THE CUSPED HYPERBOLIC 3-ORBIFOLD OF MINIMUM VOLUME

BY ROBERT MEYERHOFF¹

An orbifold is a space locally modelled on \mathbb{R}^n modulo a finite group action. We will restrict our attention to complete orientable hyperbolic 3-orbifolds Q; thus, we can think of Q as H^3/Γ , where Γ is a discrete subgroup of $\mathrm{Isom}_+(H^3)$, the orientation-preserving isometries of hyperbolic 3-space. An orientable hyperbolic 3-manifold corresponds to a discrete, torsion-free subgroup of $\mathrm{Isom}_+(H^3)$. We will work in the upper-half-space model H^3 of hyperbolic 3-space, in which case $PGL(2, \mathbb{C})$ acts as isometries on H^3 by extending the action of $PGL(2, \mathbb{C})$ on the Riemann sphere (boundary of H^3) to H^3 . If the discrete group Γ corresponding to Q has parabolic elements, then Q is said to be cusped. (For more details on this paragraph see $[\mathbb{T}$, Chapter 13].)

Unless otherwise stated, we will assume all manifolds and orbifolds are orientable. Mostow's theorem implies that a complete, hyperbolic structure of finite volume on a 3-orbifold is unique. Consequently, hyperbolic volume is a topological invariant for orbifolds admitting such structures. Jørgensen and Thurston proved (see [T, §6.6]) that the set of volumes of complete hyperbolic 3-manifolds is well-ordered and of order type ω^{ω} . In particular, there is a complete hyperbolic 3-manifold of minimum volume V_1 among all complete hyperbolic 3-manifolds and a cusped hyperbolic 3-manifold of minimum volume V_{ω} . Further, all volumes of closed manifolds are isolated, while volumes of cusped manifolds are limits from below (thus the notation V_{ω}).

Modifying the proofs in the Jørgensen-Thurston theory yields similar results for complete hyperbolic 3-orbifolds (but see the remark at the end of this paper). In particular, there is a hyperbolic 3-orbifold of minimum volume, and a cusped hyperbolic 3-orbifold of minimum volume. We prove

THEOREM. Let $Q_1 = H^3/\Gamma_1$ where $\Gamma_1 = PGL(2, \mathcal{O}_3)$ and $\mathcal{O}_3 = ring$ of integers in $Q(\sqrt{-3})$. The orbifold Q_1 has minimum volume among all orientable cusped hyperbolic 3-orbifolds.

Note. Q_1 is the orientable double-cover of the (nonorientable) tetrahedral orbifold with Coxeter diagram \longrightarrow (see [T, Theorem 13.5.4] and [H, §1]). This tetrahedral orbifold has fundamental domain 1/24 of the ideal regular hyperbolic tetrahedron (use the symmetries). In particular, Q_1 has a cusp and its volume is 1/12 the volume of the ideal regular tetrahedron T, i.e. $\operatorname{vol}(Q_1) = V/12 \approx 0.0846$, where $V = \operatorname{vol}(T)$.

Received by the editors October 2, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20H10, 51M25.

¹Research partially supported by NSF grant MCS 8201827.

PROOF (OF THEOREM). In Parts I and II of the proof we will get a lower bound for the volume of H^3/Γ for arbitrary cusped discrete Γ .

PART I: VOLUME CONTRIBUTIONS OF CUSPED NEIGHBORHOODS IN H^3/Γ .

MANIFOLD CASE (i.e., Γ such that H^3/Γ is a manifold with a cusp): We can assume (using a suitable conjugation) that the cusp corresponds to the point at ∞ in H^3 , and that the parabolic transformation $z\mapsto z+1$ is the "shortest" element in Γ_∞ , the stabilizer of ∞ in Γ (Γ_∞ has no hyperbolic elements; see [Be, Theorem 5.1.2]). Construct the horoball C_∞ , centered at ∞ , for which Γ_∞ has minimum translation length one (in the Euclidean metric) on the horosphere boundary of C_∞ . Our set-up has been rigged so that $C_\infty=\{(x,y,t)\colon t\geq 1\}$. Construct such "length one" cusp neighborhoods at all parabolic fixed points (for some element of Γ). It is a standard fact (see [Be, Theorem 5.4.4]) that all such cusp neighborhoods are disjoint. Thus C_∞/Γ_∞ is an embedded "cusp neighborhood" in $M=H^3/\Gamma$.

What is the volume of $C_{\infty}/\Gamma_{\infty}$? If $z \mapsto z+1$ is the "shortest element" in Γ_{∞} , then any other element $z \mapsto z+w$ in Γ_{∞} must have $|w| \geq 1$ and $|\mathrm{Im}(w)| \geq \sqrt{3}/2$. Thus, we can compute $\mathrm{vol}(C_{\infty}/\Gamma_{\infty}) \geq \sqrt{3}/4$ (see [M1, §5]).

ORBIFOLD CASE. The only additional complication from the manifold case is that Γ_{∞} may include elliptic elements. If so, then the elliptic and parabolic elements comprising Γ_{∞} act as rigid motions on the (Euclidean) horosphere at height 1 in H^3 . Thus, we need only study the oriented wall-paper groups to understand the effect of the elliptic elements on the volume estimate for $C_{\infty}/\Gamma_{\infty}$. There are 5 such wall-paper groups, and the worst case reduces volume by a factor of 6.

The cusp neighborhoods contribute at least $\sqrt{3}/24$ to the volume of a complete orientable cusped hyperbolic 3-orbifold.

PART II: VOLUME CONTRIBUTIONS OUTSIDE THE CUSP NEIGHBORHOODS. By Part I, we have some control over the size of a cusped neighborhood. However, this cusp neighborhood is only a portion of the fundamental domain for Γ . Can we gain some control over the size of the fundamental domain outside of the cusp neighborhood? Yes, by sphere-packing. First, we fix a particular fundamental domain D for Γ : Let $D_{\infty} = \{p \in H^3 : p \text{ is closer to } C_{\infty} \text{ than to any conjugate (under } \Gamma) \text{ of } C_{\infty}\}$. Then we take D to be a fundamental domain for the action of Γ_{∞} on D_{∞} .

Next, consider 4 horospheres in H^3 , each touching all the others. Their centers (points of tangency with ∂H^3) will determine an ideal regular tetrahedron T. Let B be the union of the 4 horoballs bounded by the 4 horospheres. Böröczky's theorem (see [**B**, Theorem 4]) says that this is, in some sense, the densest packing of horospheres in hyperbolic 3-space. In terms of C_{∞} and D, Böröczky's theorem implies that $\operatorname{vol}(C_{\infty} \cap D)/\operatorname{vol}(D) \leq \operatorname{vol}(B \cap T)/\operatorname{vol}(T) = 4(\sqrt{3}/8)/V = \sqrt{3}/2V$ (for more details, see [**M2**]).

Thus,
$$vol(H^3/\Gamma) = vol(D) \ge vol(C_{\infty} \cap D)/(\sqrt{3}/2V) \ge (\sqrt{3}/24)(2V/\sqrt{3}) = V/12.$$

PART III: SUMMARY. As mentioned above, the orbifold Q_1 has a cusp and has volume V/12. Parts I and II tell us that all cusped orbifolds have volume at least V/12. Thus Q_1 realizes the minimum volume and it is $V/12 \approx 0.0846$.

REMARK. There are cusped orbifolds on which Dehn surgery cannot be performed. Consequently, unlike the manifold case, there are cusped hyperbolic 3-orbifolds whose volumes are isolated— Q_1 is such an orbifold. The question of finding "the least limiting orbifold" remains open.

ACKNOWLEDGEMENTS. I thank John Smillie for a helpful conversation. Also, most of this research was done at the Institute for Advanced Study; I thank the Institute for its hospitality.

BIBLIOGRAPHY

- [Be] A. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983.
- [B] K. Böröczky, *Packing of spheres in spaces of constant curvature*, Acta Math. Acad. Sci. Hungar. **32** (1978), 243–261.
- [H] A. Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc (2) 27 (1983), 345–355.
 - [M1] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, preprint.
 - [M2] ____, Sphere-packing and volume in hyperbolic 3-space, preprint.
 - [T] W. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. preprint 1978.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824

 ${\it Current address:} \quad {\it Department of Mathematics, Boston University, Boston, Massachusetts} \\ 02215$