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A NEW POLYNOMIAL INVARIANT OF KNOTS AND LINKS 1 

BY P. FREYD, D. YETTER; J. HOSTE; 

W. B. R. LICKORISH, K. MILLETT; AND A. OCNEANU 

The purpose of this note is to announce a new isotopy invariant of oriented 
links of tamely embedded circles in 3-space. 

We represent links by plane projections, using the customary conventions 
that the image of the link is a union of transversely intersecting immersed 
curves, each provided with an orientation, and undercrossings are indicated 
by broken lines. Following Conway [6], we use the symbols L+, Lo, L_ to 
denote links having plane projections which agree except in a small disk, and 
inside that disk are represented by the pictures of Figure 1. 

Conway showed that the one-variable Alexander polynomials of L+, Lo, 
L_ (when suitably normalized) satisfy the relation 

AL+(t) - AL_(t) + (t1'2 - r 1 /2 )A L o ( t ) - 0. 
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1 Editor's Note. The editors received, virtually within a period of a few days in late 

September and early October 1984, four research announcements, each describing the same 
result—the existence and properties of a new polynomial invariant for knots and links. 
There was variation in the approaches taken by the four groups and variation in corollaries 
and elaboration. These were: A new invariant for knots and links by Peter Freyd and David 
Yetter; A polynomial invariant of knots and links by Jim Hoste; Topological invariants of knots and 
links, by W. B. R. Lickorish and Kenneth C. Millett, and A polynomial invariant for knots: A 
œrnbinatorial and an algebraic approach, by A. Ocneanu. 

It was evident from the circumstances that the four groups arrived at their results 
completely independently of each other, although all were inspired by the work of Jones 
(cf. [10], and also [8, 9]). The degree of simultaneity was such that, by common consent, 
it was unproductive to try to assess priority. Indeed it would seem that there is enough 
credit for all to share in. 

Each of these papers was refereed, and we would have happily published any one of 
them, had it been the only one under consideration. Because the alternatives of publication 
of all four or of none were both unsatisfying, all have agreed to the compromise embodied 
here of a paper carrying all six names as coauthors, consisting of an introductory section 
describing the basics written by a disinterested party, and followed by four sections, one 
written by each of the four groups, briefly describing the highlights of their own approach 
and elaboration. 
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Recently, Vaughan Jones [10] constructed a new polynomial invariant sat­
isfying the relation 

tvL+(t) - rlvL_(t) + (t1/2 - r1/2)VL„(t) = o. 
Our invariant, which can be regarded either as a nonhomogeneous polyno­

mial in two variables or a homogeneous polynomial in three variables, gener­
alizes both the Alexander-Conway [2, 6] and the Jones polynomials. 

MAIN THEOREM. There is a unique function P from the set of isotopy 
classes of tame oriented links to the set of homogeneous Laurent polynomials 
of degree 0 in x, y, z such that 

(1) xPL+ (x, s/, z) + yPL_ (x, y, z) + zPLo(x, y, z) = 0, 
(2) PL,(x,y,z) = 1 if L consists of a single unknotted component. 

REMARKS. (1) If L consists of n unlinked and unknotted components, then 

PL(x,y,z) = (-(x + y)/z)n'1. 

(2) The Alexander-Conway polynomial of L is 

AL(t) = PL(l,-ht1/2-t-1/2)> 

and the Jones polynomial is 

VL{t) = PL{t,-r\tl'2-t-^). 

(3) Since Pi,(x,y,z) is homogeneous, it can be viewed (in many ways) 
as a polynomial in two nonhomogeneous variables. A convenient way to do 
this is to set PL{1^TÏI) = PL(/ , / - 1 , ra) . In this notation the basic relation is 
lPL+{lim) + l-1PL_(l,m) + mPLo(l,m) = 0. 

(4) Reversing the orientation of R3 has the effect 

PL{x,y,z) <-> PL(y,x,z), pL(/,m) *-»/^(l"1,™). 

However, neither polynomial is changed by simultaneous reversal of orienta­
tions on all components of L. 

(5) If L is a connected sum of links L\ and L2, then PL = PL^PLI* 
(6) The following examples are easily computed by using the recurrence 

relation and the values of P for unlinks. 

L = QQ : PL = yz~l + aT Y * " 1 - aT1*, 

L = ( Q ) : PL = x - V - 2x~1y - x~ V , 

L= CQ) :pL = y - V _ 2xy-i __ x2y-25 

L = ( 5 ) : PL = a T V Y - xy-1 - x-1^ - 1. 



A NEW POLYNOMIAL INVARIANT O F KNOTS AND LINKS 241 

We wish to express our appreciation to Vaughan Jones for communicating 
his results to us. The particular viewpoints of the various authors are outlined 
below. 

T H E F R E Y D - Y E T T E R APPROACH 

In order to reduce the unique existence of the homfly invariant to a word 
problem, let R be the ring of Laurent polynomials on x, y, z\ Wn the set of 
words on n — 1, . . . , 2,1, — 1, . . . , — n + 1 (no zero); W the disjoint union of 
the Wn's; F the free R-module generated by W. An element of W is denoted 
[u]n, where u G Wn. R —> F denotes the map that sends 1 to [ ]i. F —• M 
denotes the quotient module obtained by imposing the following relations, in 
which u,v E Wn and 0 < b < a < n: 

(AO) [ua(-a)v]n = [uv]n = [u(-a)av]n, 
(Al) [itafa;]n = [u6ai>]n if b < a — 1, 
(A2) [ua(a — l)av]n = [u(a — l)a(o — l)v]n, 
(Ml) [uv]n = [vti]n, 
(M2) [unv]n+i = [w]n = [u(-n)v]n+u 
(PI) x[uav]n + 2/[w(-o)v]n + z[uv]n = 0. 

LEMMA. R -+ F ^ M is an isomorphism. 

This lemma implies the Main Theorem by the following argument. Each 
element of Wn describes a braid on n strands. By the classic theorem of Art in 
[1], the map W —» F —» M sends two elements of Wn to the same element of 
M if they describe equivalent braids (AO), (Al), (A2). A braid gives rise to a 
link by joining its top and bottom. By the classic theorem stated by Markov 
[12] and proved by Birman [3], two braids are sent to the same element in M 
if they induce the same link (Ml), (M2). The resulting function from links to 
M satisfies condition one of the Main Theorem (PI). Invert the isomorphism 
to obtain an R-valued function that satisfies both conditions. 

To prove the lemma consider the following six directed substitution rules 
(still with u, v £ Wn, 0 < b < a < n): 

(51) [uabv]n —> [ubav]n for b < a — 1, 

(52) [ua(a - 1) • • • {b + l)bav]n -> [u{a - l)a(o - 1) • • • (6 + l ) H n , 
(53) [u(-a)v]n -> -xy~1[uav]n - y~1z[uv]n, 
m .x r T _ 1 r i _ 1 r i (54) [txaavjn —• — x~ly[uv]n — x~l z[uav]n, 

(55) [ura;]n+i -> [uv]n, 

(56) H n + i -^ -(x + ^ ^ H n -

LEMMA. These rules obey the DCC: that is, there is no infinite sequence 
of correct applications starting with a single form. 

LEMMA. Suppose that ƒ is a form and that it is possible to apply a rule to 
obtain the form g and to make another application (of possibly another rule) 
to obtain the form h. Then there is a form j , a sequence of applications from 
g to j , and a sequence of applications from h to j . 
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An inductive proof then shows that starting with any form ƒ and arbitrarily 
applying the rules, one inevitably arrives at a unique "terminal form" T(f) 
on which no rule applies. 

LEMMA. A form is terminal iff it is an R-multiple of [ ]i. 

The Main Theorem is thus established with 

LEMMA. T{f) = T{g)ifff = g. 

For the most part these four lemmas have straightforward (but tedious) 
proofs. The DCC lemma needs a "complexity" measurement on forms guar­
anteed to decrease under each of the substitution rules. The next lemma 
reduces to 21 separate cases, one for each pair of rules. Each is proven by the 
simple expedient of applying in sequence the unique rule that applies. The 
characterization of terminal forms is achieved by finding at least one rule that 
applies to [u]n for n > 1. The last lemma is easy if (Ml) is deleted from the 
relations. ((Ml) is in fact a consequence of the other relations.) The proof 
that T[uv]k = T[vu]k quickly reduces to the case T[mw]n+i = T[m>n]n+i, 
where u and v are descending words of positive elements, u starting with n — 1, 
v with n. If v is empty or a singleton or if u is empty, a mindless verifica­
tion works. Separate arguments are needed for the two remaining cases (u of 
length one, u of length greater than one). If long computational proofs are 
acceptable, a mindless approach works for both (as it must if these lemmas 
are true): Apply any sequence of applicable substitution rules. 

T H E HOSTE APPROACH 

We define P as follows. Given any oriented link L first choose some projec­
tion S of L and then "resolve" S by first "changing" and "smoothing" some 
crossing in 5, and then again changing and smoothing a crossing in each of 
the two projections that result from S, and so on until only unlinks remain. 
Next use property (1) of the Main Theorem and the values of P for the un­
links given in Remark (1) to obtain a value of P for S. We prove that the 
polynomial so produced is well defined and depends only on the isotopy class 
of L. 

To avoid difficulties that arise from the fact that S can be resolved in in­
finitely many ways, we begin with a slightly different definition of P. Given 
5, first order the components of S and also distinguish a point on each com­
ponent. We may then gain more control on the resolution of S by first giving 
a rule whereby an ordering and pointing is induced on projections obtained 
from 5, and then demanding that the resolution ends, not just in unlinks, 
but in "descending" projections. (A pointed ordered projection is descending 
if one never crosses over one's path while traversing the components in the 
given order and direction starting on each at the distinguished point.) Now 
use this "distinguished" resolution to compute P of S, denoted Pg. 

We next show Ps is well defined—i.e., independent of the choice of or­
dering, pointing, and distinguished resolution, by induction on the number 
of crossings in S. To prove the inductive step we first show the choice of 
resolution is immaterial. This is made possible by the pointing and ordering 
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scheme, which essentially implies that any two resolutions must eventually 
change all the same crossings, but perhaps in different orders. Employing the 
inductive hypothesis, it remains only to prove that (1) changing a crossing 
and immediately changing it back has no effect, and (2) changing the ith. and 
then the jth crossings has the same effect as first changing the jth and then 
the ith crossings. Next we show that Ps is unchanged if S is repointed. This 
can be reduced to the case where S is descending and one distinguished point 
is moved forward along its component past one crossing. Finally, we prove 
Ps is independent of the ordering of S. This is the hardest step, although 
we can first reduce to the case where S has two components and is descend­
ing, but not with respect to its own ordering. Now we show that S can be 
transformed into a split descending projection (one where the components do 
not cross each other and, hence, the ordering does not matter) by a finite 
sequence of Reidemeister moves that never increase the number of crossings 
(so we can make use of the inductive hypothesis) and, furthermore, preserve 
Ps-

Once Ps is known to be well defined, it is not hard to show that it is 
preserved by Reidemeister moves. Thus it depends only on the isotopy class 
of L. At this point we finally know that any distinguished resolution of the 
unlink produces the unlink polynomial, and from this we can prove that any 
resolution can be used to compute P, not just ones that are distinguished 
with respect to some choice of pointing and ordering of S. 

T H E LICKORISH AND MILLETT APPROACH 

Once the announced Main Theorem is believed, the only difficulty is prov­
ing that PL can be well defined; uniqueness, calculations, and Remark (4) are 
easy. Our combinatorial proof has simplicity: Let Cn be all planar projec­
tions of oriented links of at most n crossings with components ordered and 
base-pointed. If L E Ln let aL E Cn be L-with-changed-crossings so that 
aL ascends from the base point of the first component onwards (thus, fol­
lowing along the components of aL in the given order, always beginning at 
base points, a crossing is always first encountered as an underpass). Initially 
P is defined as a function P:\Jn £n -> Z[ /± 1 ,m± 1 ] . For L G \Jn Cn define 
POLL = \xcL~x, where // = — (/ -f /~1)m~1, and L has cL components. In­
ductively, assume that on £ n _ i , P has been defined, is independent of base 
points and orders, and 

(*) IPL++1~1PL^ +mPLo = 0 . 

For L in £ n define PL to be the polynomial obtained from PaL using (*) 
(and the inductive definition) on a sequence of crossing changes that creates 
aL from L. The choice of sequence is irrelevant, (*) holds in £ n , and PL is 
unchanged by those Reidemeister moves that remain within £n. If now f3L 
denotes the new ascending element of Cn formed from L by reference to a 
new set of base points and component order, the induction step is completed 
by showing that PpL, as calculated from P&L, is / i c L _ 1 . A straightforward ar­
gument on sliding base points along components shows (using the prescribed 
value of /i) that this is so if only base points are changed; a change of compo­
nent order requires a very careful use of the permitted Reidemeister moves on 
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f3L to change (3L to another ascending projection with fewer crossings, thus 
determining P@L by induction. This done, PL is defined independent of base 
point and ordering; it is invariant under all Reidemeister moves, and the Main 
Theorem is proved. 

The entire dependence of PL on (*) demands a redevelopment of Conway's 
skein theory [7] in the two-variable context. At once this new version of 
linear skein theory produces the elementary results that PLI#L 2 = PL1PL2

 = 

V>~1PL1UL2 • Applied to two-string tangles [11], it shows that PL is unchanged 
by mutation (rotation through 7r of such a tangle) in L. Thus the two eleven-
crossing knots (of distinct genera) for which A(t) = 1 have the same P(/,m), 
which is, by calculation, not trivial (so PL depends on more than the Alexander 
module of L). Also, mutation shows that for a pretzel knot K{a\,..., a r), PK 
is unchanged by permutation of the a%. Further, if S and T are two-string 
tangles, if S + T is 

and SN and SD are the polynomials for 

( S 7 and 

then 

(1 - fi2)(S + T)N = (SNTD + SDTN) - fi{SNTN + SDTD). 

This can be much applied in producing formulae for the polynomials of ra­
tional and other arborescent links. Two knots of Birman [4] with distinct 
signatures have the same polynomial. Thus if signature is a skein invariant, 
then P is not injective on the set of skein-equivalence classes of oriented links. 
Two-variable analogues exist for most of the other skein-theoretic results given 
in [7]. 

Tables will be produced (with computer aid) of the values of P for oriented 
links of low crossing number. At present the literature lacks an agreed nota­
tion and even a set of diagrams for oriented links. Manual calculations of the 
polynomials proceed via various neat recursion formulae for particular types 
(e.g., rational and pretzel) of links. Calculations of M. B. Thistlethwaite show 
that if K is the knot II388 (in the notation of K. Perko) and K is its mirror 
image, then PK ^ P^, but both VK = V^ an<^ ^x = ^ K -

T H E OCNEANU APPROACH 

We define for each permutation in Sn a layered braid in the n-string braid 
group Bn. We show combinatorially that under the equivalence relation in 
the Main Theorem, any braid decomposes uniquely as a linear combination 
of layered braids. With the coefficients of the decomposition we construct 
invariants to conjugation in Bn, and obtain the invariant PL of the closed 
braid as an invariant to the Markov moves [3]. 

We then study the algebraic structure of the invariant PL- Linear combi­
nations of braids in Bn have an algebra structure in which layered braids form 

m 
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a basis. The algebra turns out to be the Hecke algebra Hn with Dynkin dia­
gram An [5]. In this way we explicitly construct a family of finite-dimensional 
irreducible representations of i?n, indexed by n-Young diagrams. The invari­
ant appears as a weighted trace, explicitly determined via the S-functions 
associated to the discrete Euler /3-function [13]. 

We then study the values of the variables for which the representation has 
additional orthogonality and positivity structure. 

THEOREM. Let r G C. The free C*-algebra AT over C generated by 
{ek\k = 1,2,...}, satisfying e2, = e*k = ek and 

ekek+\ek - rek = ek+xekek+i - re^+i, k e N, 

eket = eiek if \k - l\ > 2, 

is nonzero if and only if r G [0, | ] U {(4cos(7r/n))_1, n = 3,4, 5 , . . .} . D 

THEOREM. Let a, 6 G C, and let 

r = (4cosh2 0 ) - 1 , rj = ± ( l - t a n h a tan0). 

Consider on the C*-algebra AT a positive linear functional [i — ^T^ satisfying 
fi(xy) = jJ>(yx), i.e., ji is a trace, 1,2/G AT, and fi(wen+i) = rjfi(w), w G AT,n. 
Such a functional fi exists if and only if r, rj are given by one of the following 
values of a, 6: 

(i) 9 G R + , a G R (the normal range)] 
(ii) 0 G R + , a — kO + ni/2, k G Z\{0} (the exceptional lines); 

(iii) 6 = mjm, m = 3,4,5, . . . ; a = (fc/ra+l/2)7ri, k = 1,2,..., [(ra-l)/2] 
(the exceptional points), 

or, if0<r)<l and r = rj(l — rj) (the limit line). 
The trace // is then uniquely determined and the corresponding weak closure 

RT^ of AT is the hyperfinite II1 factor for rj ̂  0,1, and C for rj — 0,1. D 

For a, 0 as above consider the representation 7 = 7a,0,r/ of the braid group 
Bn into Rr^ given by 

-7(<rfc) - i(e-*-dek - e-"+*(l - cfc)), A; = 1 , . . . , n - 1. 

Consider on i2rr7 the trace 

0 = 0a, 0 — (icoshacsch0)n~VT)r?. 

THEOREM. For b E Bn the invariant polynomial P^ of the closure b is 
given by Ph(e

a, -e-a,2ismh0) = <t>(l(b)). 

PL is given by a positive trace of a unitary representation precisely at the 
exceptional points. The Jones invariant corresponds to the line k — 2 and the 
Alexander invariant to k — 0; the Arf invariant to m = 4, k = 2. For k = 1, 
PL = 1, and for k = - 1 , PL = ±1. This shows that for any knot K, P# - 1 
is divided by Ptrefoil - 1. 
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We have implemented a program which computes the coefficients of PL. 

REMARK. H. Wenzl has independently obtained the structure of the simple 

modules of the Hecke algebras by studying subfactors of the hyperfmite II i 

factor and has computed the index and entropy of the subfactor generated by 

e 2 , c 3 , . . . in Raj. 
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