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Then follows the interesting story of how Dirichlet, a young student in Paris 
in 1825, tried his hand on Fermat's equation with exponent 5. He used an 
identity known since Euler's days and the infinite descent to show that the 
equation has no solution where one of the numbers is a multiple of 10. "This is 
where Legendre, then well over 70 years old, stepped in. After presenting 
Dirichlet's paper to the Academy in July 1825, it took him only a few weeks to 
deal with the remaining case." "As to Dirichlet, he was soon to take his flight 
and soar to heights undreamt of by Legendre.." 

One of Legendre's influential contributions was the treatise on numbers 
which he prepared for more than thirty years. "He sought to give a compre­
hensive account of number theory, as he saw it at the time, including, besides 
his own research, all the main discoveries of Euler and Lagrange, as well as 
numerical evidence (in the form of extensive tables) for many results whose 
proofs he felt to be shaky." 

The Théorie des Nombres, published in 1830, is the final form given to two 
previous editions, appropriately called Essais. Yet, "by then, as his younger 
contemporaries well knew, Gauss's Disquisitiones had made it almost wholly 
obsolete." 

An indispensable part of Weil's book is the long series of appendices 
attached to the three main chapters. Their purpose is to show, from a modern 
point of view, how to consider certain classical questions, to indicate develop­
ments of importance originated in the ideas of that period, but sometimes also 
to give proofs of results described in the main text. Thus, we may read an 
illuminating appendix under the title "The Descent and Mordell's Theorem", 
another about "The Addition Theorem for Elliptic Curves", or also "Hasse's 
Principle for Ternary Quadratic Forms", etc. 

Here I reach the point when it is appropriate to refer to the physical 
characteristics of the book. Should I say that it is a medium-sized volume, well 
bound and pleasantly printed, with large size type, greatly facilitating the 
reading? Should I add that it is well organized, has good indices, and no 
misprints? I just want to say that the hand holds it well, and does not wish to 
let it go. 

Professor Weil, hear as a distant echo from younger days: Rico é o seu livro 
que nos révéla uma gloriosa exploraçào intelectual pelos verdadeiros heróis. 
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0. The time seems ripe for a broad look at generalized recursion theory 
(g.r.t.) against the background of ordinary recursion theory (o.r.t.), with 
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so-called relativizations of o.r.t. at the border. O.r.t. started some 50 years ago. 
The more infinitistic part of g.r.t., the main subject of the book under review, 
goes back almost 30 years, with a kind of half-time score on pp. 139-198 of 
Logic '69 [GY]. 

Below, the emphasis will be shifted; away from differences within the—real­
istically speaking, quite narrow—logical tradition with its flashy metatheorems 
to its differences from the broad mathematical tradition. Correspondingly, 
combining elements of logic with specific subject matter will be opposed to 
elaborating undiluted logical notions relentlessly. Implications of these points 
are here set out for o.r.t. and the passage(s) to g.r.t., but they extend to most 
other branches of logic. The same applies to the following elementary distinc­
tions, which will be needed throughout the review. 

1. Fundamentals and generalizations. Notions can be fundamental or, equiva-
lently, basic in the sense of striking our untutored attention. Any uses they 
may have at an early stage will naturally require only quite elementary 
properties of such notions. Almost as a corollary, elaborations of them are 
liable to reach quite soon the point of diminishing returns (for the uses in 
question). These truisms are illustrated very well by the basic notion of natural 
number and its uses for counting or ordering finite sets; most dramatically by 
reference to elaborate "lower" arithmetic of perfect or amicable numbers, 
comparable to certain labor-intensive parts of o.r.t. Less obviously, such 
elaborations may draw attention away from other mathematics that is much 
more effective in the broad area of those original uses. Counting provides yet 
another memorable illustration. Generally—with such obvious exceptions as 
counting primes or other darlings of the queen of mathematics—Higher 
Arithmetic has little bearing on what or how to count; Higher Statistics often 
has more bearing, for example, when the collections involved are large, and 
function theory helps count zeros of the zeta function. 

Now, at least in science there is a second sense of basic. It applies to things 
and properties that are discovered, usually by long experience, to lend them­
selves to extended or even systematic study. They may be abstract properties of 
the first kind of basic notion, as in basic number theory and the natural 
numbers above or the—by p. 194, 1.16-17 of [CI]—less basic rational 
numbers. Abstract properties are usually formulated axiomatically. Instant 
choices of such axiomatizations are common in the logical tradition for the 
sake of the logical ideal of axiomatic precision. The distinction between the 
two kinds of basic notions has some implications for generalizations. 

Traditionally, the first kind of basic notion has often been generalized in the 
crude sense of its original domain of definition being extended. This can be 
useful even if no recondite mathematical properties are preserved, only elemen­
tary ones being needed in the first place. If Cantor's so-called generalizations 
of numbers are viewed as such extensions to infinite sets and well orderings 
and not as competing with Higher Arithmetic (say, of ideals or algebraic 
number fields, preserving decomposition properties of primes and not only 
algebraic identities), then their marginal utility is quite reasonable; not, of 
course, the fuss made about them, let alone dubious doubts about their 
legitimacy. 
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For the second kind of basic notion the more modern axiomatic style of 
generalization is popular. If, as at the end of the last paragraph but one, the 
notion is an axiomatically formulated abstract property, it is a generalization, 
the defining axioms being the properties to be preserved. The colorless term 
'generalization' tends to hide the implications of this axiomatic style for a 
so-to-speak mathematical proof analysis, here opposed to logical proof theory 
taken up in §7. A particular choice of abstract properties constitutes a scheme 
for breaking up arguments or, generally, situations into a few elements, and 
hence easy to take in. These elements are described in terms of a few basic 
structures, and hence easy to remember; with improved reliability as a bonus. 
Without exaggeration: such choices of generalization express discretely what 
would coarsely be described in terms like 'important', 'relevant', or 'essential' 
(for the body of mathematics being generalized). Viewed this way instant 
choices merely express a lack of understanding of the amount of experience 
needed to spot, and, above all, test generalizations. All this fits in with the 
relative maturity of g.r.t. mentioned at the outset. 

2. O.r.t: background. Its elementary part concerns domains D consisting of 
words on a finite alphabet, for example, co: the natural numbers generated 
from 1 by the successor or 'concatenation'. O.r.t. studies recursively enumer­
able (r.e.) subsets of D, partial and total functions: D •-> D, and simple 
relations between these objects. Incidentally, though mathematically trivial the 
extension, from w, to the domains D above, is involved in nonnumerical data 
processing, a substantial part of the industry. 

The first, still memorable descriptions of the objects treated in o.r.t. were in 
terms of (a) simple properties of models for formal systems, and of (b) the 
perfect computer. Of course, conversely (a) and (b) can be described in terms 
of o.r.t. (though this is anathema to the foundational urge). 

(a) Here the self-explanatory key words for recursive sets are: now in-
variantly definable, orginally formal entscheidungsdefinit (in Gödel's incom­
pleteness paper [Gl]); cf. Note l.1—For an arbitrary subset X of D, so-called 
^-relativized o.r.t. concerns formal systems to which the diagram of X is 
added, a familiar object of elementary model theory. 

(b) The perfect computer requires less background than (a) above, and so 
provides a more widely accessible description of o.r.t. It also seems more 
popular, especially when presented as an idea(lization)—and almost certainly 
the idealization if one knows nothing—of genuine computers; perhaps, how 
Simple Simon or der kleine Moritz imagines them. 

Be that as it may, the perfect computer embodies a novelty not even 
suggested in the old literature on, say, numerical analysis. Now rules are 
applied to other rules, and occasionally to themselves; in trade jargon, the 
same codes are used for instructions and their arguments. According to his 
autobiography [Z] this possibility escaped Zuse who patented a sound relay 
computer in 1937; but not von Neumann, whose insight has been used for 
efficient software, at least, ever since the hardware passed certain thresholds of 

lrThe notes, at the end of the review, are intended for readers with some logical background or, 
at least, interest. 
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memory size and speed. Facile questions of cause and effect aside—here, and 
below whenever as little is known about the phenomenon involved as here 
about the genesis of bright ideas—it is certainly satisfaisant pour Vesprit that 
von Neumann was familiar with, and impressed by, an objectively related 
device in [Gl]. 

The use of that insight combines a little o.r.t. with higher (electronic) 
technology, an instance of a theme in §0. To be effective this use has to respect 
the limitations of the hardware, and the needs of the computations in question; 
key words: choice of parameters or, in fancy language, of data structures. 

Logicians see the novelty above very differently; as a universal principle for 
generating all objects of o.r.t. from a few instances, for example, as rule S9 in 
[K2] (but overshadowed by the material there on extending o.r.t. to all finite 
types over w; cf. Note 9b). Naturally, this principle is valid only if the 
limitations mentioned in the last paragraph are neglected. So any glamor it 
may have draws attention away from the need for respecting them. 

At this point it is necessary to say a word about current complexity theory 
with its would-be revolutionary separation P/NP (polynomial versus nonde-
terministic polynomial growth) in place of: recursive/nonrecursive. By impli­
cation it regards any reminders about the perfect computer, such as those 
above, or generally about the computational side of o.r.t., as obsolete. They 
may be. But as with many popular revolutions the coarsest elements of the old 
order remain in the new. Specifically, like old o.r.t., complexity theory con­
centrates on logical classes of problems; cf. Note 2a. The bounds obtained 
simply show that those classes do not lend themselves to algorithmic treatment, 
and flashy theorems about 'large' bounds have drawn attention away from 
more successful choices of problems already in the literature. Incidentally, the 
significance (in the here relevant statistical sense) of many average complexity 
results has not been established in the currently fashionable probabilistic 
literature, especially, for those logical classes. What is needed here is, first, 
some plausible distribution of problems within those classes, and then an 
estimate of mean deviations. Nothing of the kind is to be found in the bulk of 
the literature. 

Granted all this the brutal fact remains that, in the area of computation, 
elaborations of o.r.t. tend to share the weakness of Higher Arithmetic for 
counting mentioned in 1. 

How then is o.r.t. to diversify? A hint comes from past experience with the 
idea of perfect liquids, notoriously imperfect except for a very few corners of 
hydrodynamics. Progress was made by shifts of emphasis away from the 
original context. The two-dimensional motion of such liquids provides a valid 
description of—not merely, as is sometimes said, a metaphor for—the notion 
of function of a complex variable. The latter is firmly established in mathe­
matics, even used in parts of mathematical physics, but just not primarily in 
successful hydrodynamics. 

Shifts of emphasis are also the subject of pious talk about preestablished 
harmony, but with a difference. Stressing continuity rather than change, it 
hides the progress, and, above all, the imagination involved in successful shifts. 
The harmony between an early idea and its successful offshoots can be hard to 
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detect behind the intellectual pollution on the way. Thus many old-fashioned 
Tripos problems, without mathematical or physical interest, created an illusion 
of relevance to hydrodynamics, simply by being formulated in the language of 
perfect liquids. 

3. O.r.t.: philosophical progress through mathematical theorems, in particular, 
without illusions about the perfect computer. As in 0 and 2, o.r.t. is combined 
with (higher) technology, this time from group theory and early number 
theory, knowledge of these subjects being the price for progress. 

Finitely generated groups G. About 25 years ago, Higman discovered [H] that 
such a G can be embedded in a finitely presented group iff its word problem, 
WPG, is r.e., where WPG = {w: w e G,W = 1}. It is easy to exhibit infinitely 
presented G such that WPG is r.e., but not recursive. As a corollary there are 
finitely presented G with a recursively undecidable WP. In contrast to this 
corollary, Higman's theorem is not spoilt by defects of the perfect computer as 
an idealization of genuine decision procedures (by electronic, biological or 
other analog computers; cf. Note 3). Imagination was needed for the few 
rewarding twists on Higman's results, in particular, by A. Macintyre and M. 
Ziegler for existentially closed groups, requiring more background than [H]; 
for documentation, cf. [ABH]. 

Diophantine sets Dn are {a: a e co, 3xv...,3xn (P = Q)} where P and Q 
are polynomials in xl9..., xn (over co) with the parameter a and coefficients in 
co. During the 70s it was shown that, for n > 9, r.e. = (the class of all) Dn. The 
reduction, to n > 9, from Matyasevic's original bound around n > 256, in­
volved not only number-theoretic, but also recursion-theoretic coding tricks. 
This discredits the usually unqualified ideology of an index-free exposition of 
o.r.t., popular in the 50s, but also on p. ix, 1.-2 of Fitting's book; cf. also Note 
4. 

Probably no single result about all diophantine sets or equations is as 
memorable to the general mathematical public as the description above in 
terms of o.r.t. Also, diophantine definitions of the set of primes have appeal, 
and, presumably, will some day find some use in some corner of the subject. 
But there are dirty spots on this glittering surface. 

How rewarding an object of study is the totality of the Dn9 even for n = 9? 
As far as mechanical decidability (of a Dn being empty) is concerned, it 
demonstrably is not. The next question is more specific. It concerns the 
passage between number-theoretic properties (of Dn) and those (of r.e. sets) 
prominent in o.r.t. Are the formal equivalents comparably adapted to the other 
domain? For example, maximality of r.e. sets, modulo finite sets, is a favorite 
of o.r.t. Does any number-theoretic equivalent contribute to some prominent 
problem in the number-theoretic tradition? Conversely, one wonders about 
equivalents in o.r.t. of those geometric classifications of diophantine equations 
which have genuinely revolutionized this subject. And, as always, there are 
questions about questions, particularly since traditions are not sacrosanct. Are 
there not blind spots, in o.r.t. or traditional number theory or both, that would 
be removed by pursuing those equivalences more vigorously, thus leading to 
new rewarding notions and problems? 
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Experience shows that all-purpose questions such as those above tend to 
answer themselves with better knowledge of the subject. This should be enough 
for the present review. But readers interested in popular views of logic—espe­
cially at the two extremes of enthusiasm and distrust—are recommended to 
look at the panaceas, for those and related questions, implicit in the logical 
literature.2 

It remains to note that Ershov sets out in [E] how o.r.t. can be applied 
outside its original domain; 'in principle', to any enumerated structure (with 
some hints on appropriate structures; but cf. Note 9a). At least so far, like [H] 
the most convincing applications have used only elementary parts of o.r.t. 

4. 0.r.t: mathematical proof analysis. Since such analysis of elementary 
matters tends to degenerate into pedantry, the more advanced part of o.r.t. will 
be considered. By common consent it is dominated by so-called priority 
arguments. They involve a kind of nested diagonalization, elaborating the wide 
use of simple diagonalization in elementary o.r.t., but also elements strongly 
reminiscent of other parts of mathematics and logic. For example, balancing 
out of terms for tricky convergence proofs in analysis or for proofs of measure 
< e is such an element, and above all Ackermann's modification of Hubert's 

e-substitution method where the order of priority is determined by the rank of 
an e-term, and its value can change only finitely often in the process; cf. top of 
p. 29 in [HB]. In any case nothing below assumes that the style of those 
(priority) arguments is unique to o.r.t., though it may well appear so to those 
dedicated wholly to this subject. 

Many results proved by priority arguments concern some kind of degree or 
other in the sense of o.r.t. This sense is conveyed quite well by a parallel from 
very early number theory, in Euclid's Book X, recently discussed in this 
Bulletin [Kn] under the heading: La croix des mathématiciens. 

Degrees of Book X: classification of irrationals. Geometrically simply de­
fined numbers, like ^2, had been discovered to be irrational. What should one 
do with them? Book X classifies them; of course in then-familiar terms, now 
called 'Euclidean'. The notion of degree involved is strictly between rational 
and algebraic dependence. By the way, the question above remains long after 
the Pythagorean slogan, about rational numbers being the measure of all 
things, has been discarded. 

2A principal claim behind the austere language of logical texts is that the particular generality of 
logical notions provides the following recipe for the systematic pursuit of knowledge. One begins 
with logical classifications, defined for anything under the sun, thus not presupposing specific 
experience. As the latter accumulates one refines them; tacitly, in contrast to replacing them by 
others that cut across them; cf. the end of Note 3 on the glamor of logical languages, and Note 2a 
on examples of incomparable classifications. The claim responds to a popular demand, usually 
expressed in fleeting complaints (while in the brutal form above both the claim and the demand 
would be brushed aside by any experienced scientist). For example, Cassels complains in [C2] 
about the unsystematic character of the body of number theory that has accumulated. This 
certainly neglects the distinction in 1; but perhaps even the noteworthy fact of experience that 
number theorists like himself have the capacity of handling quite a battery of notions, by proper 
use of sound intellectual reflexes as it were. Popular views of logic are surely determined much 
more by such broad considerations as in this footnote than, for example, by the results stressed in 
the review itself. 
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Degrees ofo.r.t. classify nonrecursive sets (of words). Here the starting point 
is Gödel's discovery of such sets that are logically simply defined; for example, 
the r.e. sets of theorems provable in Principia Mathematica (and related 
systems in the sense of [Gl, p. 190]) and in elementary logic (Satz 9 and 10 of 
[Gl]). Of course, the classifications use some kind of recursive operations. Here 
the discarded slogan goes back to Hubert, about formal methods 'measuring 
up' to all problems. They don't; by [Gl] not even to the particular problems of 
deciding formal derivability in the systems mentioned above. 

The broad schemes proposed in o.r.t. for classifying all, or at least the r.e. 
nonrecursive, sets are unconvincing enough for its degree theory to have been 
called la croix des logiciens. What is one to do with all those degrees? 
Naturally, as with irrationals, some special cases are unproblematic, such as 
Ziegler's degrees in 3 used to state facts about existentially closed groups. 
However, as far as a general theory in the forseeable future is concerned, the 
parallel with Book X is daunting. 

Time scales may have changed since Euclid. But there is such a thing as the 
absolute level of imagination that went into the shifts from the degrees of Book 
X to its modern heritage: diophantine approximations and measures of irra­
tionality, with implications for diophantine equations. More recently there 
have been shifts from the brutal classification of algebraic numbers by (their 
algebraic) degree to less hackneyed selections; perhaps, most simply in [B]: y a 
for any algebraic a and n e CO, n # 1 and a # 1. Even when the high spots, 
for example, in [ABH], are counted, nothing in o.r.t. approaches the philo­
sophical detachment from the original set-up that was so essential for progress 
in the parallel from number theory. 

Some progress in proof analysis of degree theory becomes visible when 
expectations are lowered drastically. As so often, one finds results stated in 
terms of o.r.t., but easily seen to be corollaries of much more general facts. The 
principal result on degrees picked out in Fitting's book has been known for 
some 20 years to be of this kind; cf. Note 5a. Less formal shifts of emphasis 
have gone in the opposite direction as it were: What more do we know when 
we do use hypotheses or styles of arguments that are not (logically) needed for 
the result stated? To summarize such additional knowledge a new theorem is 
usually needed, possibly stated in terms of new concepts; cf. Notes 5b and 5c. 
All things considered, including the warning about instant generalizations in 1, 
it is probably premature to analyze degree theory axiomatically. For the time 
being 'straight' expositions such as [Sh and Y], perhaps supplemented by a 
couple of quotable results like those of [HS or Sho] on (elementary theories for 
the order of) r.e. and A°2-degrees, seem more rewarding than, say, axioms for 
so-called applicative structures; cf. Note 6. 

5. G.r.t.: the old-fashioned style. In contrast to what has just been said about 
axiomatic generalizations of o.r.t., several of its extensions have done well; at 
least, in logic and set theory, including descriptive set theory. We begin with 
the oldest and mildest g.r.t. 

Relativized o.r.t. (a) Already its simplest form is an efficient tool for 
sharpening quantitatively a, if not the, main discovery about elementary logic 
(back in the 30s). Contrary to early ideology about formalization, most results 
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hold for arbitrary sets of axioms, and not only for formal systems with their 
r.e. sets; cf. Note la (ii) for a typical use of relativized o.r.t. In other words, 
relativized o.r.t. helps to clean up the logical pollution of literal o.r.t. 

(b) For l e w , well orderings (on <o) defined in X-relativized o.r.t. de­
termine a class of order types, that is, of countable ordinals. The supremum is 
called wf. These in turn determine segments, with useful closure properties, of 
certain hierarchies of—definitions of—sets. They were called 'predicative' or 
'ramified' at the turn of the century, by Poincaré, resp. Russell, later 'con­
structible' (by Gödel [G2]), later still 'hyperarithmetic' (at least, when re­
stricted to a certain segment) by Kleene [Kl]. The ups and downs in the level 
of sophistication displayed were great, and the close relations between the 
notions themselves were noticed relatively late; cf. the review of [Kl], and pp. 
105-106 of [S]. Readers can get a good idea of the definitions involved from 
old-fashioned introductions of closures in algebra by successive adjunction of 
roots of polynomials; for example, real and algebraic closures or, to go back to 
Book X, Euclidean closures. The principal difference is that the algebraic 
adjunctions depend only on finitely many arguments, the coefficients of the 
polynomials considered, while in general the set-theoretic ones do not. The 
exposition in [G2], with its seven adjunction operations corresponding to the 
build-up of logical formulas (and accumulation) is better suited to this parallel 
than [Kl] which adjoins to any element its jump and the infinitely many 
objects recursive in it (apart from diagonalization). 

Before answering the inevitable question, what to do with those <of, another 
description of them is worth mentioning; at least, for those familiar with the 
foundational literature at the turn of the century. One of its idea(lization)s of 
the perfect definition was neatly conveyed by Poincaré and later made impecca­
bly precise: the meaning of such a definition must not be changed by 
extending the universe (of sets; and here it matters little if we think of 
sets-of-numbers or sets-of-sets-of...). As an analysis of the possibilities for 
valid or precise definitions, Poincaré's idea is probably even less perfect than 
the perfect computer and the perfect liquid are in their domains; an insight 
which, by the way, constitutes philosophical progress in the so-called theory of 
definitions. But around 1960 the idea served quite well for deriving mathemati­
cal properties of the wf and of the segments determined by them, when the set 
X and, tacitly, w itself were thought of as 'perfectly defined'. The <of will turn 
up again in Note 9b. But the following description, and hence use, of these 
objects seems of wider interest. 

G.r.t. derived from the model-theoretic description of o.r.t. in 2a. Now some 
models are privileged, for example, those in which the range of some variable is 
prescribed (to be Z or Q in so-called w-models). By around 1960 the defini­
tions indicated in 2a had been transferred verbatim, with the bit of extra care 
specified in Note lb. Well orderings defined in relativized o.r.t. come in 
through a, generally infinitary, calculus for validity in the privileged models, 
corresponding to ordinary predicate calculus in o.r.t.; cf. Note la(i). Work 
after 1960 fitted in with the state of model theory for elementary logic at that 
time. In particular, the latter was then dominated by the compactness theorem, 
originally called finiteness theorem (by Malcev). So an analog for w-logic was 
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looked for, and found; but in contrast to Note la(ii) and (a) above, only for 
r.e. sets of axioms in the generalized sense. 

These simple ideas, originally circulated under the trade name 'metarecur-
sion', were later spread out in volumes on so-called admissible sets; cf. Note 
7a. But it is fair to say that the original hopes have not been fulfilled at all. In 
retrospect they are seen to have involved a simple, but, at least in logic, 
common oversight. Many familiar structures, actually throughout mathematics, 
are the w-models of quite simple axioms in logical language; for example, 
vector spaces over Q (while vector spaces over arbitrary fields are the corre­
sponding ordinary or 'general' models). This alone is no guarantee that a 
theory of arbitrary co-models will tell us what we want to know for any one of 
them! As noted in 1, likely candidates have to be discovered; for example, 
/?-adic fields in ordinary model theory—which has not been equally successful 
in the rest of mathematics. 

If the hopes had been confined to some corner of mathematics such as 
descriptive set theory, later developments would have more than lived up to 
such early items, of g.r.t., as the quantitative refinement for the theorem of 
Cantor-Bendixson; cf. Note 7b. If ever significant relations were to be dis­
covered between that corner and broader areas of mathematics, even such 
refinements—or, more likely, variants depending on those hypothetical rela­
tions—might acquire a bit more interest. We can end this section on a more 
positive note. Within the 'pure' theory of w-models the contribution of g.r.t. is 
evident enough by comparing the clumsy literature in the 50s with modern 
expositions. 

6. G.r.t. and fine structure theory. G.r.t. looks much better in the light of the 
following parallel which is outright satisfaisant pour l9esprit. It concerns two 
developments in the 60s. 

One side of this parallel is the work—with its lively exposition—by Sacks. 
He and his students developed degree theory for g.r.t. related to the hierarchies 
in 5; often using substantial machinery different from material known in o.r.t. 
(in contrast to the simple results of 5, proved or at least provable in a couple of 
Unes). So to speak conversely, different proofs of the same theorem in o.r.t., for 
example, on maximal sets were generalized to different theorems in g.r.t. In 
due course, (closure) properties of co were discovered that are shared by some, 
but not all tof, and determine whether or not a theorem of o.r.t. generalizes; 
again, maximal sets provide memorable examples. In short, some of the many 
ordinals between the first 2 infinite cardinals began to look promising. 

The other side of the parallel is the growth of confidence, among other 
logicians, in fine structures, that is, in details of the hierarchies in 5; a high 
spot is Jensen's work on the hierarchy L itself [J]. In the early 60s most set 
theorists, including model theorists involved with infinitely long formulas, 
thought of ordinals between cardinals as a grubby business; with a few 
exceptions cited in 5. By the end of the 60s there was confidence, in the same 
circles, in intermediate ordinals; not merely for defining hierarchies of course, 
but as a subject for theorems or, at least, as a means for more delicate 
arguments by induction. 
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Questions about any—conscious or unconscious—'mechanism' of discovery 
aside, [J] presents itself as a combination of ideas used in g.r.t., including 
suitable—if not yet: master—codes, toys from logical proof theory such as 
Bachmann's hierarchies with coherent fundamental sequences, and other things, 
partly to be found in Jensen's (earlier) Habilitationsschrift on admissible sets. 
Viewed this way [J] balances out the disappointed hopes near the end of 5 (for 
co-models and admissibles) since it exceeds them in unexpected ways; for 
example, Shelah used [J] to settle Whitehead's problem for L. 

In the 70s, [J] was also used for new refinements of g.r.t. and for old topics 
in o.r.t, in particular, in /J-recursion theory, and for determining the degrees of 
various elementary theories about objects of o.r.t. (as in Note 3). The former 
pokes around so promiscuously between the wf that it has brought back the 
old phobias about grubbiness. In view of the reservations at the end of Note 3, 
which do not apply to [J], some of the applications to elementary theories may 
constitute philosophical regress in the sense of 3. If so, this would have 
counterparts in g.r.t. of the 60s. Some of them are mentioned in the next 
section. 

7. G.r.t: some reminiscences and object lessons. First of all, the work of 
Sacks et al. was accompanied by several aberrations that attracted, at the time, 
more attention than the simple parallel in 6. One of them was the business of 
various definitions being equivalent in o.r.t., but not in g.r.t., finiteness being a 
case in point. It all came uncomfortably close to the differences between 
Cantor's infinite cardinals and ordinals, now seen to be banal (and so all the 
more sensational, if forgotten). Another aberration was the hope, based mainly 
on the few results about maximal sets alluded to in 6, that the work on degrees 
in g.r.t. would lead to a mathematical proof analysis of advanced o.r.t. This 
hope is not reasonable in the light of the distinctions in 1, and its failure backs 
them up. (By lack of time or, perhaps, the grace of God, such excesses as [Si] 
were avoided, with its attempt to use infinite ordinal arithmetic for Fermat's 
conjecture.) 

Another aberration seems to be the massive literature on g.r.t. of higher 
types, that is, iterations of 'fat' or 'thin' power set and function space 
operations, as in: sets-of-sets-of...or functions-of-functions-of; at least, when 
viewed as follows. True, that literature reflects the central place that higher 
types have acquired in several branches of contemporary logic; cf. Note 8. But 
most of its results would mean very little to most readers of this Bulletin, and 
the rest would not be very compelling. The attention to higher types simply 
does not fit in with general experience in mathematics. 

More specifically, the fact that objects of higher type occur throughout 
mathematics, is by itself not enough to inspire confidence in any general 
theory; cf. the case of w-models in 5. Besides, in contrast to logic (close to the 
foundational tradition), mathematics is accustomed to 'spreading out' in other 
ways, too—for example, to higher dimensions. In short, errors and omissions 
in current mathematical practice excepted, higher types are not (often) particu­
larly useful scientific tools. 
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If so, the discovery of this defect has a direct bearing on principal themes of 
0; generally, on the differences between the broad mathematical and logical 
traditions, and, more specifically, for assessing the relevance of the latter. To 
make sure that such (object) lessons are about the logical ideals themselves and 
not about their incompetent use, one has to check that the Hterature on g.r.t. of 
higher types respects those ideals, and is imaginative (within its tradition, as, I 
believe, it is). Much the same applies to the aberrations mentioned in the first 
paragraph of this section. 

The particular logical ideals most pertinent to g.r.t. on finite types are: a 
universal language and the precise analysis of intended meanings (without 
regard to their adequacy for, and to the scientific value of, their intended 
purposes); cf. Note 9 for some illustrations involving thinnish and fat 
hierarchies resp. The comments are brief, in Une with the last paragraph of 0; 
such matters are too general, and therefore too simple to be pursued efficiently 
in the narrow context of g.r.t.; cf. [Kr]. 

8. The book under review. As mentioned at the outset it concerns the 
infinitistic part of g.r.t. with the general flavor of 5. The main notions are not 
presented in the form most widely used in the successful Hterature. So the book 
is probably not an efficient introduction. Anyhow, there are plenty; for 
example, in [B2] with references to more detailed expositions. 

But for the general reader the book is a treasure, albeit not in the way 
intended by its author. It teems with Hvely reminders of actuaUy wide-spread, 
but repressed ideas, not merely laid out for autopsy, but expressed with 
conviction. At one extreme, of generaHty, there is bHthe talk about 'natural' 
notions, without any hesitation over the extent to which this matter is—and 
occasionally is not—sensitive to background knowledge (nor over the obvious 
parallel from botany where perfectly natural and often pretty mushrooms can 
be addictive or poisonous in other ways). At another extreme, concerning the 
technicaHty of so-called inductive definitions, the author's presentation relates 
the current interest in them to a pun much more clearly than elsewhere in the 
Hterature known to this reviewer; cf. Note 10. In short, the book provides 
particularly simple object lessons of the kind adumbrated at the end of the last 
section. 

It also serves as a reminder of striking foundational progress in this century, 
by contrast. In particular, on p. 256 there is a new description of o.r.t. in terms 
of the (perfect?) information flow among middle management, incidentally, a 
current target for office automation. The author talks of—quite abstract— 
rules for handling in-boxes and out-boxes as the crux of the matter. All this 
without translating any result of o.r.t. into the new lingo, let alone seeing what 
it might do for middle-management, on the model in 2 of what von Neumann 
did for data processing with the description of o.r.t. in terms of the perfect 
computer. By comparison, p. 256 is just a grunt; but quite typical of the grunts 
(and barks) that filled the popular foundational Hterature in its heyday in the 
20s and, incidentally, a good deal of the current variety inspired by it. This 
becomes a reminder of progress, at least, for readers prepared to look at the 
contemporary informed Hterature on digital and analog computers and their 
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idealizations. By 2 and Note 2 its critical part may bite; but for good or ill, it is 
not reduced to grunts and barks. 

NOTES 

l.(a) Reminders, (i) In modern terminology, [Gl] uses a privileged notation, say, A„ for n G CO, 
and formulas F, with a single free variable, that are invariant over co; that is, for all models M of 
the system S considered, and for each n e co: either F( A„) is true in all M or F(An) is false in all 
M. By completeness, this is equivalent to: either F(A„) is derivable (in S) or -^F(&„) is so 
derivable. Thus predicate calculus provides formal rules for o.r.t., which can be (and were) pruned 
to an equation calculus, (ii) Relativized o.r.t. is used to sharpen qualitative model-theoretic facts 
like the completeness theorem: if a countable set of axioms is r.e. in X ( c co) so is its set of 
consequences; with an obvious extension to uncountable languages, (b) For more delicate results 
on invariant definitions—and, later, for avoiding anomalies in g.r.t.—the word 'privileged' was 
replaced in mathematical terms. The relevant subject of core structures is alive. Specifically, by 
imaginative use of o.r.t. Wilkie recently described a large class of systems that extend a weak 
subsystem of Peano arithmetic and have nonstandard core structures; cf. pp. 311-314 of [DLS]. 

2.(a) The logical flavor of complexity theory comes from its choice of problems. Like o.r.t. it 
considers usually all formulas of some first-order theory (at best, restricted by some bound on 
alternating quantifiers), and classifies them by purely external parameters such as the number of 
symbols. The following examples of an alternative strategy come from the subjects of real closed 
fields, and so-called Presburger arithmetic or, more accurately, suitable abelian groups. In both 
cases the criterion for selecting a class of problems is the domain of efficiency of some (promising) 
algorithm; thus in contrast to the logical choices the virtues of these classes are not immediately 
apparent, but had to be discovered, (i) In [Sm] Newton's method is used to select polynomials with 
roots in certain geometric constellations; they occur, roughly speaking, with stable solutions, but 
not in catastrophes. To be precise, Smale's own formulation is different, using probabilistic, not 
geometric, language. The formulation above comes from inspecting the proof, (ii) [BV] selects its 
classes of linear diophantine equations in terms of the geometry of numbers. Its upper bounds are 
an order of magnitude better than known lower bounds for the general case. The possibility of 
such an improvement, by restriction, is of course trivial in the abstract, but not here since [BV] 
covers equations that occur in prominent problems. 

(b) The current fad of talking about 'large numbers', garnished with references to the age of the 
universe or the number of electrons in it, has an obvious basis; not least, in the preoccupation with 
primitive recursion (or even Gregorczyk's classes beyond the first couple of levels). But the talk 
neglects both (i) familiar truisms, and (ii) experience in Higher Mathematics. Thus (i) numbers are 
well known to be large 'according to circumstances', and, with efficient notation, computations 
with numbers of large size are perfectly reliable (however embarrassing this may be to—the, in 
turn, particularly embarrassing—parts of the foundational literature), (ii) In [BD], Baker's large 
bounds for a class of problems are applied to a suitable particular problem, actually going back to 
Diophantus; this is discovered to benefit from those 'large' bounds. Specifically, the particular 
bound, though > 310 , is small enough for a complete solution, when supplemented by relatively 
little additional analysis; naturally, of aspects somewhat specific to the particular problem. 

(c) At the other extreme to the revolutionary claims of complexity theory mentioned near the 
end of 2, various formal parallels have been proposed between the separations P/NP and 
recursive/r.e. with, at least so far, superficial results. These do not involve any details of o.r.t., but 
merely the difference between deciding a question and verifying given evidence for an answer; for 
example, a numerical computation of p(n) = m constitutes evidence for m G M if M is 
enumerated by JH, but the negation needs a general argument. 

3. Here 'analog computer' means any physical system, tacitly, together with a theory according 
to which the initial values are under experimental control; not only the differential analyzer that 
originally competed with digital computers. For some (not so) fine points, for example, on the 
notion of initial value, cf. the review of [PR]. In terms of Ar-relativized o.r.t., an analog computer, 
thought of as an accessory to a digital computer, selects certain X, namely, those nonrecursive 
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outputs that arise from recursive inputs. The literature on this and other selections of privileged X 
is quite uneven. At one extreme, there has always been a tendency to evasion by good-humored 
talk of 'oracles', with the understanding that none is perfect in the sense of all others being 
(recursively) reducible to it. At another extreme, much attention has been given to oracles of 
restricted quantifier complexity 2j} or nJJ, among which there are perfect, also called 'complete', 
specimens. More recently, oracles X have been classified in terms of elementary equivalence w.r.t. 
fragments of such (elementary) languages as those of orders (by degrees) or lattices of sets that are 
r.e. in X. However, the impression of greater generality compared to, say, Higman's theorem is 
deceptive; for though elementary languages are indeed defined for arbitrary structures, their 
use—here: for classifying oracles—depends on the particular structure chosen. 

4. On p. 526 in vol. 1 of A. Weil's Collected Works, advances in recursion theory, presumably in 
contrast to number theory, are expected to establish that solubility, over the rationals, of binary 
equations is undecidable. Reminder: such undecidability, over Q, is not even known for the class 
of all diophantine equations (with rational coefficients). Weil's conjecture fits the modern interest 
in the solution set of binary equations (without parameters), for example, its group-theoretic 
properties even when it is open whether or not the set is empty. At the same time the conjecture 
confirms the current gut appeal of formulations in terms of the perfect computer, an appeal noted 
repeatedly in this review. It remains to be seen whether specialists will come to look at proofs of 
undecidability also, or even primarily, for additional information on the solution set of particular 
equations (as in speculations about Matyasevic's original refutation of Hubert's tenth problem and 
Pell's equation, say, for /?-adics). 

5. Here are the results alluded to in §4. (a) The incomparability result considered by Fitting (pp. 
47-52) is a corollary of a general result about partial orders < of subsets of w. Suppose each 
X c « has at most countably many predecessors, and the continuum hypothesis (CH) is false. Then 
there are incomparable elements in < , that is 3X3Y (-,X < YSc-yY < X). This is evident. If, 
further, the logical complexity of < is suitably restricted—for example, to II\—then the 
conclusion holds outright by familiar conservation results extracted from (current) relative 
consistency proofs for -iCH. Almost prehistoric 'basis' results sharpen this when < e 2J u II?, 
which certainly applies to the popular reducibilities of o.r.t. In this case there are incomparable 
elements of degree below 0'. (b) Concerning additional information supplied by priority arguments 
(and, certainly, by proofs of convergence of Hubert's ^substitution method compared to mere 
existence of some substitution), the case of Martin's proof of Borel determinacy suggests a pattern. 
In [M] Martin himself states only the existence of a winning strategy for Borel games. Others—in 
Une with the 'neglected question' on p. 164 of [GY]—saw in [M] straightaway the quantitative side 
of the particular strategy supplied by Martin's style of priority argument. This shift of emphasis 
has become more popular since he discovered a simpler proof of the result stated in [M]. (c) Within 
o.r.t. uses of priority arguments have also been analysed in game-theoretic terms [Y]. But more 
often they are associated with reducing the logical complexity of—all or some of—the sets 
involved in problems about Turing degrees, (i) Friedberg and Muönik sharpen (a) above so that 
both X and Y are r.e. (ii) Spector's result 3 X (Min A'), asserting the existence of a minimal, 
nonrecursive degree, is not suitable here since no such minimal degree is r.e. But in the variant 
3X3Y (Min X A X < Y), Y can be made r.e. to yield the degrees in the title of [Y]. For contrast, 
(d) some odd corners of o.r.t. have begun to benefit from mathematical proof analysis in terms of 
(Ershov's) g.r.t. on suitable function spaces of logical type in Note 9; for example, the theorem of 
Rice-Shapiro was interpreted as a corollary to a general fact about two topologies being equal; cf. 
2.3 in [3] of [LM] (but also more algebraic styles of analysis, for example, of Myhill's theorem on 
creative sets in terms of permutation groups). 

6. Application means the ternary relation: y is the value of (the function) ƒ applied to x. The 
literature on the subject illustrates very effectively the conflict, broached in §0, between specifically 
logical and more modern mathematical traditions, (i) The former cultivates categorical axioms (like 
Peano's and Dedekind's, of blessed memory) as logically precise characterizations of familiar 
notions (of the natural, resp. real numbers). For o.r.t. this is done on pp. 121-128 of [GY] in the 
language of applicative structures when restricted to w-models. (ii) Mathematical proof analysis, as 
explained in 1, tends to avoid categorical axioms, thereby pin-pointing more sharply, that is, by 
more general axioms, abstract properties sufficient for some theorem or proof that was possibly 
meant originally for a specific structure. 
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7. (a) Most elementary results about countable admissible ordinals drop out of relativized o.r.t. 
applied to well orderings. Formally, by a theorem of Sacks, proved later more simply by Friedman 
and Jensen on pp. 77-79 of [Bl], a countable a is admissible iff a = wf for some l e w . 
Naturally, the language of ordinals is more efficient in contexts where sets X and X' are 
'equivalent' as soon as a = a!. (b) The original theorem of Cantor-Bendixson states that the 
sequence aF of derived sets of a closed set F is countable (in suitable spaces). The quantitative 
refinement meant in 5 is: If (the set of complementary rational intervals of) F is 11} in X then the 
length of aF is bounded by u>f. 

8. (a) The role of higher types in set theory is familiar. In particular, for the fat power set 
operation they provide the chief means of generating sets of higher cardinality, the latter being the 
condition for ' representing', in the sense of set-theoretic foundations, all structures. Also the highly 
advertised axioms of infinity serve to push up types. Analogs for thinnish power set operations play 
a role in g.r.t. (b) The language of higher types is useful, to electronic and biological automata, for 
unwinding proofs in suitable systems S. (i) Generalized o.r.t. provides so-called functional 
interpretations of formulas F in S, that is, 3V forms ranging over recursive objects of higher type; 
specifically, of all finite types even if S is in the language of second-order arithmetic. The 
algorithms define S-provably recursive functions if F is IT % and is proved in S from true 11° 
lemmas. For practical use S must be logically very weak, (ii) Algorithmically significant reductions 
can sometimes be achieved by such mathematically trivial changes as replacing familiar schemata 
of lower type by axioms with parameters of higher type, for example, in the case of induction. This 
fits the view that the algorithmic content is generally only a small part of the information 
contained in a proof; in accordance with p. 173 of [Ca] about zahlentheoretischer Gehalt, and in 
conflict with [Bi] on numerical content. NB The local use of logically weak systems considered here 
is in sharp contrast to the traditional literature with claims that are not an iota less pretentious 
than those of footnote 2? 

9. Here are some consequences for g.r.t. on finite types of the two logical ideas at the end of 7. 
(a) The holy grail of one universal structure is of course meant in contrast to a few structures 
adapted to many situations, (i) The defects of using logical types, generated from a ground type 
by: (a, T) -* (a -> T), are familiar enough from set-theoretic foundations. For example, when R is 
defined in terms of the (totally disconnected) type (0 -* 0) -» 0 over w, one asks: How often will 
knowledge about the latter tell us what we really want to know about R? (ii) The hankering after 
one scheme leads even [E] to speak of a 'fundamental' choice between total versus (hereditarily 
monotone) partial functions in his g.r.t. on so-called countable and effective operations of finite 
type. A moment's thought shows that the partial variety has smoother algebraic, in particular, 
enumeration properties while the other tends to make for computational efficiency, as in the case 
of multiplication by 0; validity for partial functions requires n • 0 = 0 to be replaced, for example, 
by 0 • 0 =» 0, (n + 1) • 0 « n • 0. (b) Analyzing intended meanings is meant in contrast to deriving 
notions from extended scientific experience; cf. the second sense of 'basic' in 1, and Note 2a on 
the selection of problems. Now, most work in g.r.t. on the fat hierarchy of finite types, especially 
over w, goes back to [K2] with its overtures on the meaning of Church's thesis for that structure. 
Contrary to a wide-spread superstition it is certainly possible to be precise about such intended 
meanings (and about their intended purposes! cf. the groans on pp. 178-194 of [GYj). But, as in 3, 
there is the more demanding matter of shifts of emphasis. In the case of [K2] the best-known shift 
involves so-called normal functions, which are recursive (in the sense of [K2]) in the relations "E: 
equality between functions of type n - 1. For n > 1, " E is the archetype of nonconstructive 
relations in the sense of ordinary mathematics, and so normal functions are certainly out of tune 
with the overtures in [K2]. For n = 2 those normal functions have been used to recover, if not to 

3 Classifications by derivability in certain formal systems are claimed to correspond to such 
delicate aspects of theorems and proofs as reliability (in Hubert's business about finitist, that is, 
logic-free proofs) or depth (to be measured by ordinals as suggested by Turing, and given a slight 
twist by epigones of Gentzen). A current fad is reverse mathematics, in extreme form with the 
claim that formal equivalence in certain 'basic' systems expresses identity of ideas (comparable to 
the case of 0 «- 0 and Mordell's conjecture, which are equivalent in formal arithmetic). As at the 
end of 7, such antics can serve as object lessons; for example, on the need for testing the 
significance of classifications; cf. 2 on complexity theory. 
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extend, a good deal of metarecursion theory in 5. If more striking uses are ever found, one will, 
perhaps, speak of—preestablished?—harmony with [K2], that is, with the material coming after 
the overtures. But for the time being the main question is wide open: For which (compelling) 
problems about which of the many objects in the fat hierarchy are the degrees defined in [K2] 
efficient? To be charitable, when compared to, say, those of Euclid's Book X in its time. 

10. At least since Cantor the word 'recursion' applies also to the transfinite kind. This is 
associated with proof by induction, formerly called 'infinite descent', and brings to mind 
'inductive definitions' (i.d.); cf. the gushing pp. 147-149 of [GY]. But these verbal associations 
leave open to what extent the word fits the material which has come to constitute contemporary 
o.r.t. More specifically, the current 'general' theory of i.d. has been handicapped by the kind of 
coarse classifications familiar from Note 2a. Thus, if nothing but the logical form of the defining 
clause of an i.d. is used, the results reduce to mere bounds on the closure ordinal, as in Cantor's 
definition for the perfect kernel of a closed set; cf. Note 7b. In contrast, ordinary mathematics and 
more imaginative logic stress the choice between i.d. with the same closure ordinals; for example, 
between different sets of generators for the same algebraic structure, resp. between rules of proof, a 
particular kind of i.d., with and without cut; cf. the passage in 2 on insignificant classifications. 
( Reminder for specialists on weak subsystems, mentioned in Note 8b(ii). Formal theories of i.d. are 
proof-theoretically more efficient than Dedekind's alternative, which derives them from compre­
hension axioms; key words: II} - CA and 11^ - CA.) 
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