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no-nonsense style of a research monograph, this book provides a rewarding 
look at some of the recent work of the Soviet school of complex analysis in 
several variables for those with some previous experience in the subject. 
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Prefatory Note (added August, 1984). After the review appearing 
below was submitted I learned that Bieberbach's conjecture had 
been proved by L. de Branges. His proof is short and miraculous. It 
combines the theories of Loewner and Milin with a new ingredient 
from a totally unexpected source: a theorem of Askey and Gasper 
(Amer. J. Math. 98 (1976), 709-737, Theorem 3) which asserts that 

£ P^°\x) > 0 
/-o 

for -1 < x ^ 1 and a > -2, where Pfa'M denote the Jacobi poly­
nomials. 

Thus, some of the discussion of Bieberbach's conjecture below is 
obsolete, except insofar as it can serve to showcase the remarkable-
ness of de Branges' achievement. Although its most famous prob­
lem has now been solved, the subject of univalent functions remains 
interesting, both for its own sake and for its connections with other 
branches of analysis, and Duren's book is an outstanding contribu­
tion to it. 

In the language of classical complex function theory, "univalent" means 
one-to-one. Thus, the univalent functions of Duren's book are analytic func­
tions which are one-one in some connected open subset of the complex plane, 
most often the unit disk D = (z e C: |z| < 1}. Such functions effect a 
conformai mapping onto another domain i î c C . 

Much research in the subject, and most of this book, is devoted to the class 
S of univalent analytic functions ƒ in D which satisfy the normalizations 
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/(O) = 0, /'(O) = 1. Thus, the Taylor series expansion of ƒ e S around z = 0 
has the form 

00 

f(z) = z + £f lwzw , z e D , 

and /(D) is a simply connected proper subdomain of C which contains w = 0. 
S stands for Schlicht ("simple"), which is the German word for univalent. 

The central theme in the study of univalent functions is the relation between 
the geometry of the image domain Œ and the analytic properties of the function 
ƒ. Especially, what are the solutions of extremal problems? One presumes that 
the solutions to analytic extremal problems should correspond to extremal 
image domains. So, what are the extremal simply connected domains in C? 
One candidate that comes to mind is the disk D itself. The corresponding 
function is the identity map f(z) = z. The opposite extreme from D seems 
reasonably to be the domain obtained by deleting from C a single radial slit 
teia, t0 < t < oo. The normalizations in S imply that t0 = 1/4. If we take 
ela = - 1 , the omitted slit becomes part of the negative real axis and the 
corresponding function is 

* ( * ) - — * - j - £nz\ 
( 1 - z ) 2 „-i 

Here k stands for Koebe, who in 1907 was one of the first to study carefully 
the sort of extremal problems with which we are concerned in this essay. Note 
that the conformai mapping of D onto C \ {tela: J < / < oo} which belongs 
to S is e'("+7r>A;(z<r/(a+,r)), a "rotation" of k. 

It is indeed the case that k and the identity are extremal for many problems. 
For example, fix r e (0,1) and consider the maximum modulus 

M{rJ)= max| / (z) | . 
| z | - r 

The function in S with smallest M(r, ƒ ) is the identity (apply the maximum 
principle to f(z)/z\ whereas the ones with largest M(r, ƒ ) are k and its 
rotations. This second result is part of the "distortion theorem", proved in this 
sharp form by Bieberbach in 1916, following earlier results by Koebe in 1909. 

Another part of the distortion theorem states that on \z\ = r the function 
with smallest minimum modulus is k (along with its rotations), while the one 
with largest minimum modulus is again easily seen to be the identity. The 
distortion theorem was generalized by the reviewer in 1974 as follows: 

(1) f \f{reie)\P dB ± f \k{re«)\P dO, 

for ƒ e S, 0 < r < 1, and -oo < p < oo. That is, the Koebe function has 
largest integral means of all positive and negative orders. The main tool used in 
proving this theorem is the fact that a certain auxiliary function (log| ƒ |)* is 
subharmonic, a result which first came up in the solution of a growth problem 
in Nevanlinna's theory of meromorphic functions and has other applications 
elsewhere in function theory. A short survey of the * -function is in [5]. 
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Which function in S do you suppose has the coefficients an of largest 
modulus? In view of the results quoted above, there are good grounds for 
guessing it is k. This was done by Bieberbach in 1916. 

BIEBERBACH'S CONJECTURE. \an\ ^ « , « = 2 , 3 , . . . , / e 5 . 

This has been the principle stimulus for research on univalent functions in 
simply connected domains. As of this writing, it is still open. 

To a large extent the story of univalent functions is the story of methods for 
attacking extremal problems. Especially, what can a method tell us about B.C. 
We shall give now a brief discussion of some of the significant partial results 
on B.C., along with a small inkling of the methods used to prove them, 
methods which have originated from a variety of sources inside and outside of 
classical function theory. More information can be found in the survey articles 
[6 and 10]. 

First of all, Bieberbach himself proved \a2\ ^ 2 in 1916. Though nontrivial, 
this is a fairly elementary result which can be proved many ways using modern 
machinery. 

The result \a3\ ^ 3, due to Loewner (1923), is already very deep. Even now 
there is no easy proof. Loewner's proof is based on a parametric method which 
has many other applications. Here is one version, developed in [20]. Suppose 
that the complement of/(D) consists of a single arc T starting at some w0 e C 
and ending at oo. Such "sût mappings" are dense in S. Let y(t), 0 < t < oo, be 
a parameterization of T, and let / (z , t) be the conformai map of D onto the 
complement of the shortened slit {y(^): f <; s < oo} with /(O, t) = 0, 
(8//8z)(0, t) > 0. By Schwarz's lemma (3//9z)(0, 0 increases with t. Re-
parameterizing T, if necessary, we may assume ƒ (z, t) = elz + a2(t)z

2 + •••. 
Thus / (z ,0) = / (z) , and it turns out that/(z, /) satisfies a partial differen­

tial equation 

where P(z, /) = Y%amÇfn(t)z
n is an analytic function with positive real part. 

Now functions with positive real part are fairly easy to deal with, and one 
obtains |Ö3 | ^ 3 by clever manipulations starting from the formula 

n-l 

< ( 0 = E ™<*m(t)cn-m(t) + nan(t). 
w = l 

Loewner's theory provides one link between univalent functions and dif­
ferential equations. Another was found in 1949 by Nehari, who made use of 
the notion of disconjugacy to give a criterion for univalence—if ƒ is analytic in 
D and its Schwarzian derivative 

{ ƒ, z) = (f"(z)/f'(z)y - h{f"{z)/f'{z)f 

satisfies |{ ƒ, z}[ ^ 2(1 — |z|2)"2 , then ƒ is univalent in D. Ahlfors and Weill 
(1962) showed that if 2 is replaced by any smaller constant, then ƒ can be 
extended to a quasiconformal homeomorphism of the whole plane onto itself. 
Quasiconformal mapping and TechmuUer theory, which derives from the study 
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of moduli of Riemann surfaces and uses q.c. maps as basic tools, have been 
two of the most active areas of classical function theory during the past thirty 
years. Accounts may be found in the survey articles [3,7,8,9,11,14], the books 
[1,18, and 19], Gehring's review of KrushkaPs book [13], and Ahlfors' collected 
papers [4]. We do not wish to discuss these subjects in detail, but will digress 
long enough to describe one interesting open problem about univalent func­
tions. 

Let B denote the Banach space of functions g analytic in D for which the 
norm 

| | g | | = s u p ( l - | z | 2 ) 2 | g ( z ) | 
D 

is finite. If ƒ e S then its Schwarzian derivative belongs to B and satisfies 
ll{/> z)\\ ^ 6. This distortion theorem is due to Kraus (1932). The mapping 
ƒ-> {ƒ, z] is injective modulo linear fractional transformations: {ƒ, z) = 
(g, z] if and only if g = (af + b)/(cf+ d) for some a , è , c , J e C with 
ad — be = 1. The norm topology in B induces a topology in S called the Bers 
topology. Now consider the subset T of S whose members have q.c. extensions 
to the whole plane. T, or more often its image in 2?, is the "universal 
Teichmüller space". The Ahlf ors-Weill theorem states that the image of T 
contains a ball. A later theorem of Ahlf ors (1963) asserts that T is in fact open 
in the Bers topology, and then Gehring (1977) showed that, conversely, the 
interior of S is exactly T. Meanwhile, Bers had conjectured that T is dense in 
S, but Gehring disproved this in 1978 [12]. Now the question: Just what is the 
Bers closure of T in SI Ahlf ors (1963) gave a very satisfying geometric 
characterization of "quasicircles", that is, of 9/(D) for ƒ e T [1, p. 81], and it 
would be very nice to have a geometric description of the domains you can get 
to by taking limits of quasidisks. 

Nehari's theorem has other offshoots as well. Duren-Romberg-Shields (1966) 
observed that if ƒ is analytic in D with \f"(z)/f'(z)\ ^ C(l - l^2)"1 for 
sufficiently small C, then ƒ satisfies Nehari's condition and, hence, is univalent. 
Becker (1972) used Loewner's theory to show C = 1 will do. It is not known 
what the largest possible C is. Analytic functions with f'(z)i* 0 are "local 
quasi-isometries". Recently Gehring [15], motivated by work of F. John (1969), 
has characterized the "rigid" domains £2 in C, that is, the ones with the 
property that every local quasi-isometry in K, not necessarily analytic, which is 
sufficiently close to the identity, must be globally univalent. The rigid domains 
turn out to be the quasidisks, thus adding another characterization of quasi­
disks to the seventeen discussed in [14]. 

We now resume our discussion of the Bieberbach conjecture. In 1955 
Garabedian and Schiffer proved that |Û4 | ^ 4. They combined Loewner's 
method with a variational method invented by Schiffer in 1938, and required 
many pages of complicated calculations. Later, several simpler proofs were 
found using the "Grunsky inequalities" (1939), which are inequalities for 
quadratic forms derived from power series expansions of the two-variable 
analytic function l o g ^ g ^ ) - g(z2))/(z1 - z2)]. Here g(z) = l / / ( l / z ) , and 
\zx\, \z2\ > 1. The proof of \a4\ <* 4 in Duren's book, due to G. V. Kuzmina, 
takes just two pages. 
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In 1968 Pederson and Ozawa independently proved \a6\ ^ 6 by means of the 
Grunsky inequalities. As one might imagine, the details are formidable. Then 
in 1972 Pederson and Schiffer used the Garabedian-Schiffer inequalities, a 
generalization of the Grunsky inequalities, to prove |as | <> 5. 

For n ^ 7 it is not known whether \an\ ^ n. 
It is known that an= 0(n) is the right order of magnitude. Littlewood 

proved in 1925 that \an\ ^ en. He deduced this via Cauchy's formula for an 

from his integral inequality 

h C | / ( r e ' # ) | d$ = T=~r ' 0 < r < 1, ƒ G 5. 

The sharp integral inequality (1) gives 

1 - r 2 ' 

from which Cauchy's formula leads to \an\ ^ \en ^ 1.37«. This is the best one 
can do using considerations based solely on the "size" of ƒ. Improvements 
require discovery of subtle cancellation properties. Such a method had been 
found by Milin in 1965, who combined the Grunsky inequalities with inequali­
ties for coefficients of exponentiated power series. He was able to prove 
\at\ ^ 1.243n. FitzGerald (1972) used Schur's theorem about combinations of 
quadratic forms to find another way of exponentiating the Grunsky inequali­
ties. The result is a set of quadratic inequalities amongst the | a j 2 , a special 
case of which is a weighted sub-mean-value type inequality 

n 2n-l 

k f S E k\ak\
2 + E {In - k)\ak\ . 

k=l k=n+l 

This, together with the formula 

t k' + '"f' (2„ - k)k> = ( J) V - i«2 < (l)2n\ 

leads to the estimate \a„\ ^ (7/6)1 /2 < 1.081«. 
D. Horowitz (1978) refined Fitzgerald's method to obtain 

1/14 /1,659,164,137 \1 / 1 4 , n „ _ 
< I 681,080,400 ) < 1 - 0 6 5 7 ^ 

the best general bound now known. 
The Bieberbach conjecture is true asymptotically, in a certain sense. Hay-

man, inspired by the Hardy-Littlewood circle method from number theory, 
proved in 1955 that \an\ <; n for n ^ n0(f). Let An = s\xpfeS\an\. Hayman 
showed in 1958 that K0 = limn^O0(An/n) exists. His "asymptotic Bieberbach 
conjecture", that K0 = 1, is still open. Recent work of D. Hamilton (1982), 
combined with a result of Nehari (1957), shows that K0 = 1 is equivalent to a 
conjecture of Littlewood about coefficients of nonvanishing univalent func­
tions in D. 
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The Bieberbach conjecture is true on the average, at least in certain senses. 
The L2 case of the integral means inequality (1) shows that 

00 00 

E k l rn£ Y*n2r\ 0 < r < 1. 
l l 

It is not known if B. C. is true in other average senses. For example, is it true 
that 

m = l w = l 

B. C. is true in a certain sense for functions sufficiently near the Koebe 
function. Garabedian-Schiffer, for even «, and Bombieri, for odd «, proved in 
1967 that there exists en > 0 such that if 0 < \a2 - 2| < e„, then Re an < n. 
The stronger local result, 0 < | a n - 2 | < e n implies \an\ < «, has not been 
proved. On the other hand, B. C. is true for functions sufficiently far from k. If 
|<z2| ^ 1.64 then \an\ ^ n for all n. This result is due to Gong Sheng (1979), 
following earlier results of this type by Aharonov and Bshouty. 

Finally, we mention that B. C. is known to be true for functions in various 
subclasses of S. The two easiest to describe are the " typically real" functions, 
those for which /(D) is symmetric with respect to the real axis (Dieudonné, 
1931), and the "starlike functions", those for which/(D) intersects each ray 
from the origin in exactly one interval (R. Nevanlinna, 1921). 

Duren's book contains a very beautiful and self-contained account of most 
of these topics, as well as much more. The only prerequisites are the basic 
graduate courses in real and complex analysis. Complete chapters are devoted 
to Loewner's parametric theory and Schiffer's variational theory. One chapter 
presents highlights from the Schaeffer-Spencer theory of the coefficient region, 
while part of another expounds the work of Ruscheweyh and Sheil-Small on 
convolutions and solution of the Pólya-Schoenberg conjecture (1974). The 
theories of Grunsky, Milin, and FitzGerald are all here, as is a proof of the 
reviewer's integral means theorem (1), including a proof of subharmonicity of 
the *-function. 

Duren also discusses connections between univalent functions and concepts 
from linear space theory. Brickman (1970) proved that if ƒ is an extreme point 
of the convex hull of S then the complement of/(D) is a monotone arc, that is, 
intersects each circle |w| = r at most once. For "support points", those 
functions which maximize some linear functional ƒ -» ReL( ƒ ) over S, Pfluger 
(1971) used Schiffer's variational method to show that the complement of/(D) 
is a monotone arc with strong additional properties. The arc must be analytic, 
and enjoys the 7r/4-property—at every point the angle between the tangent 
vector and the radius vector from the origin is at most TT/4. 

Hamilton [17] has developed a promising new techinque involving quasicon-
formal variations. One of his results is the existence of extreme points whose 
omitted arcs are not analytic. Thus, not every extreme point is a support point. 
It remains unknown whether every support point is an extreme point. 
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There exist some other very good recent books about univalent functions. 
Pommerenke's book [20], like Duren's, is a comprehensive text starting from 
scratch and is written at roughly the same level. There is considerable overlap 
between the two but also some significant differences. For example, Pom­
merenke's book does not contain proofs of (1) or the Ruscheweyh-Sheil-Small 
theorem, but it contains more information about boundary behavor of ƒ and ƒ'. 
Duren's book does not treat extremal length or Jenkins' general coefficient 
theorem, whereas Pommerenke's does. Pommerenke develops some of the 
connections with quasiconformal mapping, whereas Duren mentions them only 
in passing. 

Schober's lecture notes [21] provide additional information about the linear 
space and q.c. connections. Ahlfors [2] gives a nice introduction to extremal 
length. A. W. Goodman [16] has recently written a book which devotes more 
attention to the elementary aspects of the subject, such as special classes, than 
do Duren and Pommerenke. 

Duren's book is a joy to read, both physically, because of the neat bright 
type face, and intellectually, because of the inherent beauty of the subject and 
the authoritative yet sprightly way it is presented. As in his previous book, 
Theory of Hp spaces (1970), the writing style is decidedly user friendly. Great 
care has been taken with the prose, the facts, and the proofreading. The 
exercises range from simple to challenging. The index and bibliography are 
extensive. This is an excellent text for a graduate course and a worthy 
investment for both beginners and experts. We said before that the story of 
univalent functions is the story of methods. This book, which assembles so 
many known ones in attractive and suggestive fashion, should serve as inspira­
tion for the future discovery of new ones. 
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Square integrable eigenfunctions of the Schrodinger equation decay ex­
ponentially. More precisely, let 

i — 1 ' i <j 

be the Schrodinger Hamiltonian for N particles interacting with real pairwise 
potentials Vij{xi — xy), where ViJ(xi — Xj) -> 0 (in some sense) as xt — Xj -* oo 
in R". Separating out the center of mass (H itself has only continuous 
spectrum) one obtains the operator 

H = -A + £ V^x, - xj), 
i<j 

where A denotes the Laplacian on L2(X\ X = {x = (xv... ,xN): Ejii/w,-*,- = 
0}. If <j> is an L2 solution of H<j> = E<j>, and if E lies below the essential 
spectrum of if, then <f> decays exponentially in the sense that there exist 
positive constants A and B for which |</>(x)| < Ae~B^xK The phenomenon of 
exponential decay has long been recognized and was apparent already in 
Schrödinger's solution of the hydrogen atom, but is is only recently that a 
satisfactory mathematical theory for the problem has been developed. 

There is a considerable chemical, physical, and mathematical literature on 
the subject, and we refer the reader to [9,7], and also the notes to Chapter XIII 
of [14], for extensive historical and bibliographic information. Four general 
techniques have emerged. 

(1) Comparison methods (see for example [4,5 and 3]). These methods are 
based on the maximum principle for second order elliptic operators and are 
modelled, to a greater or lesser extent, on the standard proofs of such classical 
theorems of complex analysis as the Hadamard three-line theorem, the Phrag-
men-Lindelöf theorem, and so on. 


