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The most important idea in enumerative combinatorics is that of a generat­
ing function. According to the classical viewpoint, if the function f(x) has a 
power series expansion Y%^Qanx

n, then ƒ(x) is called the generating function 
for the sequence an. Sometimes the coefficients bn, defined by 

are more useful; here f(x) is called the exponential (or factorial) generating 
function for the sequence bn. Generating functions are often easier to work 
with than explicit formulas for their coefficients, and they are useful in 
deriving recurrences, congruences, and asymptotics. 

Although generating functions have been used in enumeration since Euler, 
only in the past twenty years have theoretical explanations been developed for 
their use. Some of these, such as those of Foata and Schützenberger [6, 7] and 
Bender and Goldman [2] use decompositions of objects to explain generating 
function relations. Other approaches, such as those of Rota [13], Doubilet, 
Rota, and Stanley [4], and Stanley [14], use partially ordered sets. Goulden and 
Jackson's book is a comprehensive account of the decomposition-based ap­
proach to enumeration. 

In the classical approach to generating functions, one has a set A of 
configurations (for example, finite sequences of 0's and l's) satisfying certain 
conditions. Each configuration has a nonnegative integer "length". The prob­
lem is to find the number at of configurations of length i. One first finds a 
recurrence for the at by combinatorial reasoning; the recurrence then leads to 
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an algebraic or differential equation for the generating function. The generat­
ing function is viewed as a formal device with no inherent meaning, and the 
choice of an ordinary or exponential generating function is pragmatic: one or 
the other will be easier to work with. (Sometimes an exponential generating 
function is explained as necessary for convergence.) 

In the modern approach to generating functions, each element of the set A 
of configurations to be counted is assigned a "weight". The generating 
function for A is simply the sum of the weights of its elements. In most 
applications the weights are products of indeterminates, so if A is infinite, the 
sum is a formal power series. Convergence of this power series to an analytic 
function of one or several variables is irrelevant, and thus the term "generating 
function" is somewhat misleading (but seems unlikely to be replaced by the 
more accurate alternative term "counting series"). Properties of the generating 
function often follow directly from the structure of A. 

Let us look at a very simple problem from the classical and modern points 
of view. Let an be the number of compositions of n with parts 1 and 2, that is, 
the number of ways of expressing n as an ordered sum of l's and 2's. Thus 
a3 = 3, since 3 = 1 + 2 - 2 + 1 = 1 + 1 + 1. In the traditional approach we 
observe that a composition of n > 0 consists either of a composition of n — 1 
followed by a 1 or a composition of n - 2 followed by a 2. Thus we have the 
recurrence an = an_x + an_2 for n > 0, with the initial conditions a_x = 0, 
a0 = 1. If we set a(x) = EjfLo anx">tnen multiplying the recurrence by xn and 
summing on n > 1 yields a(x) - 1 = a(x) (x + x2\ so 

a(x) = 1/(1 - x- x2). 

In the modern approach we take A to be the set of compositions of 
nonnegative integers with parts 1 and 2. We define the weight of a composition 
of n to be xn, where x is an indeterminate. If we define the weight of a 1 to be 
x and the weight of a 2 to be x2, then the weight of a composition is the 
product of the weights of its parts. Thus by considering the last part of a 
nonempty composition we find a weight-preserving bijection A — {0} ^ A X 
{1,2}. Taking the sum of the weights on both sides, we obtain a(x) — 1 = 
a(x) - (x + x2), as before. This is an example of what Goulden and Jackson 
call a recursive decomposition. 

There is a slightly different way of deriving the generating function, which is 
important. Let Ak be the set of compositions with k parts. Then there is a 
weight-preserving bijection from Ak to {1,2}*, so the generating function for 
Ak is (x + x2)k. Thus, summing on k, we find the generating function for A to 
be 

£ (x + x 2 )* = 1/(1 -x-x2). 

This is a direct decomposition. 
By exactly the same reasoning one can find a generating function for 

compositions with any specified set of parts weighted arbitrarily. 
Similar, but more complicated, decompositions can be used to count certain 

types of trees. A rooted binary plane tree consists either of a single vertex (the 
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root) or of a root together with an ordered pair of trees (its left and right 
subtrees). Thus if T is the set of rooted binary plane trees and R is the set 
containing only a single tree with one vertex, we have a bijection T — R « R 
X T X T. If we assign a tree with n nodes the weight x", then the generating 
function t(x) for trees satisfies t(x) — x = xt2(x), which can be solved to give 

n = 0 

More generally, the generating function for rooted /c-ary plane trees satisfies 
t(x) — x = xf *(*). These equations can be solved by the Lagrange inversion 
formula. 

Exponential generating functions, which are of the form E£L0
 a

n
x"/nU arise 

in counting "tagged" (or "labeled") configurations: an is the number of objects 
of some type which can be made from the set of tags {l,2,. . . ,w} = Nn. 
Examples are permutations of Nn and labeled graphs on Nn. (For a more 
precise category-theoretic approach to "tagged configurations" see Joyal [10].) 
The usefulness of exponential generating functions arises from the fact that 

ÜEÜ î ! a (m + n\ xm+n 

ml'nl V m / ( m + / i ) ! ' 

where the binomial coefficient (m*n) is the number of m-element subsets of an 
(m -f «)-element set. If >4 is a configuration with tag-set Nm and £ is a 
configuration with_tag-set Nn9 we can combine them in (m*n) ways to get a 
configuration ( 4 , 2?) with tag-set Nm+n: We first choose an m-element subset S 
of Nm+n and jreplace the tags of A with the elements of S (preserving their 
order) to get A, and in the same way we get B from B and Nm+n- S. 

Thus if f(x) and g(x) are exponential generating functions for classes of 
tagged configurations, their product ƒ(x)g(x) will be the exponential generat­
ing function for ordered pairs of these configurations. For example, 

ex - 1 = Y — 
« = 1 

is the exponential generating function for nonempty sets. Thus 

(e'-l)2- £(2"-2)£ 

is the exponential generating function for ordered partitions of a set into two 
nonempty blocks. 

Not only can we add and multiply exponential generating functions, we can 
also compose them. If f(x) is the exponential generating function for certain 
tagged configurations, then ƒ (x)k counts /c-tuples of these configurations. Now 
if /(O) = 0, so that every configuration has at least one tag, then f(x)k/k\ 
counts sets of k of these configurations. Thus, for example, (ex — l)k/k\ 
counts partitions of a set into k (nonempty) blocks and exp(e* - 1) counts all 
partitions of a set. In general, ef(x) will count sets of configurations, each 
counted by ƒ (x). 
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One of the first applications of exponentiation of exponential generating 
functions was to counting connected labeled graphs (Riddell and Uhlenbeck 
[12]). A graph on n vertices is a subset of the set of (£) pairs of vertices, so 
there are 2(5) graphs on n vertices. A graph may also be identified with the set 
of its connected components, so if c(x) is the exponential generating function 
for connected graphs, 

This is an example of an indirect decomposition. "Known" configurations are 
decomposed into the configurations to be counted, yielding a generating 
function relationship that can be solved for the unknown generating function. 

Goulden and Jackson's book uses decompositions of the kind described 
above to derive most of the classical results of enumerative combinatorics. In 
addition to the standard topics, their book includes much that is not well 
known. Most of the material has not appeared in books before, and some of it 
is completely new. We now discuss the contents chapter by chapter. 

Chapter 1 covers properties of formal power series in several variables that 
are useful in enumeration, including the multivariable Lagrange inversion 
formula. Chapters 2 and 3 are devoted to ordinary and exponential generating 
functions and cover most of the basic material of enumeration, together with 
some little-known applications. Chapter 2 begins with the elementary counting 
lemmas relating combinatorial decompositions to generating functions, and 
applies them to problems involving sequences, partitions, plane trees, and 
planar maps. Chapter 3 covers familiar topics, such as labeled trees and cycle 
structures of permutations, and some unusual ones, such as bicoverings of a 
set. 

The last two chapters are devoted to more advanced topics. Chapter 4 is 
concerned with "sequence enumeration" problems. Many of these count 
permutations with a given pattern of rises and falls. The oldest result of this 
type is D. Andre's [1], which states that the number of permutations axa2 • • • an 

of Nn satisfying ax < a2> a3 < a4 • • • is the coefficient of xn/n\ in sec* + 
tan x. Closely related is Simon Newcomb's problem, first solved by Mac-
Mahon [11], which asks for the number of arrangements axa2 • • • amoikl l's, 
k2 2 's , . . . , such that at > al+1 for a given number of i's. A different type of 
permutation problem is the ménage problem: How many ways can n couples 
sit around a circular table with men and women alternating, but no husband 
and wife adjacent? 

Some permutation problems (including Simon Newcomb's problem) were 
treated in Chapter 2 by fairly elementary methods. In Chapter 4 powerful 
techniques, due to the authors, are developed for solving these problems with 
matrices. 

Chapter 5 discusses four recent topics involving paths: Flajolet's combina­
torial theory of continued fractions [5], a factorization method for counting 
paths restricted to a half-plane [8], the enumeration of nonintersecting paths, 
and a ^-analogue of the Lagrange inversion formula which is proved via paths 
[9]. 
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The book contains a large number of exercises with complete solutions, 
many of which contain new results, and an extensive Hst of references. 

A number of topics related to enumeration are not covered, such as 
asymptotics, graphical enumeration (Pólya theory), Young tableaux, applica­
tions of commutative algebra, and enumerative aspects of posets and matroids. 
These topics, although important, are peripheral to the main theme of the 
book. 

A comparison of Goulden and Jackson's book with its most recent predeces­
sor, L. Comtet's Advanced combinatorics [3], published in 1974, is instructive. 
Rather than developing a comprehensive theory, Comtet treats various topics 
more or less independently, and derives the basic formulas as directly as 
possible. Comtet's book is thus much shorter than Goulden and Jackson's and 
is much easier to browse through. Goulden and Jackson's book covers more 
material, more systematically and in greater depth, and demands more of the 
reader. Although later sections of Goulden and Jackson may be read indepen­
dently, the reader must first absorb a considerable amount of basic notation 
and terminology. The reader who wants to learn a little about enumeration will 
find Comtet more accessible, but to the serious student of enumeration, 
Goulden and Jackson will be essential. 
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