddclogu)(y0)£0. 

Proof. Given a complex tangent vector v in the complex tangent space at y0 

there exists an imbedding ƒ : U -+ Y of an open disc U centered at 0 in C and a 
tangent vector (complex number) w such that ƒ(0) = y0 and such that 
df(0)w = v. By pull-back, it suffices to prove the negativity of the form 
ddc log(w « ƒ ) at 0. Hence without loss of generality, we may assume X = U. 
With respect to a complex coordinate z = x + iy, ddc log u is represented on 
I / b y 

which is ^ 0 at a maximum for u by elementary calculus. 
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Lemma 3.6. Let co1?..., cow be positive (1, l)-forms on the complex 
manifold X of dimension n. Then 

o)x A • • • A<o„ 

is a volume form. Furthermore, if co, ^ t\i for i = 1 , . . . , n then 

Wj A • • • A w „ ^ T?! A • • • A i j w . 

Proof. Left to the reader. 

In particular, a positive (1, l)-form co defines a hermitian metric, and wn/n\ 
is a volume form, said to be associated with the metric, or with w. 

On a compact subset of X, two positive forms (volume or (1,1)) are of the 
same order of magnitude. That is, given, say, two volume forms <frl and ^ 2

 o n 

X, and K a compact set, there exists a number c > 0 such that 

This will be applied for instance when X itself is compact, and when itl9 <fr2 

are ^ and Ric(^)" in case Ric(^) is positive. 

Remark. In this section, for simplicity of language, we limited ourselves to 
volume forms in the strict sense, that is "positive" meant "strictly positive". In 
the next section, we shall relax this condition and discuss pseudo volume 
forms. In important applications, it turns out that ^ ;> 0 but Ric(^) > 0. 
Thus it may be useful to consider the inverse of the Griffiths function, namely, 
when Ric(^) is positive, to consider 

and give this an appropriate name. 

§4. Distance and measure decreasing maps 

We begin with a one-dimensional result in a simple context to see the basic 
pattern of proof. 

Theorem 4.1 (Ahlfors' Lemma). Let f: Da -> X be a holomorphic 
map of the disc of radius a into a Riemann surface {one-dimensional 
complex manifold). Let ^x be a volume form on X and ^a the 
normalized hyperbolic form on Da. Assume that there exists a number 
B > 0 such that G(VX) ^ B. Then 

f**x£(l/B)%. 

Proof. Write f*^x
 = u^a> w*m a function u. We take two steps. 

First step. We reduce to the case when u has a maximum in Da. Let 
0 < t < a. Then % -> ^a as t -> a. Let ut be the function such that 

f**x=ut%onDr 

Then for each z e Da, ut{z) -> u(z) as t -» a. Write 

f**x=hLz—dz A dz o n D . J x
 2TT

 a 
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Then h is bounded on D,cl and 

Ul(z) = h(z){t*-\z\2)/2t\ 

so ut{z) -> 0 as \z\ -* t. Hence ut has a maximum in D„ and it suffices to 
prove the inequality of the theorem for w„ as desired. 

Second step. Assume u(z0) is a maximum for u in Da. If w(z0) = 0, we are 
done, because u = 0. Suppose w(z0) =£ 0. Then ƒ restricts to a local isomor­
phism ƒ: U -> X on a neighborhood £/of z0. Then by hypothesis, 

% + </Jc logt/ = ƒ* R i c ( ^ ) ^ £ƒ***. 

The function log u has a local maximum at z0, and hence 

{ddc\ogu)(z0)^0 

by the maximum principle 3.5. This proves that 

%(z0) i> Bf**x{z0), 

and therefore u(z0) ^ 1/5. Since w(z0) is a maximum value, this also proves 
the theorem. 

The first higher-dimensional version of the Schwarz-Ahlfors lemma is ap­
parently due to Grauert-Reckziegel [G-R] and Dinghas [Di]. Extensions and 
clarifications of the differential geometric conditions under which the result is 
true were then given by Chern [Ch], Griffiths [Gri], Kobayashi [Ko 1, Ko 2], 
and Reckziegel [Re]. In [G-R], some basic properties are proved for a notion 
which extends hyperbolicity in one direction, involving "length functions" 
(called "differentialmetrik" in [G-R]), which will be briefly mentioned in §7. 
Such length functions have the advantage of applying also to singular analytic 
spaces as shown in Reckziegel's thesis [Re]. To keep the language simpler so 
that we can use the better-known formalism of differential forms, I shall stick 
to the case of manifolds. For instance, I reproduce the following two theorems 
as in Kobayashi. However, the analogues occur in [G-R] and [Re], who work 
with a differential geometric definition of hyperbolicity, in the more general 
context of length functions. 

Theorem 4.2. Let X be a complex manifold with hermitian structure 
defined by a positive (1, \)-form ux. Assume that there is a constant c 
such that for every holomorphic map ƒ : D -> X we have 

Then X is hyperbolic. 

Proof. After multiplying cox by a suitable constant, we may assume that 
c = 1. Then ƒ is distance decreasing, and in particular the Kobayashi distance 
is bounded from below by the hermitian distance, which is non-trivial, so the 
manifold is hyperbolic. 
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The above theorem is then applied to the following situation. 
Theorem 4.3. Let X be a complex hermitian manifold, with hermitian 
metric associated with the positive (1, X)-form ux. For each one-di­
mensional immersed submanifold Y of X, let coY = o)x\ Y, so coY is a 
volume form on Y. Assume that there is a number B > 0 such that 
G(wy) ^ B for all such Y. Let 

f:Da^X 

be a holomorphic map. Then 

and X is hyperbolic. 
Proof. Again we reduce the statement to the case when f*ux = u^a and u 

has a maximum u(z0) in Da. If u(z0) = 0, we are done. If u(z0) =£ 0 then ƒ is 
a local isomorphism at z0, and ƒ: U -> ƒ(£/) = 7 thus gives an isomorphism 
of a neighborhood of z0 with a one-dimensional complex submanifold of X. 
We can now apply the hypothesis and Theorem 4.1 to complete the proof of 
the first statement. That X is hyperbolic follows by applying the criterion of 
Theorem 4.2. 

In [Ko 2], Chapter IX, Problem 5, Kobayashi raises the problem whether the 
converse is true. We phrase this here as 

Problem 4.4. Let X be a non-singular hyperbolic variety. Does there 
exist a positive (1, \)-form ic and a number B > 0 such that for every 
one-dimensional immersed submanifold Y in X, we have 

This problem involving a (1, l)-form (condition 4 in the introduction) is the 
stronger version of an alternative converse to Theorem 4.3, in which this 
(1, l)-form is replaced by a length function, originally introduced in different 
contexts of hyperbolicity by Grauert-Reckziegel [G-R] and Kobayashi [Ko 4]. 
We shall discuss this notion and an application in §7. For a one-dimensional 
complex manifold the notion of length function coincides with that of a 
hermitian metric, and the point is that Y in Problem 4.4 is one-dimensional. 
Thus an intermediate problem would be to show that if X is hyperbolic, then 
there exists a length function whose Griffiths function satisfies the desired 
inequality. Recall here that by our conventions, a variety is projective, so 
compact. 

Next we have a result in the equidimensional case which evolved from 
Dinghas [Di] and Chern [Ch] to Kobayashi [Ko 1], see also Griffiths [Gri] and 
Kobayashi-Ochiai [K-O]. The proof will repeat the pattern of the proof of 
Ahlfors' Lemma. 

Theorem 4.5. Let X be a compact complex manifold. Let ^x be a 
volume form such that Ric(^x) is positive. Let dim X = n. Let ^fl

(w) 

be the normalized hyperbolic volume form on D^. Then there exists a 
constant c > 0 such that for all holomorphic maps 

ƒ : Da« - X 
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we have 

f**x S c^n\ 

Proof. Let 0 < t < a. By reproducing exactly the argument in Step 1 of 
Theorem 4.1 for the volume forms, we reduce the proof to the case when 

and u ^ 0 has a maximum at z0 in D%. Again if this maximum is 0, we are 

done, so we may assume the maximum # 0. Then 

ddc log M = ƒ* R i c ( ^ ) - Ric(*fl
(w)) 

wherever u ¥= 0, and at the maximum point we know by the maximum 
principle 3.5 that the left side is ^ 0. Hence we find 

/*Ric (* x ) ( z 0 )^Ric (* j ">) (z 0 ) . 

We take the nth power of each side. The divided nth power (l/w!)Ric(<I/
a
("))rt 

is just ^a
(w), and since we assumed R i c ( ^ ) positive, we have trivially 

tyx ^ c^c(^x)n f° r some constant c > 0. 

Hence 

r*x(*o) « / * R i c ( ^ ) " ( z 0 ) « *j">(*0), 

where the sign <c means "less than a constant times". The constant depends 
only on the given form ¥x and X, but is independent of ƒ. This shows that 
u(z0) is bounded by such a constant, and since u(z0) is a maximum for w, this 
proves the theorem. 

Remarks. As pointed out by Kobayashi in his book [Ko 2], the statements 
generalize when the polydiscs are replaced by various bounded domains. What 
we needed was a starlike property, to use the trick with 0 < t < a, and the fact 
that the hyperbolic metric goes to infinity toward the boundary. Then the same 
arguments go through. This is important for applications to bounded (symmet­
ric) domains. 

The statement will be extended to pseudo canonical varieties in the next 
section. 

Also, the same proof and conclusion hold in the non-compact case, provided 
there exists an inequality tyx «: R ic (^ ) " . For applications in the next sec­
tion, we give the appropriate formulation of the result under more general 
conditions. 

Let X be a complex manifold of dimension n. By a pseudo volume form ^ 
or tyx we shall mean a continuous («, «)-form which is C°° outside a proper 
analytic subset, and which locally in terms of complex coordinates can be 
expressed as 

Hz)=\g(z)\qh(z)Hz\ 
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where 
q is some fixed rational number > 0; 
g is holomorphic not identically zero; 
h is C00 and > 0; 

and 

/ - I l7T 

The definition is a variation of other possible definitions which weaken the 
conditions of a volume form, and is adjusted for the applications we have in 
mind here. Zeros are allowed on a proper analytic set. 

We can define Ric(^) for a pseudo volume form just as we did for a volume 
form, by the formula 

Ric(*) = <fc/clog/*. 

Since g is assumed holomorphic, ddc \og\g\2q = 0 wherever g =£ 0. 

Theorem 4.5'. Let X be a complex manifold. Let ^x be a pseudo 
volume form such that R i c ( ^ ) is positive and such that there exists a 
constant c' > 0 for which 

^ ^ c ' R i c ( ^ ) " . 

(Such a c' exists if X is compact.) Then there exists a constant c > 0 
such that for all holomorphic maps 

ƒ : Da" - X 

we have 

f**x ^ c*j">. 

The proof is identical with the previous proof. The arguments are valid 
under the weaker assumptions. 

We now pass to measure theoretic considerations. 
Let X be a complex manifold, with volume or pseudo volume form ^ . Then 

* defines a positive functional on CC(X) (continuous functions with compact 
support) by 

<p - » I ( j p ^ . 

Hence there is a unique regular positive measure ju^ such that for all <p e CC(X) 
we have 

f <p* = f ydix*. Jx Jx 

Let Z, X be complex analytic spaces. We take for granted that if ƒ : Z -> X 
is analytic, and t/open in Z, then f(U)is Borel measurable in X, in fact equal 
to a countable union of analytic subspaces of X. We shall assume that there is 
a countable sequence of analytic maps { ƒ)} such that \Jft(Z) covers X. We let 
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juz be a positive regular Borel measure on Z. In the application, we shall take 

Z = D" = «-fold product of the unit disc; 

\iz = hyperbolic metric ^[n). 

Let B be measurable in X, and consider sequences ft\ Z -* X of analytic 
maps, and open sets Ut in Z such that 

We define the Kobayashi measure (with respect to /xz) 

00 

/ = 1 

where the inf is taken over all sequences { ft} and sets { Ui} prescribed above. 
It is an exercise in basic techniques of measure theory to show that iiKoh,x is a 

measure. 
Since the open sets generate the a-algebra of Borel measurable sets, it 

follows that if A is measurable in Z and ƒ is holomorphic, then ƒ (A) is 
measurable. Furthermore, a regular measure satisfies the property that the 
measure of a set is the inf of the measures of the open sets containing it. Hence 
in the definition of the Kobayashi measure, instead of taking open sets Ui we 
could take measurable sets At in Z. 

Let y, X be complex analytic spaces, and let ƒ : Y -> X be an analytic map. 
Let JU x, fi y be regular Borel measures on X and Y. We say that ƒ is measure 
decreasing if for every open set l / i n 7 w e have 

or equivalently, for every measureable set A in Y we have 

lix(f(A))èliY(A). 

Example. Let X, Y be complex manifolds with dim X = dim Y. Let 
ƒ : Y -» X be holomorphic. Let tyx, ^Y be volume or pseudo volume forms on 
X and Y respectively, defining measures fx x, fiY. Assume that 

Then ƒ is measure decreasing. Indeed, the set of points y e Y such that df{y) 
is singular is an analytic subset S, and f(S) has measure 0. On the open 
complement of S, one sees at once that ƒ is measure decreasing, so ƒ is 
measure decreasing. This can be applied to the cases of Theorems 4.5 and 4.5', 
after multiplying <frx with a sufficiently small positive constant. 

From now on, we let Z = D" with the normalized hyperbolic measure fx[n) 

corresponding to the volume form ^ln\ For every complex manifold X we 
then obtain the Kobayashi measure ftKob,*-
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The following properties are immediate, concerning measure decreasing 
maps. 

MD 1. Let ƒ: Y -> X be holomorphic, and dim Y = dim X = n. 
Then ƒ is measure decreasing for the Kobayashi measures. 

MD 2. Let P be a measure on X such that every holomorphic map 
ƒ: D" -> A" is measure decreasing from /i(1

w) to v. Then 

MD 3. If all holomorphic maps ƒ: D" -> X are measure decreas­
ing, and if iix(V) > 0 for all open sets F in X, then 
fjtKob ^(F) > 0 for all open V in X. 

We define A" to be measure hyperbolic if MKob ^(F) > 0 for all non-empty 
open sets F in X 

Corollary 4.6. ƒƒ X w a compact manifold and Ric(^x) is positive 
then X is measure hyperbolic. 

Proof. After multiplying ¥x by a sufficiently small constant, we see from 
Theorem 4.5 that holomorphic maps as above are measure decreasing, and 
hence that X is measure hyperbolic. 

In order to avoid mentioning constants, one could define a map to be 
essentially volume decreasing by allowing a positive constant in comparing the 
volumes. 

We also formulate the corollary for pseudo volume forms. 

Corollary 4.6'. Let X be a complex manifold, and let ^x be a pseudo 
volume form. Assume that R i c ( ^ ) is positive, and that there exists 
c' > 0 such that 

(If X is compact, then c' always exists.) Then X is measure 
hyperbolic. 

For our purposes here, I quote without proof Theorem 1.10 of Kobayashi's 
Chapter IX: 

Theorem 4.7. Let X be a complex manifold which is hyperbolic. Then 
X is measure hyperbolic. 

Then I make the conjecture 

Conjecture 4.8. Let X be a variety. Then X is hyperbolic if and only if 
all subvarieties of X (including X itself) are measure hyperbolic. 

The implication in one direction comes from Kobayashi's theorem (which is 
presumably valid also for varieties, even singular, with the same proof he gives 
in his book), and from Brody's characterization of hyperbolic varieties by the 
condition that they admit no complex Unes (non-constant). This condition also 
applies to subvarieties. Thus the content of the conjecture hes in the converse: 
if all subvarieties are measure hyperbolic, then X is hyperbolic. 
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In the next section, we look at the algebraic geometric context for this 
conjecture, and its relation with another conjecture of Kobayashi. 

In connection with algebraic geometry, it is unknown if the property of 
being measure hyperbolic is birationally invariant. To deal with this problem, 
Yau [Ya] uses meromorphic maps instead of holomorphic maps to define a 
variant of the Kobayashi measure. He then has to prove the functorial 
properties concerning pull-backs of forms, but once this is done, his definition 
makes the birational invariance obvious. 

§5. Pseudo canonical varieties (general type) 

With the simultaneous appearance of the papers by Griffiths [Gri] and 
Kobayashi-Ochiai [K-O], it was realized that arguments which applied to 
compact manifolds with positive Ricci form, combined with results of Kodaira, 
also apply to varieties where this condition is weakened, and which classically 
are called "of general type". Roughly speaking, given a certain property, the 
weakening of this property obtained by requiring that it holds only outside a 
proper algebraic subset may be called its pseudofication. The purpose of this 
section is to carry out the arguments concerning this more general case. The 
above papers are very similar. I follow especially [K-O 1]. 

To begin, recall a theorem of Kodaira which says that if a compact complex 
manifold X has a metrized Une bundle with positive Chern form then X 
admits a projective imbedding, cf. Griffiths-Harris, Chapter II, §4. Let L be a 
line bundle on X. We abbreviate the tensor product L®w by Lm. We say that 
L is ample if there exists some m such that a basis of sections ( s 0 , . . . , sN) of 
H°(X, Lm) generates Lm at every point and give a projective imbedding 

<pm=(s09...,sN):X^FN. 

We say that L is very ample if we can take m0 = 1 in the above condition, so 
already sections of H°(X, L) give the imbedding. 

Even if we do not get a projective imbedding by means of a basis for the 
sections, we still get a rational map into P^. We let 

m -> oo 
div 

denote the property that m tends to infinity, ordered by divisibility. We say 
that L is pseudo ample if <pm is birational, that is <pw gives a projective 
imbedding of a non-empty Zariski open subset, for m large ordered by 
divisibility. 

Suppose X non-singular, and let Kx be the canonical bundle. Classically, X 
has been called canonical if Kx is very ample [Gri]. But for the same reason 
that Grothendieck changed the meaning of "ample" to what it is now, it seems 
more fruitful to say that X is canonical if Kx is ample, and very canonical if 
Kx is very ample. On the other hand, if Kx is pseudo ample, then X is usually 
said to be of general type, but with the support of Griffiths, I shall say that X is 
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pseudo canonical to make the terminology functorial with respect to the ideas. 
Finally, if X is singular, we say that X is of general type or pseudo canonical if 
some desingularization has this property. We recall a basic elementary fact. 

If X, Y are non-singular, then a birational map X -> Y induces an 
isomorphism 

H0(X,K$)^>H0(Y,K?) 

for every positive integer m. 

Proof. See Hartshorne, Algebraic Geometry, Chapter II, Theorem 8.19. The 
proof given there when m = 1 works in general. The idea is that a section of 
K% can be represented globally birationally—for instance, as 

g(dgl A ••• Adgn)
m, 

where g, gl9..., gn are rational functions. If gl9..., gn are local parameters at 
a point, then g is in the local ring at that point. One now uses the fact that if a 
rational function is not in the local ring of a point, then it has a divisorial pole 
passing through that point. Such a pole induces a point on any complete model 
X or Y. This shows that if a rational form as above gives rise to a section of 
K% for one model, then it must give rise to a section of K™ for any other 
model. 

We shall be interested in the dimension 

h°(X,Lm) = dimH°(X,Lm) 

for various line bundles L, starting with the canonical bundle, but involving 
other bundles as in §7. In speaking of estimates, we use the standard notation 
of number theorists (Vinogradov) 

A(m) <£ B(m) for m -> oo 

to mean that there is a constant c such that A(m) ^ cB(m) for all m 
sufficiently large. If the going to infinity is by divisibility ordering, then 
sufficiently large is according to this ordering. Following [K-O 1] and its 
addendum using Kodaira's technique, we shall now construct a pseudo volume 
form on a non-singular pseudo canonical variety, with positive Ricci form. We 
recall two lemmas from algebraic geometry. 

Lemma 5.1. Let X be a variety of dimension n. Let D be a divisor on 
X. Then 

h°(mD) = dimH°(X,mD)<ë:mn form-* oo. 

Proof. Let E be a divisor which is ample and such that D + E is ample. 
Then we have an inclusion 

H°(mD) c H°(mD + mE), so h°(mD) ^ h°(mD + mE). 

Furthermore, if E' = D + E is ample, then 

h°{mE') = x{mE') f° r m l a rê e 
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because the higher cohomology groups vanish for m large, and the Euler 
characteristic is a polynomial in m of degree ^ n, thus proving the lemma. 

Lemma 5.2. Let X be a non-singular variety of dimension n. Let E be 
very ample on X, and let D be a divisor on X such that 

h°(mD) :» mn form-»oo. 
div 

Then 

h°(mD - E)^> mn form-* oo, 
div 

in particular, mD — E is linearly equivalent to an effective divisor. 

Proof. Without loss of generality, we may replace E by any divisor in its 
class, and thus we may assume that E is an irreducible non-singular subvariety 
of X (a hyperplane section, in fact). We have the exact sequence 

0 -> 0(mD - E) -• 0{mD) -> 0{mD)\E -> 0, 

whence the exact cohomology sequence 

0 -> H°(X, mD-E)^ H°(X, mD) -> H°(E9 0{D) \E)®m) 

noting that 0(mD)\E = (0(D)\E)®m. Applying the first lemma to this 
invertible sheaf on E we conclude that the dimension of the term on the right 
is « m""1, so h°(X9mD - E)^> mn for m large, and in particular is 
positive for m large, whence the lemma follows. 

Suppose that X is pseudo canonical. Then h°(X, K%) » mn for m large, so 
we can apply the lemma. Let L be a very ample Une bundle on X. We shall 
obtain a projective imbedding of X by means of some of the sections in 
H°(X, K%). By Lemma 5.2, for m large there exists a non-trivial holomorphic 
section a of K% ® L"1. Let {*0,..., sN} be a basis of H°(X, L). Then 

a <8> s 0 9 . . . 9 a <8> s N 

are linearly independent sections of HQ(X9K%). Since (s0,...,sN) gives a 
projective imbedding of X into P ^ because L is assumed very ample, it 
follows that a ® s0,..., a ® sN vanish simultaneously only at the zeros of a, 
but nevertheless give the same projective imbedding, which is determined only 
by their ratios. Then 

aâ ® ^Sj ® sj 

may be considered as a section of 

(K£L-l)L ®(K%L-l)L = K% ® K$, 

and can be locally expressed in terms of complex coordinates in the form 

\g(z)\2i\gj(z)\29(zfm
9 

7 = 1 

where as usual $(z) is the standard euclidean volume form on C", while g(z), 
g 0 (z ) , . . . , gN(z) are local holomorphic functions representing a, s0,...,sN 

respectively. 



190 SERGE LANG 

Let 

I " l\1/m 

M*)= I k ( * ) | • 
Then there is a unique pseudo volume form ^ on X which has the local 
expression 

nz)=\gU)\2/mh(z)<!>(z). 

Furthermore Ric(^) is positive, because Ric(^) is the pull-back of 
the Fubini-Study form on PN by the projective imbedding. 

In particular, we have proved: 

Theorem 5.3 (Kodaira, Kobayashi-Ochiai). Let X be a non-singular 
pseudo canonical variety. Then X admits a pseudo volume form ^x 

with R i c ( ^ ) positive, and X is measure hyperbolic. 

As to the converse, we have on the one hand: 

Conjecture 5.4 (Kobayashi, see [Ko 2, Chapter IX]). If X is measure 
hyperbolic, then X is pseudo canonical. 

This would give the neat statement that 

A non-singular variety is pseudo canonical if and only if it is measure 
hyperbolic. 

Kobayashi's conjecture is known for surfaces, through the paper of Green-
Griffiths [Gr-Gr], completed in one remaining case (arising from the classifica­
tion of surfaces) by Bogomolov and Mumford. Cf. the appendix of Mori-Mukai 
[Mo-Mu]. 

On the other hand, the converse in the differential geometric context is also 
a problem, raised by Kobayashi [Ko 3, Theorem 7.1 and p. 377], namely: 

If X is non-singular, and there exists a pseudo volume form with 
positive Ricci form, is Xpseudo canonical! 

This would be a pseudofication of Kodaira's imbedding theorem. 

Conjecture 5.5 (Green-Griffiths). Let X be a pseudo canonical 
variety. Let ƒ : C -> X be holomorphic non-constant. Then the image 
of f is contained in a proper subvariety. 

For more precise information on this, see §8. 
I would conjecture: 

Conjecture 5.6. A variety X is hyperbolic if and only if every 
subvariety {including X itself ) is pseudo canonical. 

This would give an algebraic condition characterizing hyperbolicity on alge­
braic varieties. If X is hyperboHc then X is measure hyperbolic by Kobayashi's 
Theorem 4.7, and if A" is a surface then X is pseudo canonical as mentioned 
above (in general it is Conjecture 5.4). Conversely, if X is pseudo canonical, 
then the Green-Griffiths conjecture applies, and if all sub varieties are assumed 
pseudo canonical, then by that conjecture X is hyperbolic; but the question 
remains even on surfaces. 
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Conjecture 5.6 is consistent with known results about the following special 
example. Let X be a subvariety of an abelian variety, which does not contain 
the translate of a sub torus of dimension > 0. Then by Theorems 1 and Y of 
[Ya] (using fundamental results of Iitaka), it follows that X is pseudo canoni­
cal. In particular, every subvariety of X is also pseudo canonical, and we 
already know by Green's Theorem 2.4 that X is hyperbolic. 

We now come to the diophantine connection. 

Conjecture 5.7. Let X be a pseudo canonical variety. Then the 
rational points in every finitely generated field F are not Zariski 
dense. 

The history of this conjecture will be recalled in an appendix. Here it is 
relevant to note that Noguchi proved the analogue of this conjecture for 
algebraic families, under the hypothesis that the cotangent bundle is ample. A 
vector bundle E is defined to be ample if the tautological line bundle on the 
associated projective bundle YE is ample, or equivalently, if S is the sheaf of 
sections, then for any coherent sheaf J*", #"® Smi is generated by its global 
sections for m sufficiently large. For an excellent foundational discussion of 
ample vector bundles, see Hartshorne [Ha]. Ampleness implies that for m 
large, a basis for the global sections of SmE give a projective imbedding in the 
Grassmanian, but in dimension > 1 the converse is not true. We postpone to 
the next section a discussion of the condition of ampleness and other condi­
tions, to have an appropriate structural setting for them. 

We note that Conjectures 5.6 and 5.7 imply Conjecture 2.3 that a hyperbolic 
variety is mordellic. Thus Conjecture 5.6 replaces the complex analytic condi­
tion by an algebraic one. Vojta, in connection with his translation of Nevan-
linna theory into number theory [Vo] conjectures that for a pseudo canonical 
variety over a number field, the proper algebraic subset which may contain 
infinitely many rational points can be taken independently of all number 
fields, which is a refinement of Conjecture 5.7 over number fields. But I 
conjecture the more precise statement expressed geometrically as follows. 
Recall that the exceptional set Exc(Z) is the Zariski closure of all images of 
non-constant holomorphic maps of C into X. 

Conjecture 5.8. Let X be pseudo canonical. Then Exc(X) ¥= X and 
the complement of Exc( X) is mordellic. 

We shall describe one possible approach to the exceptional set in §8. 
Another approach may come from Theorem 2 of [Ax] already mentioned in 

the proof of Theorem 2.6. Transposed to the present case, Ax's technique may 
show how holomorphic curves yield integrable submanifolds, giving insight 
into the Zariski closure as in Ax's theorem. 

We observe that there has been a systematic pattern of conditions which 
admit a weakening, like volume forms or ampleness which weaken to pseudo 
volume forms and pseudo ampleness. Recall that we define a variety X to be 
pseudo hyperbolic if the exceptional set is a proper subset. Similarly, we define 
X to be pseudo mordellic if there exists a proper algebraic subset Y such that 
X — Y is mordellic. Then by Conjecture 5.8, pseudo canonical implies pseudo 
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hyperbolic, and also implies pseudo mordellic. Furthermore, we can take 
Y = Exc( X). The question arises under what conditions does pseudo mordellic 
imply pseudo canonical, and which varieties are pseudo mordellic without 
being pseudo canonical, or which are mordellic without being hyperbolic. Are 
there any? My guess is no. 

Conjecture 5.9. If X is pseudo mordellic then X is pseudo canonical. 

The modular varieties are pseudo canonical in high dimension. I am told by 
experts that the structure of the exceptional set and of the boundary compo­
nents after desingularization is mostly a mystery. The literature on moduli 
varieties is open ended, so I just mention two papers by Harris-Mumford 
[Ha-M] and Tai [Ta] proving the pseudo ampleness. It should be emphasized 
that although the open part of the moduli space which is a quotient of a 
bounded domain is hyperbolic (both in the Brody and the Kobayashi sense), 
nevertheless in general, its compactification is not. There is a very strong 
tendency for this compactification to contain rational curves, or non-constant 
holomorphic images of C, which must therefore intersect the boundary at 
infinity. 

Finally we observe that the property in Conjecture 5.7 is definitely weaker 
than the property in Conjecture 5.8. For example, let X = P1 X C, where C is 
a curve of genus 2, defined over a number field. Then for every number field 
F, X(F) is not Zariski dense in X by Falting's theorem, but X is not pseudo 
canonical. This phenomenon has to do with the canonical class being some­
what less than pseudo ample, e.g. having less than maximal Kodaira dimen­
sion. 

At this point, we have stated and discussed one by one the problems and 
theorems summarized in the introduction. If (as I hope) all the conjectures 
made there are true, then they give a very clear picture of the relations between 
the diophantine property of having finitely or infinitely many rational points, 
and the other properties coming from algebraic geometry, differential geome­
try, and measure theory, because of the necessary and sufficient conditions in 
all possible directions, except possibly for 3 => 4. 

Warning. We have applied the property of being mordellic to an open 
algebraic subset of a variety, when discussing pseudo canonical and pseudo 
mordellic varieties. We remind the reader that for open subsets of varieties, 
hyperbolic is not equivalent to mordellic, as one sees from Theorem 2.6. Green 
has also constructed an algebraic example of a Zariski open set which is Brody 
hyperbolic but not Kobayashi hyperbolic. The " hyperbolicity" of affine varie­
ties has to do with the finiteness of "integral points". 

§6. Minimal models 

In this section, we mention still another connection. The reader interested in 
pursuing the previous ideas can skip immediately to the next section. 

The property of being pseudo canonical allows for exceptional subvarieties 
on a variety, which may have infinitely many rational points. One tries to get 
rid of these by blowing them down, and thus we can also consider hyperbolic­
ity in the following context. We say that a variety is absolutely minimal if every 
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birational map ƒ : Y -> X with Y non-singular is a morphism. I reproduce here 
part of Theorem 2.1 of [Ko 2, Chapter VIII]. 

Theorem 6.1. Every hyperbolic variety is absolutely minimal. 

Under what conditions is the converse true for pseudo canonical varieties? I 
once hoped that a minimal model would be hyperbolic in order to show that 
Conjecture 2.3 implies 5.8, but that it is not true in general. Artin pointed out 
to me that one can construct examples (more or less genetically) as follows. We 
consider a hypersurface of degree 5 in P3 , defined by the general polynomial 
equation 

P(x0,...,x3) = 0. 

We impose the condition that it contains a rational curve of degree 5 with 
simple nodes, say six nodes (to make it have genus 0), and adjust coordinates 
so that the curve is defined by the equation 

x0 = 0. 

The general solution to this gives a non-singular surface which is absolutely 
minimal. There cannot be a hyperbolic model of its function field since by 
Kobayashi's Theorem 5.10 the map from the quintic surface to such a model 
would be a morphism, and on the other hand, the rational curve cannot be 
blown down since it is numerically positive. 

Concerning the existence of minimal models, it may be useful for the reader 
to recall here two known results. In the case of surfaces, one has the following 
theorem of Mumford [Mu]. 

Let X be a non-singular pseudo canonical surface. Let 

m = 0 

and let X' = Proj(i?). Then X' is a normal surface with a finite 
number of rational double points. A minimal desingularization of X' 
exists, and it is an absolutely minmal model of X. 

For other theorems concerning the canonical ring of surfaces, see Bombieri 
[Bom]. In arbitrary dimensions, we have the following theorem of Kobayashi 
[Ko 2], Chapter VIII, Theorem 3.6. 

Let X be a non-singular variety such that K% has no base point for 
some w, that is, given x e X there is a section s of K% with 
s(x) # 0. Then X is relatively minimal. 

The recent literature on minimal models and canonical singularities is very 
extensive, and there is no question of attempting to survey it here. It may help 
the reader just to refer to Kawamata [Ka 1, Ka 2], for instance, and follow up 
the bibliographies at the end of these papers. 
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§7. Length functions, ampleness and hyperbolicity 

We have now met several conditions reflecting a certain type of behavior 
having to do with "positivity": 

Ample cotangent bundle; 
Hyperbolic; 
Ample canonical class; 
Pseudo ample canonical class (general type); 
Measure hyperbolic. 

Previously stated theorems and conjectures already gave some relations be­
tween them, notably the last three. Of course we trivially have 

Ample cotangent bundle => Ample canonical class 

=> Pseudo ample canonical class. 

None of the reverse implications are true in general. We shall now discuss how 
to fit hyperbolicity in this chain of implications. 

Theorem 7.1 (Kobayashi [Ko 4] Corollary 6.3). Let X be a 
non-singular variety whose cotangent bundle is ample. Then X is 
hyperbolic. 

Kobayashi's proof is to show that the formalism of Ricci forms and the 
Schwarz lemma works for something more general than volume forms, pseudo 
volume forms and hermitian metrics, namely Finsler structures, which are 
called "Differentialmetrik" in Grauert-Reckziegel [G-R]. I have found that the 
name "Finsler structure" acts as a psychological deterrent for a very simple 
notion which generalizes that of a norm, and which has proved useful in 
practice. In agreement with Griffiths, let us define a length function on a 
complex vector bundle E over A" to be a function into the reals ^ 0, 

/ : £ - * R ^ 0 

such that for all complex numbers c and v e E we have: 

LF 1. / is continuous, and C°° outside the zero section of E. 
LF 2. l(v) = 0 if and only if v = 0. 
LF 3. / is absolutely homogeneous of degree 1, which means 

l(cv)=\c\l(v). 

A " Finsler structure" is the square of a length function. It does away with the 
triangle inequality, and weakens the smoothness conditions of a hermitian 
metric. It is a hermitian metric if the rank of E is 1. Instead of writing /(f), we 
shall also write more suggestively 

l(o)=\v\, 

with the usual absolute value sign. 
Let 77: PE -* X be the projective bundle of lines in E. Then PE has the 

tautological line bundle L on 7r*E. AS Kobayashi remarks, the length function 
on E then defines a length function on L, which is a smooth hermitian metric 
because L is one-dimensional. Then Kobayashi defines the curvature and 
proves for this situation the standard theorems for hermitian metrics. 
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For the convenience of the reader, I reproduce an argument of Griffiths 
giving Kobayashi's Theorem 7.1 directly. So assume that the cotangent bundle 
T v is ample. Then there is an appropriate symmetric power SmTv of the 
cotangent bundle such that a basis of its sections sQ,...,sN gives an imbedding 
of X in the Grassmanian. In fact, if FT is the projective bundle of lines in the 
tangent bundle, then we get a projective imbedding 

<pm.PT->PN 

by 

On the hyperplane bundle of PN we have the tautological (or projective) metric 
defined in terms of the projective coordinates w0 , . . . , wN by the function 

N 2 

P t (w 0 , . . . , WN) = £ I Wy/W/ | 0 n t n e °P e n Se t Wi ^ 0. 
y-o 

Its Chern form is positive and defines the Fubini-Study metric. The inverse 
image <p* of this tautological metric is a metric p on L which defines a length 
function / on T by 

M2m-EMO|2-

We let cx(p) be the Chern form of the above metric on L, so that cx(p) is a 
positive (1, l)-form on PT. Then by compactness, there is a constant B such 
that 

A non-constant holomorphic map ƒ : D -> X can be lifted to a map 
/ p : D -> PT, making the following diagram commutative. 

VT 

Y 
D ^ X 

ƒ 

At a point, the lifting is given by z -> (f(z),df(z)v) wherever df(z)¥= 0, and 
v is any non-zero complex tangent vector. The extension to the set of isolated 
singular points is due to the fact that a meromorphic map of an open subset of 
C into a projective variety is in fact holomorphic, because at any point, one 
can factor out a common factor where all projective coordinates may have a 
common zero or pole. Then f*(l2) = /p^*(/2) , so 

ffaip) ;> Bf*(l2). 
Thus the length function behaves just like a hermitian metric, and its pull-back 
to D is a hermitian pseudo metric on D whose Chern form is positive, and 
whose Griffiths function is ^ B. The analogues of Theorems 4.2 and 4.3 then 
work in the present case, and we conclude that X is hyperbolic. 
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In general, Kobayashi defines the Ricci form of a length function, and 
discusses systematically how it relates to the Ricci form on the tautological line 
bundle of an arbitrary holomorphic bundle. See his Theorems 4.1 and 5.1 of 
[Ko 4]. These theorems lead into questions of the existence of (1, l)-forms or 
length functions in the direction of a converse for Theorem 4.3. One problem 
lies in the smoothness of the length function. In Royden [Ro], the length 
function associated with the Kobayashi distance on a hyperbolic variety is only 
upper semicontinuous. 

Concerning the canonical class itself, as far as I know, the following is an 
open question. 

Conjecture 7.2. If X is non-singular and hyperbolic then the canonical 
class is ample. 

Sommese tells me that hyperbolic together with pseudo canonical does imply 
ample canonical class in dimenion ^ 3. Conjecture 5.6 would show that the 
hypothesis of pseudo canonical is redundant. Conversely: 

A non-singular hypersurface X of degree d ^ n + 2 in Pn has ample 
canonical class. 

Proof. The adjunction formula immediately implies that the canonical sheaf 
on X is 0x(-n — 1 + d), and d ^ n + 2 is precisely the condition which 
makes the canonical sheaf ample. 

Since the Fermât hypersurfaces 

4 + ... +jtf = o 
contain lines, we see that in general the condition that X has ample canonical 
class does not imply X hyperbolic. When the canonical sheaf is not ample, 
then the hypersurface has a tendency to have lines. Changes of behavior 
presumably occur for d = n + 19 n, n — 1. 

Let X be a hypersurface of degree d in P". If d <; n - 1 then X 
contains a line through every point. 

This result is classical and easy. Given a point P we can represent it as the 
origin P = (0 , . . . , 0) on affine «-space A". Let ƒ = 0 be the affine equation for 
X on this space. Decompose 

f=A + •••+/<, 

into its homogeneous components of degrees l,...,d. Then we get a line 
through P in Pn if we can solve simultaneously the homogeneous equations 

A= ••• =/„ = 0 inP""1. 
The condition d ^ n — 1 is precisely the inequality which guarantees that this 
can always be done, for trivial dimensional reasons. 

The existence of rational curves in a variety with canonical class which is not 
numerically effective has long been a subject of interest to algebraic geometers, 
and has received especially significant impetus in the last few years through the 
work of Mori, see for instance [Mo]. Such algebraic geometers work over an 
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algebraically closed field, and there is of course the diophantine question of 
whether rational curves are defined over a given field of definition for the 
variety or hypersurface. One of Mori's theorems states: 

If X is a non-singular projective variety, and the tangent bundle is 
ample, then X is birationally equivalent to projective space {previ­
ously Hartshorne's conjecture). 

This is valid over the algebraic closure of a field of definition, and applies to 
hypersurfaces when d ^ n. Over a given field of definition, the variety may not 
have any rational points, or may be only unirational, that is, rational image of 
projective space. 

Green [Gr 1] showed that the only non-constant holomorphic maps of C into 
a Fermât hypersurface of degree d in Pn are the "Fermât" ones if d ;> n2. For 
instance, for a given subset of indices, say 0 , . . . , r (r <; n — 2), let cl9...,crbe 
numbers such that 

1 + c{ + ••• +c? = 0. 

Then (/, cxt,..., crt) gives a Fermât line, and all Fermât lines are constructed 
in this way for each partition of the set of indices. Note that the existence of 
Fermât lines over a given field, say the rational numbers, amounts to finding 
rational points on the Fermât hypersurface itself, possibly with fewer variables. 

Euler was already concerned with the problem of finding rational curves, 
that is solving the Fermât equation with polynomials. Swinnerton-Dyer [Sw-D] 
gives explicit examples of rational curves over the rationals, on 

Here X has degree d = n = 5, and thus the canonical class is very non-ample. 
Swinnerton-Dyer says: "It is very likely that there is a solution in four 
parameters, or at least that there are an infinity of solutions in three parame­
ters, but I see no prospect of making further progress by the methods of this 
paper." In general, I conjecture that if d = n then the rational curves are 
Zariski dense, and even that X is unirational over Q. Actually, when d = n = 3, 
the Fermât hypersurface has Ramanujan's taxicab rational point (1729 is the 
sum of two cubes in two different ways: 9,10 and 12,1). Joe Buhler has 
verified on the computer that this point satisfies the hypothesis of Theorem 
12.11 in Manin's book Cubic Forms, Chapter II, and by that theorem, it 
follows that in this case, the Fermât hypersurface is indeed unirational over Q. 
It would be worth while to treat systematically the Fermât hypersurfaces from 
the present point of view of algebraic geometry, for the existence of rational 
curves both geometrically and over Q, and for the possibility of their being 
rational images of projective space for low degrees compared to n. 

Kobayashi raised the following possibility [Ko 2], p. 71, and Chapter IX, 
Problem 4: 

Let X be a generic complete intersection of hypersurfaces of degrees 
dv...,dr in Pn. Let d = dx+ • • • +dr. If d ^ n + 2, then X is 
hyperbolic. 
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If I is a non-singular complete intersection of hypersurfaces of degrees 
dl9...,dr respectively, then the canonical sheaf on X is 

Ox{-n-\ + d), 

where d = dx 4- • • • + dr is the sum of the degrees. Hence again the condition 
for the canonical class to be ample is d ^ n 4- 2. When d is in a range where 
the Brody-Green example applies, then the hyperbolicity of the generic hyper-
surface of that degree would follow from Brody's theorem that hyperbolicity is 
an open condition, if one had an algebraic characterization of hyperbolicity. 

§8. Jet differentials 

Interest in classical questions raised by Bloch was revived by Ochiai [Och]. 
Both introduced jets into the picture. Bogomolov [Bo] then used symmetric 
differentials. This was followed by the work of Green-Griffiths [Gr-Gr] from 
the point of view of jet differentials and curvature. The reader will find an 
extensive bibliography at the end of [Gr-Gr]. I shall now describe jet differen­
tials, and state a conjecture and results of Green-Griffiths which give greater 
insight into the exceptional locus of pseudo canonical varieties. 

Let X be a non-singular variety, and let x e X. Let Dr be a disc as usual, and 
consider germs of holomorphic mappings ƒ: Dr -> X such that /(O) = x. In 
local holomorphic coordinates, such an ƒ is given by a convergent power series 

f{z) = a0 + axz + a2—^ ••• 

with ak = ak( f ) = ƒ (k\0) e C \ Given two such maps ƒ, g we say that they 
osculate to order k if 

ƒ (0(o) = g(0(o) for/ = 0,. . . , /c. 

Equivalence classes of such germs will be called jets of order k at JC, and the 
set of such classes will be denoted by Jk( X)x. We let 

'*(*)= IK(*),-
Taking obvious charts makes Jk(X) into a complex manifold of dimension 
n + kn, and if U is an open set in X with holomorphic coordinates, then this 
choice of coordinates gives a holomorphic isomorphism 

Jk(U)~ UX Ckn. 

Note that even though the fiber of Jk(X) at JC is complex analytically 
isomorphic to Ckn, nevertheless Jk(X) is not a vector bundle. There is a 
natural projection 

Jk+l(x)-* jk(x) 

whose fibers are affine bundles, and whose associated vector bundle is the 
tangent bundle T(X). 

There is a natural action of C* on Jk(X). For t e C*, in terms of 
coordinates as above, the action of / is represented by 

t(a0,a1,...,ak) = (a0,talJ
2a2,.. .,tkak). 
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We may call this a weighted action (cf. Dolgachev [Do]). We let 

Jk*( X) = non-constant jets, that is those with some ay # 0 for 

Pk(X) = J*(X)/C* with projection <n\ Pk{X) -+ X. 

We call Pk(X) the weighted projective bundle over X. Its fibers may be 
singular because the action of C* has fixed points. 

We record here that the projection TT\ Pk(X) -+ X is proper. 
Of course, one can define the weighted projective bundle purely algebrai­

cally, but we have put ourselves immediately in the complex analytic context 
because of the specific applications which follow. 

Let ƒ: Dr -> X be holomorphic. Let f(z) = x. Then by taking the Taylor 
expansion of ƒ up to order k at the given point, in terms of a chart at JC, we 
can define a A>jet 

Jk(f)z,x 

which is an element of Jk(X)x. In this way we obtain a map 

Dr->Jk(X). 

One can put the analogue of length functions on the bundle Pk(X), taking 
the weighted action of C* into account. Green-Griffiths then consider the 
analogue of the Chern form 

dd<log\jk(f)\
2 

for pseudo length functions on the jet set, and maps ƒ as above. Comparing 
this form with \jk(f)\

2 they extend the formalism of the Ricci form to this jet 
set. In such applications, they substitute negative curvature arguments (positiv-
ity of the analogue of the Griffiths function) for Nevanlinna theory as in 
Ochiai [Och]. See their comments, e.g. on p. 64. 

In this context, Noguchi's theorem (mentioned in §5), and Kobayashi's 
Theorem 6.1 are jet setting to order 1. 

Just as with ordinary projective space, there is a tautological sheaf 2£k over 
Pk(X) which may not be invertible. However, for all m divisible by k\ the 
tensor power ££k

m is invertible, and so can be identified with a line bundle. See 
[Gr-Gr], p. 46. Because of this, we can define pseudo ampleness for S£k just as 
we did previously, since the definition involves only large values of m ordered 
by divisibility. 

Conjecture 8.1 (Green-Griffiths). Let X be pseudo canonical. Then 
for k large, the tautological sheaf ££k is pseudo ample. 

We recall that this means that high tensor powers L% have maximal Kodaira 
dimension, or equivalently, the rational map into projective space 

Vm=(sQ,...,sN):Pk(X)-*VN 

induced by a basis of H°(Pk(X),J?k
m) is birational for m sufficiently large 

ordered by divisibility. The conjecture is proved in [Gr-Gr], Proposition 1.11, 
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in the case of surfaces. Also Proposition 1.10 loc. cit. shows that the Euler 
characteristic of the higher-order jets comes out to be the "right" number in 
any dimension, thus giving evidence for the higher-dimensional conjecture. 

We now suppose that k is sufficiently large. The birational map as above for 
m sufficiently large has a Bad locus, or base locus, consisting of points of 
indeterminacy, and the union of positive dimensional fibers of <pm. Let Bk m be 
this base locus. Then Bk m stabilizes for m large (ordered by divisibility), so we 
write it Bk. Finally we let 

s = r\«(Bk) 

be the Green-Griffiths set. 

Theorem 8.2. A non-constant holomorphic map C - > I w contained 
in the Green-Griffiths set. 

This theorem holds whether the Green-Griffiths set is a proper subset or not, 
and is proved in [Gr-Gr], Corollary 2.8. (There is a misprint, the union sign 
should be an intersection.) 

In particular, the exceptional set of Conjecture 5.8 is contained in the 
Green-Griffiths set S. I asked Green-Griffiths whether they might be equal. 
Green told me that the two sets are not equal in general. Certain Hubert 
modular surfaces constructed by Shavel [Sh], compact quotients of the product 
of the upper half-plane with itself, provide a counterexample which is hyper­
bolic, but such that the Green-Griffiths set is the whole variety. Thus the jet 
construction appears insufficient so far to characterize the exceptional set of 
Conjecture 5.8 completely algebraically. It becomes a problem to find condi­
tions under which they are equal. 

I also asked whether the complement X - S is hyperbolic, and unlike the 
situation in Conjecture 5.8, Green told me he could prove it in this case. 

Historical appendix: algebraic families 

The various conditions which we have met, influencing the diophantine 
behavior of a variety, arose in the context of algebraic families. These played 
no role in the main part of this article, but played an important historical role, 
as follows. 

Instead of a single variety defined over a field F0, we consider an algebraic 
family of varieties { Xw], depending on parameters w lying in some parameter 
variety W. Instead of rational points, we consider rational sections of W in the 
family. This point of view was taken systematically in [La 0]. One can then 
translate systematically the conjectures about the finiteness of rational points 
into conjectures about the finiteness of the number of sections. For instance, if 
the generic fiber Xw is hyperbolic and there exist infinitely many sections, then 
their Zariski closure must split birationally into a product X0 X W. In that 
case, a section comes from a rational map 

W-+X0. 
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If, for instance, X0 = C X C, where C is a curve of genus ^ 2, and W = C, 
then there is a family of rational maps W -^> X0 such that C -» C X {a}, with 
a G C. But in any case, conjecturally, there is only a finite number of surjective 
rational maps of W onto X0, and I told this conjecture to Kobayashi. When 
X0 has dimension 1, and genus ^ 2, this is a classical theorem of de Franchis. 
Kobayashi and Ochiai proved the generalization to higher dimension, for the 
split case of algebraic families, not under the original hypothesis that the 
generic fiber is hyperbolic, but under the condition that X0 is "of general 
type" [K-O 2]. They conjectured that hyperbolic implies general type. This 
immediately made me conjecture that for a variety of general type, the set of 
rational points is not Zariski dense (unpublished). Noguchi [No 1] proved the 
general conjecture for non-split families under still a third possible condition, 
that the cotangent bundle is ample. Noguchi also reports that Bombieri made 
the above conjecture in lectures at Chicago in 1980. For more in this direction, 
see also [No 2]. 

In the case of an algebraic family {X„} with generic fiber of dimension 
1—that is, a family of curves—all these conditions coincide, and are equiva­
lent to the condition that the curve has genus ^ 2. The finiteness of the 
number of sections if the family does not split was originally due to Manin 
[Ma]. Grauert [Gra] subsequently gave another proof for Manin's theorem, and 
Noguchi's method extends Grauert's. In this way, the deformation theory of 
algebraic varieties over the complex numbers influenced the diophantine 
theory of varieties over finitely generated fields over the rational numbers. 

Riebesehl [Ri] took off from Grauert-Reckziegel [G-R], and gave a version of 
the diophantine result for algebraic families in the higher-dimensional case 
under a hypothesis of negative curvature (which he takes as his definition of 
hyperbolicity). He actually uses length functions, and handles the singular case, 
but he assumes that ail the fibers have negative curvature, which is similar to 
"good reduction" everywhere. This is quite a restrictive assumption. 

Despite this restriction, the method of proof is interesting for its own sake, 
and we sketch it here. Let TT\ X -> W be the family. In various degrees of 
generality, Grauert-Reckziegel and Riebesehl prove the following fundamental 
fact. Let w be a point of the base. Then there exists a neighborhood V of w 
such that TT~1(V) has a hyperbolic length function. It then follows from the 
Ahlfors-Schwarz lemma (the length decreasing property) that the family of 
sections is a normal family. From this one deduces at once that when W, X are 
imbedded in projective space, the projective degrees of the sections are 
bounded. This is the essential part of the diophantine result: sections are of 
bounded height. 

There remains the question of splitting the family. One can then use the 
techniques from early days [La 0]. The boundedness of the degrees implies that 
the sections lie in only a finite number of Chow families. If one member of an 
irreducible component is a section, so is the generic member. Assuming that 
the family of sections is Zariski dense, it follows that there exists a variety T 
and a generically surjective rational map 

f:TxW-+X. 
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From this one would like to split X birationally, but Riebesehl splits only a 
curve, using results from [La 0]. More generally, it remains a problem to prove 
the following, which we state in a self-contained way, under weaker assump­
tions. 

Let 77: X -» W be a genetically surjective rational map, whose 
generic fiber is geometrically irreducible and pseudo canonical. 
Assume that there exists a variety T and a genetically surjective 
rational map 

f.TxW^X. 

Then X is birationally equivalent to a product X0 X W. 

The study of algebraic families from the diophantine point of view thus put 
forth several conditions like hyperbolic, general type, ample cotangent bundle, 
negative curvature. 

Manin's original proof introduced a different aspect of differential geometry 
into the question, what became known as the Gauss-Manin connection: 
differentiating with respect to the parameters of the family. 

For convenience of language, it was useful to start with a variety defined 
over the complex numbers. In number theory, one usually starts with a variety 
defined over a field F0 which is finite over the rationals, that is a number field. 
There was no need to do so here. However, a few remarks on the relations 
between number fields and arbitrary finitely generated fields may be useful to 
the reader. A priori, the statement: 

(a) A variety of a certain type has only a finite number of rational points 
in every finitely generated field over Q. 

is stronger than 

(b) A variety of a certain type, defined by equations over a number field, 
has only a finite number of rational points in every number field. 

However, for varieties of dimension 1 (curves), the two statements are 
equivalent in the case of curves of genus ^ 2. This can be proved easily by a 
specialization argument based on a theorem of Néron, using Hubert's Irreduci-
bility Theorem, see [La 2], Chapter IX, Theorem 6.2, and Chapter XII, 
Theorem 2.3, including an extension by Silverman. It would be interesting to 
study the higher-dimensional case from this point of view, which lies some­
where between algebraic families over the complex numbers, and single varie­
ties defined over a number field. 
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