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OPTIMAL ISOPERIMETRIC INEQUALITIES 

BY F. ALMGREN1 

It is well known (and true) that among all n-dimensional closed surfaces 
(boundaries of bounded regions) in i2 n + 1 having n-area equal to that of the 
standard n-sphere dBn+1(0,1), the n-sphere itself uniquely (up to translations 
and sets of measure 0) encloses the largest volume. An equivalent formulation 
of this statement is the optimal isoperimetric inequality which asserts that 

£ n + 1 (Q) < 7(n + l)[Hn{dQ)]{n+1)/n 

for any nonempty bounded region Q in i2 n + 1 with equality if and only if (up 
to sets of measure 0) Q = int Bn+1 (p, r) for some p € # n + 1 and 0 < r < oo; 
here £ n + 1 denotes (n + l)-dimensional Lebesgue measure, Mn denotes n-
dimensional Hausdorff measure, B n + 1(p,r) = Rn+1 fl {x: \x — p\ < r} , and 

7(n + 1) = £ n + 1 (B n + 1 (0 , l))/[>/n(a5n + 1(0, l ) ) ] ^ 1 ) / * 

is the optimal isoperimetric constant. Q need not be the only bounded region 
having dQ as boundary. 

We announce several new optimal isoperimetric inequalities of geometric 
measure theory, proved in [Al], which are valid in general dimensions and 
codimensions. 

THEOREM. Suppose me {1,2,...,n}. 
(1) Corresponding to each nonzero m-dimensional simplicial cycle T = 

Ysiri^T î n Rn+1 with real coefficients there is an (m -f 1)-simplicial chain 
Q = ]T\ SjAJ1*1 in Rn+l with real coefficients such that dQ = T and 

|5j|)/m+1(A7+1)<7(m + l) X>|jr(Ar) X^m(AH 
1 1/m 
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(2) Corresponding to each m~dimensional (real) rectifiable cycle T in Rn+1 

there is an (m + 1)-dimensional (real) rectifiable current Q in Rn+1 with 
dQ = T and 

M(Q) < <7(m + l)M(T)S(Ty/m, 

with equality if and only if for some 0 < r < oo and —oo<s<oo,T equals 
s times the current associated with a standard m-sphere of radius r in i ? n + 1 . 

A (real) rectifiable current T is one which can be written in the form 
t(S, 0, 0 ; h e r e 5 is an (# m , m)-rectifiable and )/m-measurable subset of # n + 1 , 
S(T) = Xm(S)—the size of T, 0:S - • R+ is a positive density function, 

M(T) = fs 0dXm—the mass of T, £: S -+ AmJR
n+1 is a simple unit m-vector 

valued orientation function, and T((j>) = fs < £, 0 > 0cWm for appropriate 
differential m-forms </>. Corresponding terminology holds for Q. If m = n 
then Q is uniquely determined by T = dQ. 

In case T is an integral current (i.e. 9 is positive integer valued) then 
one can require Q also to be an integral current in the optimal isoperimetric 
inequality. Since S(T) < M(T) for integral T, 

M(Q) < 7(m + l)M(dQ)(m + 1) /m 

which includes our initial inequality as a special case. 
Corresponding optimal isoperimetric inequalities also hold for T and Q be­

ing members of the flat chains modulo v in dimensions m andm+1 respectively 
for each v G {2,3,4, . . .}. 

Largely as a consequence of [Wl and W2] we conclude, additionally, 

THEOREM. Each Lipschitz map ƒ : dN —• Rn~^^ of the boundary of a com­
pact (m + 1)-dimensional Riemannian manifold N is the restriction of a Lip­
schitz mapping g: N -> Rn+1 such that 

r / r \ (m+l)/m 
ƒ J m + i ^ m + 1 < 7 ( m + l ) ( I JmfdX™) 

Here Jm+\g denotes the (m + l)-dimensional Jacobian of g and J m f the 
m-dimensional Jacobian of ƒ, so that the inequality dominates the Hausdorff 
area of g by the Hausdorff area of ƒ. 

We note that the optimal isoperimetric constant ^(m + 1) depends only on 
the dimensions of the surfaces and not on their codimensions. 

The varifold estimates used in proving these optimal isoperimetric inequal­
ities include characterizations of standard spheres (with possibly varying den­
sities) among rectifiable varifolds. In the context of smooth manifolds these 
characterizations say the following. Suppose M is a compact smooth Tri­
dimensional submanifold of J?n + 1 without boundary and that the mean cur­
vature vectors of M do not exceed those of the standard unit m-sphere Sm in 
length. Then the m-area of M is not less than the m-area of 5 m , with equal­
ity if and only if M is a standard unit m-sphere in i ? n + 1 . More generally we 
have the following. 
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THEOREM. Suppose V = v(S10, r) is an m-dimensional rectifiable varifold 
in i ? n + 1 and h:S —• iZn+1 satisfies the condition 

6V(g) = f g^hOdX™ 
Js 

for each smooth vectorfield g:Rn+l —• Rn+1. If mi 6 > 0, sup|/i| < oo, and 
supKr-1)^! < m (z.e. £/ie normal components of h do not exceed m in length), 
then 

S(V) = Xm(S) > # m (d£ m + 1 (0 , l ) ) , 

with equality if and only if the set S is a standard unit m-sphere in i ? n + 1 . 

In this theorem, r: S —• G(n + 1, m) is the unoriented tangent plane map­
ping of S and h is minus m times the generalized mean curvature of V. 

In proving our varifold estimates we consider the boundary B of an s neigh­
borhood of the convex hull A of S = spt||V||, the Gauss mapping G:B —• 
&Bn+1(0,1), and the nearest point retraction mapping n:B -+ A. We use our 
first variation assumptions to estimate JnG and Jmivlv-1^) a n d then use the 
coarea formula to express the area of G (which is # n(dJ9 n + 1 (0,1))) as an inte­
gral over S. Corresponding integrals occur with S replaced by dBm+1(0,1) x 
{0} and comparison for small s shows #m (S) > )/m(<9£m+1(0,1) x {0}). 

Proofs of optimal isoperimetric inequalities are reduced to varifold esti­
mates essentially by utilization of compactness theorems of geometric mea­
sure theory to realize a particular T = t(S, 0, £) and mass minimizing Q 
with M(Q) = £m+1(Bm~f"1(0,1)) such that the isoperimetric inequality is an 
equality with the optimal constant, i.e. M(T) • S(T)1^m/M(Q) is minimized. 

Finally we establish a regularity criterion. 

THEOREM. Suppose T = t(S,0,£) is an m-dimensional (real) rectifiable 
current in i ? n + 1 and, for some 0 < e < oo, an associated varifold 

v(S,0 + €,r) 

has bounded mean curvatures. Then there is an open subset W of Rn+1 such 
that spt T f! W is an m-dimensional Holder continuously differentiable sub-
manifold ofRn+x and #m(spt T - W) = 0. 

The novel hypotheses of this theorem are satisfied by T realizing a minimum 
for expressions of the form M(T) • S(T)1^m/M(Q) considered above. The 
hypotheses are also satisfied by T minimizing M(T) + eS(T) among currents 
having the same boundary. 

The mathematical study of various forms of isoperimetric inequalities has a 
substantial history; see, for example, the survey article [OR]. The first least-
volume isoperimetric inequalities in general dimensions and codimensions of 
which I know appeared in [FF, Corollary 6.3] (with nonoptimal constants 
depending on dimension and codimension). The size function (necessary for 
real multiplicity currents) is first used in [A2]. For m = n optimal constants 
for both the real and the integral case follow from [FH, 4.5.9(31)], while for 
m = 1 the optimal constant for an integral case is determined in [FH, 4.5.14]. 
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