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Mathematical scattering theory^ by H. Baumgàrtel and M. Wollenberg, 
Akademie-Verlag, Berlin, 1983, 449 pp., 98 DM. 

Apparently it was Leonardo da Vinci who first mentioned the diffraction of 
light. By this he meant the illumination observed within the geometrical 
shadow of an opaque body. Huygens, then Young and Fresnel in the early 
nineteenth century, proposed that this was due to the interference effects of 
different parts of the light rays. Subsequently, other diffraction—or scattering 
—phenomena were discovered in acoustics, elasticity, quantum mechanics, and 
so on. A great impetus came from Maxwell's theory of electromagnetism. 
Mathematical formulations were given in classical times by Helmholtz, Kirch-
hoff, Rayleigh, and Sommerfeld. 

What do these disparate physical situations have in common? First, all of 
them are described by a kind of wave equation. Second, you have an incident 
wave which comes in and gets disturbed or diffracted or scattered. What comes 
out is the reflected or refracted wave. The scattering process takes you from the 
incident wave uin to the reflected wave wout. It could happen that part of the 
incident wave is "trapped" or "bound" instead of scattered. The picture to 
keep in mind is that of a billiard ball bouncing off an irregularly shaped 
obstacle. It could bounce off cleanly or it could get trapped within an 
indentation of the obstacle. In order to describe the mathematical context, we 
have to become more specific. 

EXAMPLE 1. In electromagnetism the basic equations are Maxwell's. Raleigh 
demonstrated that the reason the sky is blue is that light scatters off the water 
droplets in the atmosphere. But let's simplify and just take the ordinary wave 
equation. Say the incident wave is uin(x91) = Qxp[iX(t - co • x)] and the 
scatterer is an opaque body B c R3. Then we must solve 

(1) utt - Aw = 0 outside B 

with an appropriate boundary condition and an initial condition given by win 

for t « : 0. We need to decompose the solution of (1) into harmonic plane 
waves (i.e., do a Fourier analysis), as well as take a limit as t -> + oo. The 
scattering matrix tells you how much of the incident wave of frequency X and 
direction co goes into the reflected wave of frequency A' and direction co'. Part 
of the wave may be trapped. The wave-ray duality which goes back 150 years 
plays a prominent role. It is enjoying a revival with the advent of "microlocal 
analysis". 

EXAMPLE 2. In two-body quantum theory one of the bodies is placed at the 
origin, so that only the state of the other body matters. This state is described 
by the Schrödinger equation 

\̂ 
(2) -i-£=-Au(x,t) + V(x)u(x,t), x e R3, 
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where the potential function V(x) plays the role of the scattering mechanism. 
For the hydrogen atom, V(x) = c|x|_1. Basic to both the physics and the 
mathematics is the Hubert space J^= L2(R3) and the unbounded operator 
H = -A 4- V. If you know all about H, you know all about equation (2). The 
modern theory of quantum scattering goes back to Friedrichs' work on spectral 
theory in the 1930s and 1940s. It really got going with Kato's brilliant proof of 
the selfadjointness of H in 1951. The bound states are the solutions of (2) of 
the form u = <f>(x)exp(/X/), with <j> e tf. Thus, X is an eigenvalue of H. Since 
there is no way that the bound states could "scatter", one works on the 
orthogonal complement Jfof the (often finite-dimensional) subspace of bound 
states. We use the notation u(x91) = [vxp(itH)ƒ](x) for the solution of (2) 
which satisfies the initial condition u(x9Q)=f(x). In the same way we 
introduce the free Hamiltonian H0 = -A and its evolution operator exp(itH0). 
These are groups of unitary operators on 3tif. The fundamental mathematical 
problem is to ask for which vectors/, / in, /out in3rif do we have 

(3) |k'"/-e' '"Vou./ i» |h0 a s * - ±oo, 

where /out goes with + oo (the future) and fm goes with -oo (the past). If (3) 
holds for some triple we write /out = S f^ where S is the scattering operator. 
One wants to show that the limits (3) exist and then study the properties of S. 
(For the hydrogen atom the limits do not exist but require some modification.) 

There is an intimate relation between scattering theory and spectral theory. 
One defines the wave operators W+( fout) = ƒ and W_( fin) = ƒ. If in (3) we 
replace t by t + s, we see that both W+ and W_ are intertwining operators for 
exp(isH) and cxp(isH0). Thus, W±H = H0W±. Actually this could be valid 
only on the subspace Jf. In many cases one can prove that W+ and W_ are 
unitary from ^ o n t o Jf. Therefore, H0 and the restriction of H to Jf are 
unitarily equivalent operators. This is the best method for studying the 
continuous spectrum of operators like H. 

EXAMPLE 3. In relativisitic quantum mechanics the equations have to be 
Lorentz-invariant. A simple model equation is the Klein-Gordon equation (for 
mesons) 

(4) d2u/dt2 - Aw + m2u + gu3 = 0. 

If g > 0 there are no bound states, and one can ask whether (3) is valid. Here 
cxp(itH) represents the (nonlinear) dynamics of (4) and exp(itH0) the dy­
namics of the "free" equation with g = 0. Other model equations are 
Maxwell-Dirac for photons and electrons and Yang-Mills in unified field 
theories. The key property of the latter is its gauge invariance. The extensions 
of quantum mechanics to particles which move at relativistic speeds has been 
fraught with difficulties ever since the first attempts half a century ago. 
Heisenberg and Moller proposed in the 1940s that the scattering operator (or 
"S-matrix") should play a central role in the theory. S is somehow more 
intrinsic than H because it is determined from the scattering cross sections of 
beams of particles and thus is constructible from experimental data, at least in 
principle. In fact, S continues to play a major role in modern axiomatizations 
of quantum field theory. 
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EXAMPLE 4. Solitons are special solutions of nonlinear equations which play 
a role similar to the bound states of quantum theory. One example is the 
Korteweg-de Vries equation 
(5) ut + uxxx + uux = 0, x G R, 
where the solitons are solutions of the form u = <j>(x — ct) for each speed 
c > 0. Their amazing property is that two solitons (for different c's) pass 
through each other essentially unscathed, behavior which you would expect for 
a linear equation but not for a nonlinear one. Another amazing property is that 
the spectrum of the Schrödinger operator H = -d2/dx2 + t/(-, t)/6 does not 
depend on t. In fact, the (inverse) scattering theory for H is intimately tied to 
the solution of (5). These two amazing properties are related, and the theory 
has many mathematical offshoots. 

Our four examples illustrate how diverse (scattered!) scattering theory is. 
Rather than reviewing all its recent developments, which would be a lengthy 
task, I'll just list a few areas of scattering theory which are currently very 
active. 

(i) Inverse problems. There are many kinds, stimulated by oil prospecting 
and other practical problems. Scattering data is observed. What mechanism 
(body, potential, oil pool, etc.) produces it? This is the most important and 
most difficult set of scattering problems. 

(ii) Multichannel scattering. This is the quantum mechanical «-body problem. 
(iii) Scattering in gauge theories. 
(iv) Location of the scattering poles. The scattering matrix (see Example 1) 

extends meromorphically to complex frequencies. Its poles provide precise 
information about the scattering process. 

(v) Algebraic soliton theory. Only certain special equations share the amazing 
properties of Example 4. Is there a simple algebraic characterization of all such 
equations? 

The book under review is concerned with the kind of scattering theory of 
Example 2. After the intensive development of the past thirty years, the theory 
has reached a certain maturity. For instance, it is now known that a good 
scattering theory exists, provided V(x) falls off strictly faster than |JC|-1 as 
|x| -» oo. Furthermore, one knows how to modify the theory in the long-range 
case. It is characteristic of a mature theory that several extensive expositions 
appear. In this case there are the books of Reed-Simon, Amrein-Jauch-Sinha, 
Berthier, and now the book under review. What distinguishes the last is its 
level of abstraction and generality. As the authors write, " the aim of this book 
is to give a systematic and self-contained presentation of the Mathematical 
Scattering Theory within the framework of operator theory in Hubert space". 

Thus, the book deals with a Hilbert space ^f(or two) and a pair of 
self adjoint operators H and H0 on it. After an introduction to spectral theory 
and direct integrals (Part I), the book lays the groundwork in Part II by 
studying the algebra of operators A such that the limits of exp(*7if)A Qxp(itH) 
exist as t -> ± oo. In Part III the (two-space) wave and scattering operators are 
introduced. Included here are the stationary theory, the invariance principle 
for W+ and W_, and introductions to multichannel scattering, abstract quan­
tum fields, and the Lax-Phillips theory. One result of the authors is the inverse 
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problem. Roughly, if operators H0 and S are given and they commute, then 
there exists an operator H; however, H is highly nonunique in this general 
setup. 

Finally, in Part IV, well past the midpoint of the book, come the first 
theorems which assert the existence of the limits (3). Of course, the ground­
work has been carefully laid, so the proofs are now efficient. There are 
chapters on stationary methods, time-falloff methods, trace-class methods, and 
smooth perturbations. These methods are compared, and the main applications 
to different operators are given. In Part V the authors discuss formulas for the 
scattering amplitude 5(A). This means 3tf is represented as on L2 space (in the 
"frequency" variable A) with vector values so that the free Hamiltonian H0 is 
multiplication by X. Then S is given by the operator-valued function 5(X), 
which has a meromorphic continuation into the complex plane. There is a brief 
discussion of its poles, the phase shift, and the scattering cross section. 

The authors give us a very well-organized and complete exposition of the 
most abstract parts of scattering theory, to which they have been active 
contributors. There are historical notes and a very extensive bibliography. Two 
things need improvement: the index is so small as to be almost useless 
(although the table of contents is detailed), and the quality of the paper is 
poor. The book is meant to be read systematically. If you really want to 
understand a proof, you have to do a backwards search. Thus, the book is a 
very useful contribution to the literature, in that it brings together all aspects 
of the abstract theory, but most nonspecialists would find it too detailed. The 
authors wrote that "applications of the general results to special scattering 
systems.. .are treated mainly for purposes of illustration". They are presented 
very concisely and in small print. But the juiciest parts of the subject lie in the 
applications to differential operators, and so the book lacks a certain balance. 
The student who reads it might come away with the impression that scattering 
theory is a special branch of operator theory, that it is entirely concerned with 
the existence of the limits (3), and that its only serious application is to 
quantum scattering. Therefore this book should be supplemented by references 
which focus on other aspects of scattering theory and on its physical roots. 
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Éléments de mathématique. Algèbre commutative, by N. Bourbaki, Chapitres 8 
et 9, Masson, Paris, 1983, 200 pp., 150F. ISBN 2-2257-8716-6 

Dimension theory of local rings, originated by Krull [1], can be regarded as 
the start of the theory of local rings. Since then many authors have contributed 
to the theory of local rings, including Chevalley [2, 3], Cohen [4], Samuel [5], 
Serre [6] and Nagata [7, 8]. Cohen proved the structure theorem of complete 
local rings, and Samuel constructed a good multiplicity theory of local rings. 


