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A considerable portion of complex analysis in several variables is devoted to 
developing «-dimensional analogs of classical one-variable theorems, and much 
of its fascination derives from the fact that these analogs often take forms 
which are subtle and surprising at first glance and seem natural only with 
hindsight. As a simple example, consider the fact that the zero set N( ƒ ) = (z: 
f(z) = 0} of a holomorphic function of one variable consists of isolated points. 
This result, as stated, is utterly false in higher dimensions, for the zeros of 
holomorphic function of more than one variable are never isolated. But one 
obtains a correct theorem in any number of dimensions by rephrasing the 
one-variable result suitably: namely, N(f)is an analytic sub variety of complex 
codimension one. Another example comes from the theorems of Mittag-Leffler 
and Weierstrass on finding meromorphic or holomorphic functions with pre­
scribed poles or zeros; to obtain their «-dimensional analogs, the so-called 
Cousin problems, one should reformulate them in terms of sheaf cohomology. 

The book of Aizenberg and Dautov takes as its starting point the following 
characterization of boundary values of holomorphic functions of one variable, 
which is well known to the experts but perhaps not to the general public. Let D 
be a bounded open set in C with smooth boundary dD = D\D; let A(D) be 
the set of continuous functions on D which are holomorphic on D, and 
A(dD)={f\dD:feA(D)}. 

THEOREM 1. For a continuous function f on dD to be in A(dD) it is necessary 
and sufficient that 

(1) f f(z)g(z)dz = 0 forallg^A(dD). 

The necessity is an immediate consequence of Cauchy's theorem. To prove 
the sufficiency, one defines a holomorphic function cp on C \ dD by plugging ƒ 
into the Cauchy integral formula: 

/ \ l f f(w) ; <p(z) = — ƒ ±±—Ldw. 
imi JdD w — z 

It is not too hard to prove that the difference of the limits of <p(z) as z 
approaches a point z0 e dD along the normal to dD from the inside and from 
the outside equals ƒ(z0). On the other hand, it follows from (1) that cp(z) = 0 
for z £ D. One concludes that the function F on D, defined by F = <p on D 
and F = ƒ on dD, is continuous, so ƒ e A(dD). 
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How can this result be generalized to n dimensions? We begin with a 
bounded open set D in C with smooth boundary dD. (The definition of 
"smooth" depends to some extent on how much trouble one wishes to go to in 
stating and proving one's theorems. Depending on context, it should mean at 
least C1 and perhaps as much as C00.) To generahze (1) we should rephrase it 
in terms of differential forms, the natural objects to integrate over submani-
folds, by incorporating the dz into ƒ or g; "holomorphic" should then mean 
"9-closed". We are thus led to the following general problem: Characterize 
those forms <p of bidegree (/?, q) [i.e., degree/? in the dz's and degree q in the 
dz 's] on 3D such that 

(2) f <p A \p = 0 f or all forms \p of bidegree (n - p, n - q - 1) 

with 3;// = 0. 

This question was considered some twenty years ago by Kohn and Rossi [1], 
who proved an analog of Theorem 1: if q < n — 1 and certain pseudoconvex-
ity conditions on D are satisfied, a (/?, #)-form <p satisfies (2) if and only if it 

has a 8-closed extension to D. In the case p = q = 0 (when <p is a function), 
Weinstock [2] improved the result by weakening the smoothness conditions 
and removing the pseudoconvexity hypothesis. 

Aizenberg and Dautov are concerned with the remaining case, q = n — 1. 
Here, the 8-closed forms of bidegree (/?, 0) entering in (2) are better known as 
holomorphic p-forms, and the condition that fdD <p A \p = 0 is what is meant 
in the title of their book by "orthogonal" (a slightly disconcerting usage for 
those of us accustomed to working with Hermitian inner products). They prove 
that the analog of Theorem 1—namely, a (/>, n — l)-form <p satisfies (2) if and 
only if it has a 8-closed extension to D—holds when D is a strongly pseudo-
convex domain, or, more generally, when D is obtained from such a domain by 
removing finitely many strongly pseudoconvex subdomains; they also give a 
similar but weaker result for more general D. Once this is established, the 
following line of thought suggests itself. In Theorem 1 the functions ƒ and g 
enter symmetrically: in dimension one the space of holomorphic functions is 
self-orthogonal in the sense of (1). Might it therefore happen that some 
properties of holomorphic functions in one variable generahze most naturally 
not to holomorphic functions or_ forms in n variables but to their annihilators 
in the sense of (2), that is, the 3-closed (p9n — l)-forms? The answer is yes, 
and Aizenberg and Dautov present an interesting selection of results to prove 
the point, including analogs of Runge's and Morera's theorems and a represen­
tation of distributions on R2w_1 as "boundary values" of («, n - l)-forms on 
half-spaces of Cn. 

This book was originally published in Russian in 1975 as a report on the 
research of the authors and some other Soviet mathematicians from the early 
1970s. When the English translation was proposed in 1981, the authors 
provided some additional chapters which discuss more recent results and which 
now make up about forty percent of the book. Written clearly but in the 
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no-nonsense style of a research monograph, this book provides a rewarding 
look at some of the recent work of the Soviet school of complex analysis in 
several variables for those with some previous experience in the subject. 
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Prefatory Note (added August, 1984). After the review appearing 
below was submitted I learned that Bieberbach's conjecture had 
been proved by L. de Branges. His proof is short and miraculous. It 
combines the theories of Loewner and Milin with a new ingredient 
from a totally unexpected source: a theorem of Askey and Gasper 
(Amer. J. Math. 98 (1976), 709-737, Theorem 3) which asserts that 

£ P^°\x) > 0 
/-o 

for -1 < x ^ 1 and a > -2, where Pfa'M denote the Jacobi poly­
nomials. 

Thus, some of the discussion of Bieberbach's conjecture below is 
obsolete, except insofar as it can serve to showcase the remarkable-
ness of de Branges' achievement. Although its most famous prob­
lem has now been solved, the subject of univalent functions remains 
interesting, both for its own sake and for its connections with other 
branches of analysis, and Duren's book is an outstanding contribu­
tion to it. 

In the language of classical complex function theory, "univalent" means 
one-to-one. Thus, the univalent functions of Duren's book are analytic func­
tions which are one-one in some connected open subset of the complex plane, 
most often the unit disk D = (z e C: |z| < 1}. Such functions effect a 
conformai mapping onto another domain i î c C . 

Much research in the subject, and most of this book, is devoted to the class 
S of univalent analytic functions ƒ in D which satisfy the normalizations 


