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should make a valuable, easily accessible reference work. Much of the material 
covered is due to the author and his students, and, except for some overlap 
with the recent book [2] of Karpilovsky, most of it cannot be found in other 
books. 
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This book presents and studies a new class of generalized ordinary differen­
tial equations containing impulsive terms linearly. The review first introduces 
the discipline of generalized ODE, briefly describes the contents of the book, 
and offers comments on the treatment in the present literature. Readers 
familiar with the background, and those who do not believe that a book review 
is an excuse for an expository paper, may wish to begin around equation (11). 

Consider ordinary differential equations in Rn, 

x = ƒ(/ , JC) (i.e., dx{t)/dt = ƒ(/ , x(t))). (1) 

If the right side, ƒ: R1+n -> Rn
9 is continuous, it is perhaps obvious what the 

solutions x(') of (1) ought to be: an explicit definition is almost superfluous. 
Applications soon dictated that continuity of ƒ be relaxed. One studies 

'block box systems' 

x = Ax + bu(t) (2) 

by examining the 'responses' x(-) to various 'inputs' M(-); and Laplace 
transform methods suggest that it is the discontinuous inputs that are crucial: 
e.g., a signum function, a unit stepfunction, or even a delta "function". 

With discontinuities present in the term u(-) (the forcing term, or control), 
one can no longer successfully require that solutions x(-) satisfy the differen­
tial equation (2) for all t. Several plausible definitions of generalized solution 
come to mind: 

(A) functions JC(-) that are absolutely continuous (locally) and satisfy (2) for 
almost all t (absolute continuity cannot be relaxed to ordinary continuity 
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without theory breaking down: even x = 0 would have too many solutions 
with JC(0) = 0); 

(B) functions x(-) such that 

x(t) = eAtx0 + V eA^-s)bu{s) ds 

(the variation-of-constants formula is elevated to a definition); 
(C) continuous functions x(-) whose distributional derivative satisfies (2) (in 

another version Schwartz's distributions might be replaced by Mikusihski 
operators). 

Perhaps it is not surprising that these definitions turn out to be equivalent, 
at least for (2) with A, B constant. In 1918 C. Carathéodory discovered a 
far-reaching extension: definition (A) applies not only to (2), but also to 
nonlinear equations (1) as long as ƒ(/, x) is measurable in / and continuous in 
x (with a technical growth requirement added—the Carathéodory conditions 
[1, 2]). A conceptually minor, but practically important, further generalization 
involves differential inclusions (orientor fields, differential inequalities when 
state space dimension n = 1). These are symbolically indicated by 

* e F ( f , j c ) , (3) 

where F(t, x) is a subset of Rn varying with t, x and satisfying suitable 
conditions. For example, x e [-1,1] has, as classical solutions, differentiable 
real-valued functions x satisfying |JC(0I < 1 f° r a^ *> a nd, a s Carathéodory 
solutions, the real functions with Lipschitz constant 1. (These concepts, dating 
back to 1935, are due to A. Marchaud and S. K. Zaremba; for a survey and 
references see [13].) 

For some time there was no compelling reason to go any further: most ODE 
which came from applications did have the right side depending continuously 
on the state variable x. In addition, there was an obvious obstacle to cheap 
generalisation—the initial value problem 

-1 f o r x > 0 , x(0\ = 0 
1 f o r x < 0 , * W U ' for* < 0, 

has no solution on any interval [0, e), e > 0: a kind of jamming occurs at the 
'endpoint' x = 0. 

During and after the second world war, new mathematical problems became 
more frequent and important in this area: for example, automatic control 
systems, discontinuous feedback control (home thermostats are an obvious 
instance), and optimal control. The impetus had been present at least since 
1868 when Maxwell published a paper [11] titled On governors (the governor of 
a Watt steam engine being a prime example). These governors, and other 
systems involving 'automatic regulation or control', signal 'amplifiers' (such as 
the diode oscillator leading to the van der Pol equation), and power-assisted 
turrets in World War II bombers, were all devices involving continuous state 
feedback. In the case of linear or proportional feedback, the analysis was 
simplified (positive or negative feedback for dimension 1), but often nonlinear-
ities were essential to the situation. Even more intractable mathematically were 
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the far simpler and cheaper two-position on-off controllers. Studies of these, 
presumably with application to the guidance systems in the VI and V2 
weapons, led to the first attempt at systematic treatment [6]. 

To illustrate the genesis of equations discontinuous in the state, consider a 
particularly simple example: time-optimal control of a service trolley [9]. The 
kinematic equations, in R2 as state space, are 

x = 7, y = w, -1 < u(t) < 1. (4) 
The time-optimal control problem is the following: given initial values (x0, y0) 
e R2, find an 'optimal control' M:[0, +oo) -» [-1,1] such that the solution 
*(•)> y(') °f (4), with these initial data and the chosen forcing term w(), 
reaches the origin (i.e., x(T) = 0 = y(T)) at minimal time T > 0. Heuristics 
(involving controls with constant values + 1) and elementary methods suggest 
that there is a significant 'switch curve' in R2, y = (-sgn x) • ^2\x\, and the 
optimal control u should have a value of -1 above this curve (and on its left 
branch y > 0), a value of 1 below the curve (and on its right branch y < 0), 
and a value of 0 at the origin (loc. cit., p. 10). 

Now, if this prescription is used to define u: R2 -> [-1,1] as a function of 
the state, u = w(x, y\ there arises quite naturally the feedback system corre­
sponding to (4), 

*=y, y = u(x9y); (5) 
obviously, this is a differential system, autonomous but nonlinear, with right 
sides depending discontinuously on the state variables. Having constructed this 
'synthesis of the optimal regime', one is confronted with the obvious questions: 
Does (5) have existence of solutions to the initial value problem? (Probably 
yes, by construction: the time-optimal solutions should satisfy (5).) Does (5) 
have uniqueness? (In other words, will a mechanism which implements the 
constructed on-off feedback w(x, y) actualy perform as expected?) In the 
positive case does (5) even exhibit continuous dependence on initial data 
(insensitivity to erros in measurement)? Neither the classical nor Carathéodory 
theories provide answers. Since u(x, y) is discontinuous, there is no question 
of a Lipschitz condition, and little use for any of the more refined uniqueness 
tests. 

This difficulty—lack of an adequate theory for discontinuous ODE— 
became more acute with the appearance of differential games. Here one studies 
systems with kinematic equations x = / ( x , w, v), wherein the controls w(-), 
v(-) are to be suitably chosen by two 'players' who may have inconsistent or 
even opposed goals [12,8]. Even if ƒ is reasonably smooth, the players might 
well choose control functions discontinuous in the state variable x, led by 
optimality considerations analogous to those in (4). 

Probably the first systematic attempt to treat a wide class of possibly 
discontinuous equations was made by Filippov [5]; others then followed. For 
the sake of illustration, let us describe one of these concepts, due to Krasovskij 
(a more detailed account appears in [7]). Assume equation (1) is given; 
associate with it the differential inclusion (3), where F is obtained from ƒ as 
follows: 

00 

F(t>x)= f i cvxf(t,x + k'lB). (6) 
A : - l 
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Here B is the unit ball in Rn (so that x + k~lB is the ball of radius k~l about 
x), and cvxM denotes the closure of the convex hull of M. Then 'solutions' of 
(3), i.e., locally absolutely continuous functions w(-) which satisfy the differen­
tial inclusion (3) almost everywhere, are defined to be the Krasovskij gener­
alised solutions of (1). Two properties are immediate: if f(t, x) is continuous in 
x, then each F(t, x) = {ƒ(/, x)} is a singleton, and the present definition 
reduces to a previous one; second, each Carathéodory solution of (6) is a 
Krasovskij solution. (The so-called Filippov solutions have only the former 
property.) 

A moderately successful theory of generalised solutions is now available 
(e.g., a positive answer to the converse problem in the synthesis of time-
optimal feedback for controllable linear systems (9) with one-dimensional 
controls [7, Theorem 9.4]). Some obvious questions have still not been addre­
ssed. One involves integration theory: differential equationists will always view 
this as the study of (generalised) solutions of the " trivial" equation (1) with x 
absent, or, better, of this equation 'made autonomous' by the familiar device of 
raising state dimension by 1: 

± = / ( 0 ) , * « 1 . (7) 

There appear to be close relations between the Krasovskij solutions of system 
(7) and the concept of belated integrals in the sense of McShane (or, better, 
I to-belated [10]). A second question concerns the 'other' generalisation of 
solutions to differential equations: the weak solutions of linear partial differen­
tial equations. 

The reader may have noticed by now that the prime problem is not really 
how the solution concept should be generalised, but rather, what is the class of 
differential equations to be treated by these solutions. What is more important 
is that the impetus for studying broader classes of equations should come from 
applications (rather than from pure ODE theory). 

To come closer to the topic of the reviewed book, in control-theoretic texts 
often the most natural and immediate interpretation of the physical laws 
governing the process is a differential equation of the form 

for an unknown function *(•), and involving a function w(-) and its derivatives 
(with w(-) given or arbitrarily taken from a suitable class of functions; 
numerator dynamics; realisation of transfer functions). If n > m and the an bj 
are constant, this may be rewritten in vector form as 

x = Ax + Bu, (9) 

where the new vector function x(-) has the old scalar unknown x(-) as first 
coordinate; similarly, for «(•)• (Actually n> m may be relaxed to allow 
n = m. Indeed, a vector equation 

JC = Ax + Bu + Cù (10) 

may be written, using>>:= x — Cu, as>> = Ay + (B + AC — C)u in the form 
of (9); e.g., the scalar equation x = ü + u obviously reduces to y = u with 
y:= x — w, and one may recover the observation JC from the new states>>.) 
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In (10) we have implicitly assumed that the data A, B, C are constant or 
depend only on /. The reviewed book proposes to treat a nonlinear analogue of 
this, the most general being 

*=f(t9x) + g(t,x)ù, (11) 

x =f(t, x, u) + g(t, u)ü. (12) 

See (2.1) and (2.32) (unqualified references are to the reviewed book). Here the 
functions ƒ(•)> g( ') a r e t 0 satisfy reasonable assumptions; u = u(t) is a 
right-continuous vector function of bounded variation; and solutions x(-) of 
(11) are defined to be right-continuous functions of bounded variation which 
satisfy (11) when x, ù denote derivatives in the sense of Schwartz distributions 
(locally on compact intervals, Definition 1.4). Thus (11) indicates a new class 
of ordinary differential equations, and the solution concept proceeds in the 
direction (C) suggested at the beginning of this review. Intuitively, in (11) the 
function w(-) is allowed to have discontinuities, so ù has impulsive behavior, 
and, therefore, x(-) may be discontinuous. 

In the book under review, Chapter 1 introduces needed concepts (BV, 
complex measures, distributions) and treats one example—a growth problem. 
Chapter 2 is concerned with existence and uniqueness of the so-defined 
solutions for the initial value problem of (11) with u(-) given, including an 
' integral representation' 

x{t) = x(t0) + j'f(s, x(s)) ds + ƒ ' g(s, x(s)) du(s), (13) 

and also existence of cost-optimal solutions for the corresponding control 
problem (12). Chapter 3 ("Stability and asymptotic equivalence") interprets 
the quasi-linear problem x = A(t)x + F(t, x)ù as a perturbation of the linear 
ODE x = A(t)x. Chapter 4 ("Impulsive systems") proceeds analogously, 
except that the unperturbed system is taken to be bilinear: x = A(t)xü {A 
«-square, u scalar). The final chapter ("Lyapunov's Second Method") extends 
stability concepts and methods to x = f(t, x) + g(t, x)ù, again viewed as a 
perturbation of a basic ODE x = f(t9 x). Each chapter concludes with histori­
cal notes. The Bibliography contains 52 references; of these some 33 are 
devoted to the topic of impulses or measure terms in ODE, 7 are general 
references, 8 are due to one or both the authors, 6 are unpublished, and 11 are 
not referred to in the text. According to the Preface, the book is ". . . an attempt 
to unify the results of several research papers published during the last fifteen 
years." 

The reviewer's comments follow. 
We mention minor matters first. The bibliography is careless. The names 

Halanay, Tesei, and Zavaliscin are consistently written as Halany, Texi, and 
Zabalischin (the last is probably a further misspelling of a misspelling, Zaba-
lishchin, in reference [22] of the book). Jiirgen Groh is listed under "J" as Groh 
Jirgen, but otherwise not referred to. Two items are ominous, but may have 
local effect only. The first involves the statement and proof of Theorem 4.2; 
the assertion, with de-encumbered notation, is that, if in Mx = a the matrix M 
is singular and a ¥* 0, then no solution x exists (see the sentence beginning on 
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the last line of p. 59). In Theorem 2.5 on the existence of optimal controls and 
solutions, any assumption that would ensure that the limit of "suboptimal" 
controls is necessarily an admissible control has been omitted; as stated, the 
theorem is false trivially. 

The subject, study of equations (11), is completely lacking in motivation. 
This is particularly damning in a discipline like differential equation theory, 
which is almost exclusively devoted to, and justified by, the solution of 
problems which come from the outside. (ODE theory has little inner harmony 
and beauty; it is a far more obvious example than group theory of a discipline 
that will not appear in a Bourbaki treatment.) Of course, there cannot be any 
good linear examples: As shown, (10) can always be transformed to the 
classical case of equations without 'impulses'. 

In fact, some applications are mentioned in the Preface. One involves the 
'control problem' x = ƒ(/, x9 u): "Suppose that the control function u(t)...[is] 
of bounded variation... then the solution x(t)... may possess discontinuities." 
This is false (or meaningless). The "Case and Blaquière problem" and Itô's 
equation have been pasted in with no attempt to relate to, or actually treat by, 
the methods of the book. 

Finally, we come to a disaster—the "growth problem" (Preface and pp. 
8-9). The simplified initial value problem is 

JC = x • w, x(0) = 1, (14) 

with 

.M-.+«(.-,,). m,)-{; 'z;;i: 
The interpretation is growth of a single species x(t), governed by x = ax with 
reproduction rate a > 0 (instantaneous growth rate per unit time): "After 
some... time intervals tx... fish are removed... and new... fish... released 
The growth of the fish population is impulsive." This is modelled by using an 
impulsive control a = ü of the reproduction rate a\ Of course, this is possible, 
but it grates against the sensibilities of any applied mathematician. 

Unfortunately, worse is to come (other than the misprints w = 1 + tf//(^) 
on p. 9, line 19). One solves (14) by observing that x/x = w, so x(t) = eu(t) • 1, 

(V forO < t < tl9 

* ( ' ) - , a f (15) 
\e' - ea f o r ^ < / . 

If one insists on greater sophistication (better, robustness), one approximates 
the delta function and takes limits of approximate solutions; this confirms the 
exhibited result. The book provides the following "solution" (p. 9, (4)): 

x(t) = e'/(l - a) for tx < t, (16) 

and if a = 1, the impulsive equation (13) has no "solution". That this is put 
forward intentionally is confirmed by the treatment of the more general vector 
equation 

x = A(t)xù, u(t) = t +Y;akHk(t) 

in Chapter 4, Theorem 2.4. 
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What led the authors to a theory which has the consequence ea = 1/(1 - a) 
(for the coefficient of el above)? How did this happen? What was the initial 
error? The author of this review had thought that mathematics is self-
correcting, that errors of fact—even if not caught by the author, referees, 
reviewer, or fellow workers—tend to be instinctively ignored by the mathe­
matical community, and that questionable foundations are never built upon to 
create a tottering construction. This book provides a counterexample; and the 
story goes back to 1971 and [3]. 

First, then, the error. The authors believe that every distribution (say, on Rl) 
is a complex measure—i.e., a continuous linear functional on the space Cc°° 
(infinitely differentiable functions R1 -+ Rl with compact support) endowed 
with the topology defined by the supremum norm—and, simultaneously, that 
every distribution has a derivative, in the sense of Schwartz distributions. (See 
p. 6, lines 9-10 and p. 7, lines 2-6; also see [3, p. 44] and [4, p. 155].) 

Second, the reason. In (11), x and ù are to be distributional derivatives (of 
right-continuous BV functions), i.e., distributions. Also in (11) one has the 
term g(*, x(t\ u{t)) • w, i.e., a product of a discontinuous function with a 
distribution. Thus one needs objects which can be both differentiated and 
multiplied. Schwartz distributions do not function this way. One can multiply 
locally integrable functions with complex measures, but not with derivatives. 
The authors' solution concept is not a valid definition. 

Third, the details. Suppose that for (14), with u = t + aH, one guesses the 
form x = e\\ + cH) with unknown constant c; substitution leads to 

cô = aS + acH8. 

If one now pretends that the product H8 is 8 (which it is not), there results 
c = a/(l - a) and (16). 

The discrepancy may seem minor: distributions are indeed continuous linear 
functional on Cc°°, but under a different topology from that of the sup norm. 
It is true that many differential equationists view topology with disdain (for 
this, one must ignore the work of Poincaré, Lefschetz, and Pontrjagin): here it 
leads to the consequence ea = 1/(1 — a). 

Suppose that the concept had instead been based on the integral formula 
(13), and the book written without any mention of impulses, distributions, and 
integral representation (necessarily, with a changed title). Indeed, some of the 
references take this point of view. Suppose also that the reviewer were 
permitted to comment on what then might have been, rather than properly 
confining himself to the book as written. What remains of the main objections 
is the ea = 1/(1 — a) paradox and the lack of motivation; these are connected. 

To reemphasize, the problem (14) has the robust solution (15) and no others; 
the corresponding integral version 

x(t) = 1 + f x(s) du(s)9 u(t) = t + aH(t - tx), 

has the solution (16) and no others. The discrepancy extends, of course, to the 
general situation (11) and the corresponding Itô-type version dx = f(t, x) dt + 
g(/, x) du. 
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Why should one study (11) at all? If this is answered satisfactorily (and the 
reviewer believes it might), why should one adopt (13) as a definition of 
solution (especially because it leads to discrepancies)? 

This book, and part of the literature on impulsive ODE, are fundamentally 
flawed. 
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One of the fundamental problems in abstract harmonic analysis is the 
determination of the set of (equivalence classes of) irreducible unitary repre­
sentations of a topological group G. These are continuous homomorphisms of 
G into the group of unitary operators on a Hubert space; one assumes, in 
addition, that the Hilbert space has no nontrivial closed subspaces invariant 
under the whole group. This is a nonlinear problem, in the sense that group 
elements and unitary operators can be multiplied, but not added. It is tempting 
to look for ways to linearize things, for example because of the great success 
that idea enjoys in the elementary representation theory of finite groups. 
(There one considers the convolution algebra of all functions on the group. The 


