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generates a strongly continuous group of operators, he can use methods from 
the theory of semigroups, instead of those of Banach algebras no longer 
available. Versions of the operational calculus and spectral decompositions, 
localized to some linear manifolds, for operators with real spectrum conclude 
this exposition. 

The material is well written, the style is alert and attractive, despite the 
unavoidable technical portions. Many proofs are nice pieces of fine analysis. 
The author presents an original, interesting and consistent point of view 
concerning the spectral theory of linear operators, especially of those having 
real spectrum. The reviewer has several reasons to believe that the spectral 
theory of linear operators has much to gain from the systematic study of 
operators with " thin" spectrum, in particular of those with real spectrum. The 
present work is a remarkable illustration of this assertion. 
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The Cauchy problem, by H. O. Fattorini, Encyclopedia of Mathematics and its 
Applications, Volume 18, Addison-Wesley, Reading, MA, 1983, xxii + 636 
pp., $69.96. ISBN 0-201-13517-5 

About three hundred years ago Isaac Newton taught us that the motion of a 
physical system is governed by an initial value problem or Cauchy problem for 
a differential equation, and the notion of Cauchy problem has been developing 
ever since. Here the phrase differential equation should be interpreted broadly 
so as to include systems of partial differential equations, integrodifferential 
equations, delay differential equations, and other kinds of equations. Most, but 
not all, of the Cauchy problems that arise "naturally" are well-posed problems 
—that is, problems for which a solution exists, is unique, and depends 
continuously on the ingredients of the problem. These requirements often 
necessitate imposing auxiliary conditions, such as boundary conditions, on a 
given Cauchy problem. 

Of special interest are linear equations. There are two reasons for this. 
Firstly, many equations, such as the Schrödinger equation of nonrelativistic 
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quantum mechanics, arise naturally as linear equations. Indeed, the linearity of 
the Schrödinger equation can be taken as an axiom of quantum theory. 
Secondly, many inherently nonlinear equations (such as those describing heat 
conduction) can be well approximated in important special cases by linear 
equations. Understanding the associated linear equations gives one an under­
standing of the relevant special cases as well as providing one with insight into 
what is going on in general. 

In the nineteenth century mathematicians focused attention on finding 
explicit solutions to a handful of equations together with developing the 
separation of variables techniques. The latter led to the spectral theory of 
self adjoint and, more generally, normal operators on a Hubert space, which 
has proved to be an invaluable tool in the solution of Cauchy problems for 
differential equations. 

By the 1930s it was clear to many that a useful way to treat Cauchy 
problems was to cast them as ordinary differential equations for Hilbert-
space-valued functions of a real variable, namely time. Thus one considers 
abstract Cauchy problems such as 

^p- = Au(t) (t>0), t/(0) = t/0, 

where t is the time, u(-) takes values in a Hubert space E, u0 is the (given) 
initial value, and A is a linear operator from its domain D(A) in E to E (so 
that du(t)/dt = Au(t) makes sense), and D(A) incorporates the boundary 
conditions. For example, any vector in D(A) may be thought of as a function 
satisfying a spatial Dirichlet boundary condition. 

Nonselfadjoint problems were also clearly of importance, and spaces other 
than Hubert spaces arose naturally. Thus, for instance, if u(t, x) represents the 
solution of a heat-type equation (where t > 0 and x e Q c Un) then \\u(t, )||Li 
[respectively, \\u(t9 OIL00! n^ght; represent the total heat content [respectively, 
the maximum temperature] at time /. Thus at some point it became clear that 
one should look at linear differential equations in Banach space or perhaps in 
more general topological vector spaces, especially those connected with the L. 
Schwartz theory of distributions. 

The theory of one-parameter semigroups of operators, as developed by E. 
Hille, K. Yosida, R. Phillips, and others in the 1940s and thereafter, con­
stituted a significant extension of spectral theory and led to many new 
applications. Semigroup theory led to other advances in the theory of differen­
tial equations in abstract spaces, including cosine functions, approximation 
theory (which explains how solutions depend continuously on the ingredients 
of the problem), approximation by difference schemes, perturbation theory, 
equations involving operators depending explicitly on time, improperly posed 
problems, and so on. To this day the field continues to be an active one. Since 
significant applications continue to appear, the field, as of today, must be 
regarded as a healthy one. 

This book by Fattorini covers all of the topics mentioned above. It is 
self-contained and should be accessible to a wide audience of mathematical 
scientists. Equations treated in some detail include the diffusion equation, the 
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Schrödinger equation, the neutron transport equation, Maxwell's equations, 
and the Dirac equation. A notable feature of the book is the treatment of 
second-order elliptic and parabolic problems in L2 and Lp spaces. Fattorini 
does a nice job of explaining the Agmon-Douglis-Nirenberg elliptic machinery 
(in the second-order case), making it accessible to a wide audience. An 
important feature of the book is its extensive and useful bibliography occupy­
ing more than a hundred pages. 
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Bayes theory, by J. A. Hartigan, Springer Series in Statistics, Springer-Verlag, 
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0-387-90883-8 

A basic problem of statistics is to infer something about a parameter or state 
of nature 6 after observing a random variable x whose distribution pe depends 
on 6. A neat, but controversial, solution to this problem of inference is 
provided by the Bayesian approach. Assume that 0 is a random variable with 
distribution m prior to observing JC. The inference is made by calculating qx, the 
conditional or posterior distribution of 0, given x. Hpe and IT have probability 
density functions f(x\0) and g(0), respectively, then qx has density h(6\x) 
given by Bayes's formula 

f(x\e)g(0) 
h{e\x) = lf(x\<p)g(<p)d<p 

h(O\x)ccf(x\6)g(0). 

(1) 

or, briefly, 

(2) 
(For simplicity, assume the densities are with respect to Lebesgue measure. 
However, any a-finite dominating measure will do.) There is no disagreement 
about Bayes's formula. The controversy is about its application and its 
interpretation. 

The two major interpretations of the probability of an event E, both of 
which can be traced back to the seventeenth-century origins of the subject, are 
as the limiting relative frequency of £ in a sequence of trials, or as a measure 
of the degree of belief in the occurrence of E. For the past half century the 
majority of probabilists and statisticians have accepted the frequency interpre­
tation, even though it is of limited application and seems somewhat circular in 
its "dependence" on the law of large numbers. The frequency view is disas­
trous for Bayesian inference because it rarely happens that prior probabilities 
make sense as frequencies. They do make sense when viewed as degrees of 
belief, and this explains why Bayesians are often identified with subjective 
probability (de Finetti (1974), Savage (1954)). However, there have been, and 
are, prominent Bayesians who advocate the use of logical or canonical prior 


