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A RATIONAL BILLIARD FLOW IS UNIQUELY ERGODIC 
IN ALMOST EVERY DIRECTION 

BY STEVEN KERCKHOFF, HOWARD MASUR AND JOHN SMILLIE1 

The nature of the long-term behavior of a billiard ball moving on a fric-
tionless table is a question with strong intuitive appeal. A billiard flow is a 
type of geodesic flow. Geodesic flows, and billiard flows in particular, have 
provided important examples in the field of dynamical systems. 

Let Q be a planar polygon. One can define a geodesic flow ft on the unit 
tangent bundle U(Q) so that orbits of this flow project to billiard ball paths 
on Q. The polygon Q is said to be rational if all of the angles of Q are rational 
multiples of 7r. When Q is rational the tangent vectors to a given orbit are 
parallel to a finite set of unit vectors. The orbits with initial direction 0 lie 
in an invariant surface MQ. Me consists of a finite number of copies of Q, 
one for each potential direction of an orbit with initial direction 0 (cf. [P-K]). 
The dynamical analysis of ft breaks up into an analysis of the flows ft\Me as 
0 varies. 

The results of [Z-K] and [B-K-M] show that for a typical direction 0 
the flow is minimal, i.e. all orbits are dense. The purpose of this note is to 
announce the following 

THEOREM 1. For almost every 0 the flow ft\Me is uniquely ergodic. 

A flow is ergodic with respect to a probability measure if every invariant 
set has measure zero or one. A flow is uniquely ergodic if there is precisely one 
invariant probability measure. A uniquely ergodic flow is ergodic with respect 
to its unique invariant measure. The surfaces Me described above have natural 
invariant measures coming from Lebesgue measure on Q. Theorem 1 implies 
that the billiard flows are ergodic in almost every direction with respect to 
the natural invariant measures. 

Unique ergodicity can also be described in terms of the distribution of 
orbits. An orbit is uniformly distributed with respect to a probablity measure 
/x if for every open set V with fi{dV) = 0 the orbit visits V with an asymptotic 
frequency of /J>(V). A flow is uniquely ergodic if every orbit is uniformly 
distributed. The natural measures on the sets Me project tó Lebesgue measure 
on Q. These remarks imply the following 

COROLLARY 1. For almost every 0 the projection to Q of every orbit with 
initial direction 0 is uniformly distributed in Q. 

Theorem 1 has consequences for billiard tables which do not have rational 
angles. The set of all polygons with a given number of sides forms an open 
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subset of a finite-dimensional vector space. We would like to thank A. Katok 
and M. Boshernitzan for pointing out the following corollary to Theorem 1. 

COROLLARY 2. There is a dense G s consisting of polygons for which the 
billiard flow, ft, is ergodic. 

If Q is a rectangle or, more generally, if reflections through the sides of Q 
generate a tesselation of the plane then Theorem 1 is a consequence of Weyl's 
analysis of toral flows, as is pointed out in [F-K]. 

If the affine group generated by reflections in the sides of Q acts discretely 
on the plane then Theorem 1 follows from results in [B and G]. 

Theorem 1 follows from a result that we prove about Riemann surfaces 
and quadratic differentials. A quadratic differential q determines a "real foli­
ation" defined by Re q1/2 dz = 0. This foliation admits a transverse invariant 
measure. If it admits precisely one such measure we say that it is uniquely 
ergodic. 

THEOREM 2. Given a compact Riemann surface M and a holomorphic 
quadratic differential q then for almost all 6 the real foliation ofet0q is uniquely 
ergodic. 

The unique ergodicity of almost all interval exchanges proved in [M and 
V] follows from Theorem 2. The proof of Theorem 2 uses a result from [M] 
relating the unique ergodicity of q to the asymptotic behavior of q under the 
Teichmiiller flow. 
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