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ON AUTOMORPHISMS OF NODAL ENRIQUES SURFACES 

BY F. COSSEC AND I. DOLGACHEV 

1. Introduction. The purpose of this note is to announce a descrip­
tion of the automorphism group of a generic Enriques surface which con­
tains a nonsingular rational curve (a nodal Enriques surface). The automor­
phism group of a generic unnodal Enriques surface was recently computed by 
W. Barth, C. Peters, and V. Nikulin (see [B-P]). As opposed to the transcen­
dental methods of these authors, we work over any algebraically closed field 
of characteristic p ^ 2,3,5,7, and 17. Our notion of a generic nodal surface is 
very explicit: We assume that our surface belongs to an open Zariski subset 
of the 9-dimensional variety parametrizing Reye congruences of lines in P 3 . It 
is known that every generic nodal Enriques surface over the complex numbers 
is isomorphic to a Reye congruence [Co]. 

The main geometric ideas of this paper belong to A. Coble: We interpret 
differently and reconstruct his results on the number of the projective classes 
of quartic symmetroid surfaces congruent with respect to regular Cremona 
transformations [Cb 1, Cb 2]. 

2. Main results. Let Q be the integral quadratic form of rank 10 defined 
by the Dynkin diagram of type T2,4,6 

ai • — • • — • • • — • — • — • ag 
i 
I 
i 
•OtQ 

and let W be the corresponding Weyl group generated by the reflections in 
the vectors c^ (see, for example, [Do]). It is known that W contains a unique 
normal subgroup W(2) containing the 2-congruence subgroup W(2) such that 
W/W{2) is isomorphic to the finite group Sp(8,F2) [Gr]. 

THEOREM 1. The automorphism group of a generic nodal Enriques sur­
face is isomorphic to W(2). 

Recall that this result is very similar to the cited result of Barth-Peters 
and Nikulin, where the answer is given in terms of the quadratic form defined 
by the Dynkin diagram of type T2,3,7 (isomorphic to the Néron-Severi lattice 
of an Enriques surface). 

THEOREM 2. The number of nonisomorphic nonspecial representations 
(resp. special) of a generic nodal Enriques as a double plane is equal to 34,780 
[resp. 136). 

We refer to [AS, Chapter X] for the definition of special and nonspecial 
double plane representations of Enriques surfaces. 
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THEOREM 3. Every two nonsingular rational curves on a generic nodal 
Enriques surface differ by an automorphism of the surface. 

3. The group W(2). It is well known that the 2-congruence subgroup of 
the Weyl group of type Ej or #8 is generated by the unique element UJQ of 
maximal length. Our Dynkin diagram T2,4,6 contains a subdiagram of type 
Es spanned by the vectors ao, «2 , . . . , a^ a n d two subdiagrams of type Ey 
spanned by the vectors ao, a i , . . . , OL§ and ao, 0:2,..., 0:7, respectively. Let 
^0 » ^0 > ana^ ^o ^ e ^ne elements of W defined by the corresponding ele­
ments OJQ associated to these subdiagrams. The group W(2) from the intro­
duction contains the elements B — UQ , K = OJQ , G = OJQ '59, where 59 is 
the reflection in ag. 

PROPOSITION 1. (i) The group W{2) is the smallest normal subgroup of 
W containing the elements B and K. 

(ii) The group W(2) is the smallest normal subgroup containing the ele­
ments B, K, and G. 

The first assertion was stated without proof by Coble [Cb 2]. A similar 
statement for the Weyl group of type T2,3,7 was also stated by him and has 
been proven recently by E. Looijenga (unpublished). Our proof follows the 
idea of Looijenga. The second assertion follows easily from the first one. 

4. Reye congruences. It is known that every Enriques surface F can 
be embedded into P 5 as a surface of degree 10 [Co]. Also it is known that 
a nodal Enriques surface must contain a nonsingular rational curve of degree 
at most 4 [C-D]. 

PROPOSITION 2. Let F be a nodal Enriques surface of degree 10 in P 5 . 
Assume that F does not contain nonsingular rational curves of degree < 4. 
Then F, or its reembedding by \0F(KF{1))\, is isomorphic to a Reye congru­
ence embedded into P 5 by Plücker coordinates. 

Recall that a Reye congruence is defined as the variety R(T) of lines in P 3 

contained in at least two quadrics from a general web T of quadrics in P 3 . 
Clearly, Proposition 2 gives a satisfactory geometric notion of a generic nodal 
Enriques surface. 

5. Sketch of the proofs. Let R(T) be a Reye congruence, and let H(T) 
be the Hessian surface of T, the quartic symmetroid surface in P 3 parametriz­
ing the singular quadrics from T. We assume also that R{T) does not contain 
nonsingular rational curves of degree < 3 (cf. Proposition 2). Then H(T) 
possesses ten distinct nodes corresponding to the quadrics of rank 2 from 
T. Moreover, there are no discriminant conditions on these ten nodes in P 3 

(see [Do]). The projective isomorphism classes of ordered ten nodes of such 
quartic symmetroids are represented by an algebraic variety V. It is known 
that a minimal nonsingular model S(T) of H(T) is isomorphic to the .Re­
cover of R{T). Let q be the corresponding involution on S(T). The Weyl 
group W acts regularly on V via its Coble representation [Do]. The kernel of 
this representation contains the elements K, 5 , and G, which correspond to 
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the Kantor, dilated Bertini, and dilated Geiser birational involutions in P 3 , 
respectively (see [Cb 2]). By Proposition 1 it contains the whole subgroup 
W(2). Since W/W(2) = Sp(8,F2) is a simple group, one can easily see that 
the kernel of the Coble representation is exactly W (2). Thus, the finite group 
W/W(2) acts on V, and there exists an open Zariski subset V , where it acts 
without fixed points (char(fc)f#Sp(8, F2)). However, the isotropy subgroup 
Wv of a point v € V can be identified with the automorphism group of the 
variety Xv obtained by blowing up the corresponding ten points in P 3 [Do]. 
Next, we notice that the symmetroid surface S(T) lies in Xv and represents 
the isolated | — 2Kx | • We prove that Wv can be identified with the group of 
automorphisms of the corresponding K3 surface S(T) which commute with 
the involution q (modulo the involution itself): i.e., with the automorphism 
group of the Enriques surface R{T). This finishes the proof of Theorem 1. 
The other two theorems follow from the first one after proving that the group 
W acts on the set of polarizations of degree 2 on F (resp., nonsingular rational 
curves on F) and computing the orbits of this action and the corresponding 
stabilizer groups. 
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