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ALGEBRAIC X-THEORY 
OF POLY-(FINITE OR CYLIC) GROUPS 

BY FRANK QUINN 

ABSTRACT. The K-theory of the title is described in terms of the K-
theory of finite subgroups, as generalized sheaf homology of a quotient 
space. A corollary is that if G is torsion-free, then the Whitehead groups 
Wh t(ZG) vanish for all i. 

1. The main result. Suppose that G is a poly-(finite or cyclic) group. 
Then there is a virtually connected and solvable Lie group L that contains G 
as a discrete cocompact subgroup. ("Virtually" means a subgroup of finite 
index has the indicated property.) This follows from results of Auslander and 
Johnson, as observed in [5]. Let K be a maximal compact subgroup of L. 
Then G acts (on the right) on the contractible manifold K\L. The action 
may not be free; for y e {K\L) the isotropy subgroup is Gy = {yGy~l) D K. 
These isotropy subgroups are finite since they are discrete in the compact 
group K. 

Consider the quotient K\L/G. Let [y] denote a point with preimage y 
in K\L. Then the isotropy subgroup Gy is determined by [y] up to con­
jugacy. Gy therefore defines a "cosheaf up to conjugacy" of groups over 
K\L/G. If R is a ring we can apply the algebraic K-theory functor K(i2[*]) 
to this to get a cosheaf of spectra over K\L/G. Homology groups with co­
efficients in a spectral cosheaf are defined [12] and, in this case, denoted by 
Hl(K\L/G\K.(RGy)). Homology is discussed further in §2. 

The K-theory spectrum used here is the nonconnective one; the lower ho-
motopy groups of the spectrum are Bass's groups K-3;. Also, maps of K(RG) 
induced by conjugation of G are essentially canonically homotopic to the iden­
tity. Therefore the uncertainty of definition of the Gy vanishes at the spectrum 
level. 

1.1 THEOREM. Suppose G is a discrete cocompact subgroup of a Lie group 
L that is virtually connected and solvable and has maximal compact subgroup 
K. Suppose R is a subring of the rationals in which the order of the torsion 
of G is invertible. Then the natural homomorphism 

Ht(K\L/G;K{RGy)) -» Kt(RG) 

is an isomorphism for all i. 

Before discussing the proof we give corollaries and references. First, if G is 
virtually abelian Yamasaki [18] has proved the analog of 1.1 for the surgery 
groups of G. 

Received by the editors October 29, 1984. 
1980 Mathematics Subject Classification. Primary 16A54, 18F25, 22E40. 

©1985 American Mathematical Society 
0273-0979/85 $1.00 + $.25 per page 

221 



222 F R A N K QUINN 

The first corollaries concern Whitehead groups, so we recall their defini­
tion. Note that the K groups and the homology groups are both defined 
as homotopy groups of spectra. The homomorphism of the theorem comes 
from a map of spectra. The corresponding map with constant coefficients, 
H(J3G;K(fl)) -+ K(RG), coincides with the map defined by Loday [8]. The 
Whitehead spectrum Wh(G; R) is defined to be the cofiber of this map, and 
the Whitehead groups are the homotopy groups of this spectrum. Formal 
properties of homology imply 

1.2 COROLLARY. Suppose G, L, K and R are as in 1.1. Then the natural 
homomorphism 

Hi(K\L/G; Wh(Gy; R)) -> Wh;(G; R) 

is an isomorphism for all i. 

If G is torsion free then the isotropy groups Gy are all trivial, so the 
coefficients in the homology group are trivial. This implies 

1.3 COROLLARY. Suppose G is a torsion free poly-(finite or cyclic) group. 
Then Wh*(G; Z) = 0 for all i. 

Some cases of this were known previously. The cases i = 0,1 are due to 
Farrell and Hsiang [5]. They also showed the groups are torsion when i > 0 
[6]. When G is a Bieberbach group (virtually abelian) A. Nicas has shown 
that Wh2(ZG) = 0 [10], Wh3 is 2-torsion [9], and Wh* has no p-torsion for 
0<i<2p~2 [11]. 

Next we apply a spectral sequence to get more detailed information. Ob­
serve that we obtain cosheaves of groups Ki(RGy) over K\L/G by applying 
TTi fiberwise to the cosheaves of spectra. There is an Atiyah-Hirzebruch type 
spectral sequence from ordinary to generalized homology: 

Ht(K\L/G;K3{RGy)) => Hi+j{K\L/G]K{RGy)). 

The leftmost column of this spectral sequence can be described in more fa­
miliar terms. Consider the category of (conjugacy classes of) finite subgroups 
H C G with morphisms inclusions of conjugates. Applying Kj gives a functor 
from this category into abelian groups, and we denote by limKj(RH) the 
direct limit of this functor. The inclusions H c G define a homomorphism 
\m$K3(RH)-*K3(RG). 

1.4 LEMMA. Suppose L, K, G are as in 1.1. Then there is a natural 
isomorphism YimKj(RH) ~ Ho(K\L/G;Kj(RGy)), and the homomorphism 
to Kj (RG) is the inclusion of the i = 0 column of the spectral sequence. 

This is a result of special connectivity properties of strata in K\L/G. 
The spectral sequence is nearly first quadrant because Carter [2] has shown 

that K-i(RGy) = 0 for finite Gy and -i < - 2 . In particular, the lower left 
corner gives information about the lowest groups. Using the lemma to replace 
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#o terms, we get 

1.5 COROLLARY. Suppose G, L, K, R are as in 1.1. Then 
(a) Kl(RG)=0 ifi< - 2 ; 
(b) \imK-i(RH) —• K-i(RG) is an isomorphism; and 
(c) there is an exact sequence 

-+ H2(K\L/G;K^(RGy)) -* \imK0(RH) -> K0{RG) 

- HtiKXL/GiK-tiRGy)) -+ 0. 

Part (a) has been recklessly conjectured by Hsiang for all G, while some­
thing like (b) was conjectured by Farrell and Hsiang in [5]. 

2. Homology. The homology theory used in the theorem is a functor of 
simplicial maps p: E —> X. We think of p as defining a "coefficient system" 
over X. Suppose J is a covariant (and "continuous") functor from spaces 
to spectra. J can be applied to the point inverses of p to yield a "spectral 
sheaf" over X, denoted J(p). Homology groups i^(X; J(p)) are defined in 
the appendix to [12] and in more detail in Chapter 2 of [14]. 

Now suppose a discrete group G acts simplicially on a complex X. Let 
EG denote a contractible complex on which G acts freely, and let p denote 
the projection in the balanced product construction p: (EG x X)/G —• X/G. 
Applying homology gives groups Hi(X/G; J(p)). The map fits into a diagram 

(EGxX)/G —> (EGxX)/G —> (EG) IG 
lid [p [ 

(EGxX)/G) —> X/G —^ pt 

The right vertical map has range a point, so the homology groups are just the 
coefficient groups 7rt J (BG). The left vertical gives constant coefficient homol­
ogy Hi((EG x X)/G; J(pt)). The diagram defines natural homomorphisms 

HZ((EG x X)/G; J(pt)) - • #*(X/G; J(p)) -+ ^3(BG). 

If X is contractible, (EG x X)/G ~ BG. Assuming this and letting J = 
K(JR7TI), we get homomorphisms 

Hi(BG;K(R)) - • Hi{X/G]K{Rin{p))) -+ KZ(RG). 

The center group is the one used in §1, where the notation K(RGy) is used for 
the coefficient system. This notation reflects the fact that the point inverse 
p~1(y) is homotopy equivalent to BGy. The right homomorphism is the 
natural homomorphism referred to in the main theorem, and the composition 
of the two is the Loday homomorphism. 

3. Sketch of the proof. The proof follows the general outline used by 
Farrell and Hsiang [5] in the i = 0,1 cases. The major new ingredient is a 
controlled version of algebraic if-theory [14]. 

Suppose E is a space. There is a category with morphisms formal sums 
(with R coefficients) of paths in E [13]. "Matrices" of these can be defined 
and used to construct an analog of the ÜT-theory of Volodin [15]. If p: E —> X 
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is a map to a metric space, we can additionally impose restrictions on the 
diameter of the images of the paths in X. This gives an "e-controlled" K-
theory. Finally the inverse limit of this as e —• 0 gives the fully controlled 
theory. The resulting controlled K groups are denoted Kx {X\ p, R). 

A basic result of the subject is that the controlled groups are isomorphic 
to homology groups. Specifically, suppose X is a finite complex and p is sim-
plicial. Then the controlled group is isomorphic to Hi(X]K(Rmp~1(y))). 
When p is the balanced product projection, as in §2, this is exactly the ho­
mology used in Theorem 1.1. The conclusion is that to show that something 
in Ki(RG) comes from homology, it is sufficient to show that it can be repre­
sented by a controlled object with small diameter. 

Now suppose L is a Lie group containing G, as in 1.1. Let L' denote the 
commutator of the identity component of L. (L'K)\L is isometric to euclidean 
space, of positive dimension since L is virtually solvable. G acts on this by 
isometries, so the image of G in the automorphism group of (LfK)\L is a 
cyrstallographic group (see eg. Farkas [4]). It is sufficient to control sizes in 
(L'K)\L, because the other directions in K\L are parametrized by L', which 
has smaller dimension than L. We may assume that control can be obtained 
in groups of smaller dimension than L as an induction hypothesis. 

The reason crystallographic actions are useful is that there are a lot of 
expansive maps. If T and A are crystallographic groups acting on Rn, then 
an s-expansive map is a diffeomorphism Rn —• Rn that is equivariant with 
respect to a homomorphism r: T —• A and increases distances by a factor of s. 
Pulling back through this map reduces distances by s, and so gives geometric 
control. Pulling back corresponds to the algebraic operation of restriction 
res: K%(R&) —• Ki(KT). A corollary is that if h G Kt(RA) then there is s so 
that if r corresponds to an s-expansive map then ind(res(/i)) lies in the image 
of the homology group. Here ind: Ki(RT) —> Ki(RA) is the induction map. 

The hyperelementary induction theorem in this context states that if 0: A 
—> 7T is a homomorphism to a finite group, then elements of Ki(RA) can be 
written as sums of elements of the form ind(res(/i)), inductions of restrictions 
to subgroups of the form 0_ 1(iJ), where H is hyperelementary in TT. A itself 
has a free abelian subgroup of finite index. The strategy is now this: assume 
the theorem for crystallographic groups with free abelian groups of smaller in­
dex. Then contrive finite quotients A —» TT SO that inverses of hyperelementary 
subgroups of 7T either have smaller index or correspond to expansive maps. 
In either case ind (res (h)) is an element of the homology, so the induction 
theorem implies that all elements of Ki(RA) come from homology. 

If A has a crystallographic quotient with no 1-dimensional images, then 
we are in case (ii) of Theorem 1.1 of [5]. In this case the strategy outlined 
above is successful. If there is a nonabelian 2-dimensional image which has a 
1-dimensional image, we are in a situation like that of [6], with a few new cases. 
In this case the strategy can be modified to get control in a 1-dimensional im­
age. Finally, if neither of the above occur, then we are reduced to considering 
Z x 7T or an extension Z —> G —• 7r, with 7r finite. These cases can be expressed 
as generalized free products to which the theorem of Waldhausen [16] applies. 
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It is at this point that the hypothesis on R is necessary; it ensures that the 
amalgamating rings are regular, so the Nil terms in Waldhausen's theorem 
vanish. 

4. Remarks. Suppose that G acts on X and R is a ring. There is a map 
of spectra H(X/G; K(RGy)) —» K(i2G), the spectrum-level version of the ho-
momorphisms described in §2. Denote the cofiber (in the category of spectra) 
of this map by Nil(G, X\ R) and its homotopy groups, by Nil^(G, X\ R). These 
fit in a long exact sequence with the homology and K groups, so measure the 
extent to which the main theorem fails. 

If G acts freely on X and X is contractible, then the definition coincides 
with the definition of the Whitehead groups: Wh^G,^) = Kûi(G,EG;R). 
The classical Nil summand of Ko{R{2 x G)) fits in as follows: Z x G acts 
on the reals R by the usual action of Z, and Nil(G, R) = Nilo(G x Z,R;#). 
Generalized free product structures on groups correspond to actions of the 
groups on trees, so Waldhausen's Nil groups [16] also can be seen this way. 
Waldhausen's results give the following. 

(Waldhausen) Suppose X is a tree, on which G acts cellularly. Then 
(a) the exact sequence splits-, Ki(RG) ~ iJi(X/G;K(#Gy))eNil;(G,X; R); 

and 
(b) Nilt(G, X; R) vanishes if R is a subring of the rationals, and the isotropy 

subgroups are finite with orders invertible in R. 

The order condition on the isotropy subgroups ensures that the amalgama­
ting rings are regular. We note the remarkable characterization of Dunwoody 
(see Dicks [3]) that a group G admits an action on a graph satisfying (b) if 
and only if the augmentation ideal in RG is projective. 

Questions. Suppose G, L, and K are as in 1.1, but R is arbitrary. 
(a) Does the exact sequence split as in the tree case, so 

Ki{GR) ~ Ht(K\L/G] K{RGy)) 0 Nil,(G, K\L; R)? 

(b) Is Nil;(G,K\L;#) a torsion group—for example, with exponents di­
viding powers of exponents of the torsion of G that are not invertible in Rl 

We note that the proof of 1.1 would yield (b) if it were known for appropri­
ate generalized free products (cases where X — R). Some of these cases follow 
from results of Weibel [17, 6.4]. The question is supported by calculations for 
abelian G [1]. 

Finally, one might hope for similar results for discrete subgroups of other 
Lie groups. Unfortunately, rigidity theorems show that there are usually 
rather few expansive maps, so the proof used here cannot work. 
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