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machine-scheduling problems reduce to finding eigenvectors and eigenvalues 
of a matrix over a semiring; certain path-finding problems reduce to the 
solution of linear equations over an ordered structure. 

Many combinatorial optimization problems assume, under such reformula­
tion, the appearance of problems of linear algebra over an ordered system of 
scalars. Hence we may look to the highly-developed classical theory of linear 
algebra over the real field to give us hints as to how we might approach these 
problems, or, if appropriate adaptations of classical techniques cannot be 
found, we have a well-defined research program to elucidate the theory of 
linear algebra over such ordered structures, and to see how far the algorithms 
and duality principles, familiar to us from linear and combinatorial optimiza­
tion over the real field, extend to more general structures. 

These questions have stimulated a good deal of research over the last 
twenty-five years. From a few isolated publications by one or two researchers 
in the late 1950s, the subject has matured into an identifiable branch of 
applicable mathematics with an international following. 

The author has made a comprehensive survey of this work, to which he 
himself has notably contributed. His book is divided into two sections. In the 
first, a systematic theory of ordered algebraic structures is presented; in the 
second, the subject of linear algebraic optimization is explored. The topics 
discussed are generally, though not exclusively, of one or two kinds: either they 
relate to the properties of matrices over such of the algebraic structures as are 
rich enough to permit matrix multiplication, or they analyse the extent to 
which analogues of familiar linear and combinatorial optimization problems 
may be formulated and algorithmically solved for general ordered algebraic 
structures. 

Because it so comprehensively reviews a literature which is widely scattered 
throughout a great variety of journal articles, this book will be a valuable 
addition to the library of any researcher seriously interested in this field. 
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Functions of a finite set of selfadjoint operators, commuting with each other, 
can be defined through spectral theory. Pseudo-differential operators come 
into action when the need to represent functions of noncommuting operators 
arises. More specifically, let us consider the Hilbert space L2(RM), and, for 
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every j = 1,2,... ,n, the operators #y and p} defined by (qjU)(x) = Xju(x) and 
(PjU)(x) = (l/i)(3w/3xy): these are selfadjoint operators on L2(Rn), the do­
main of which contains Schwartz' space Sf(Rn) of smooth functions rapidly 
going to zero at infinity. That they do not commute is expressed by Heisen-
berg's relations [qj9qk] — [PpPk]

 = 0; [qJ9 pk] = i8Jk. Defining functions of a 
commuting set of operators chosen among the linear combinations, with real 
coefficients, of the operators ql9... ,qn9pv... ,pn leaves no room for choice. In 
particular, i f ö G R " and b e Rw, 

eH<a,qy + <btP» = exp/l(û^ + bjPj) 

is uniquely defined, say by Stone's theorem on one-parameter groups of 
unitary operators, as 

(1) (e'«a«> + <b"»u)(x) = e'<a'x+b^>u(x + b). 

Now the Fourier transformation makes it possible to decompose any reason­
able function ƒ on Rn X R" as a superposition of functions (*,£)•-» 
£i(<a,.x> + <M». t n u s a n y function ƒ shall be assigned a (generally unbounded) 
operator ƒ(q,p) as soon as one has set a rule for letting operators correspond 
to special functions of the above-mentioned type and decided to extend it in a 
linear way. The Weyl assignment is such that the function £'(<«>*>+ <&>£» gives 
rise to the operator el^a'?> + <^>>; in the "standard" assignment, it gives rise to 
the product operator e1^ a^e^ b,p'>. Of course, the notation ƒ (q,p) is meant to 
convey the idea (at best meaningful in an approximate sense) that one has 
substituted the operator q} (resp. Pj) for the real variable Xj (resp. £y) in the 
function/: the operator ƒ (q9p) is called the pseudo-differential operator with 
symbol ƒ, though mathematicians sometimes prefer to denote it as f(X,D) 
when the standard rule is used, and ƒ W(X9D) under the Weyl assignment. The 
defining formulas are as follows: 

(2) (f(X,D)u)(x) = {2<nYnjjf{x,i)e-<*-yVu{y) dydi 

and 

(3) (f"{X,D)u)(x) = (2«)-fff(^,i)e«'-"-t>u(y) dyd*. 

Formula (2) is more consistent with the usual way people write a differential 
operator P as 

(derivatives first), since it gives to such an operator the symbol p(x,^) = 
Haa(x)ia: this remark may also explain the terminology "pseudo-differential 
operator" (you may call them *//.d.o's when you have gotten acquainted with 
them). As a matter of fact, there is nothing in formulas (2) or (3) that would 
impose any limitation on the operators one gets, as any linear operator, say 
from^(R") to its dual, can be represented as f(X,D) or gw(X,D) for suitable 
ƒ or g e &"(R2n), the subject of ^/.d.o's really begins when only symbols which 
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are nice and not too large are considered. The standard rule (2) has been 
traditional with people in partial differential equations for years (though the 
trend is now reversing for some very good reasons) and is the choice made in 
the two books under review. The symbols used therein lie in Hörmander's 
classes S™8, where ƒ e S™B means that ƒ is smooth and satisfies estimates 

(4) \DÏDff(x,t)\ < Ca,,(l + |ÉDm-"/"+,,",
; 

here p and S are constants such that 0 < 8 < p < l , Ô < l , and m is allowed to 
depend on ƒ : only the case when 5 = 0 and p = 1 is really natural, but the 
flexibility allowed by the more general case is helpful in some situations. 
Actually, important and difficult problems in partial differential equations 
have been solved just by the introduction of a well-adapted class of symbols 
for which a symbolic calculus was made available (e.g. R. Beals' and C. 
Fefferman's extension of the Nirenberg-Treves results on the local solvability 
problem in the principal type case). Symbols whose order m is highly negative, 
and associated operators, are considered as negligible in \p.d.o. theory; for 
instance, formulas (2) and (3) are related by the fact that ƒ W(X,D) = g(X,D) 
provided that 

g(*,0=[expi£g|y ƒ(*,£) 

(Stone's interpretation of the exponential again); this may be converted into 
the asymptotic expansion 

(5) * ( * > * ) - ^ ( è è H è r ^ ' 
where, in view of (4), the terms on the right-hand side become more and more 
negligible in the case when 8 < p. Thus, working with the S™8 classes, one gets 
the same operators whether one uses (2) or (3); (5) is typical of various 
asymptotic expansions, which together constitute the so-called symbolic calcu­
lus. The most important such formula is the one that expresses the symbol ƒ ° g 
of the composition of the operators ƒ (X,D) and g( X,D); it reads 

(6) (f^)(X^)~L^)af(^)-(\^yg(x,è); 
again (4) justifies the view that the successive terms may be considered as 
smaller and smaller if p > ô. A key notion, introduced by Hörmander and very 
much related to the development of tp.d.o. theory, is that of wavefront set: 
given a distribution u on Rw, it is possible to describe the set where u is not 
smooth not as a (closed) subset of the x-space RM, but as a subset of 
Rn X (Rn \ {0}) conical in the sense that it is invariant under the dilations 
(x,£) •-> (x,\i;) with X > 0. This represents in a way a reaction against 
Heisenberg's uncertainty principle (which asserts essentially that there can be 
no definition of the support of u as a subset of the "phase space" R" X R"), 
and this notion has proved crucial in the modern development of partial 
differential equations: the reason for this is that it allows one, to a certain 
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extent, to describe things as happening in the phase space rather than down­
stairs in R", a fundamental breakthrough as it is certainly in the phase space 
that the interesting geometry takes place. 

The matters discussed so far are the core to any elementary introduction to 
i//.d.o. theory. They constitute much of the book by Bent E. Petersen, which has 
been organized at the same time as a textbook on distribution theory. The 
applications include a short discussion of the Dirichlet problem, partly as a 
motivation for studying the sharp Gârding inequality, and Hörmander's theo­
rem on the propagation of singularities for if/.d.o's of principal type with a real 
principal symbol. Its usefulness as a textbook is enhanced by the presence of 
numerous easy exercises and a few scattered references to results in partial 
differential equations not developed in the text. My only reservation would be 
about the choice of certain topics (a great deal of soft analysis in the chapter 
on local existence, while I would have found other matters more urgent), but 
this is, after all, a question of taste. 

Pseudo-differential operators did not make their appearance in partial 
differential equations as a position-and-momentum functional calculus. Their 
ancestors must be traced through the development of classical potential theory, 
so that Newton, Laplace, Poisson and Green may have been the true founders 
of the field. In potential theory, operators occur whose kernels have bad 
singularities on the diagonal; these singularities, however, are of a quite 
well-defined nature. Calderón and Zygmund initiatied, in the fifties, the 
modern era of \J/.d.o's: not only did they introduce the capital notion of symbol 
(for classes of operators initially characterized by their kernels so as to 
resemble those of potential theory), but, moreover, Calderón was the first to 
show the applicability of ^.d.o's in problems about general differential opera­
tors. Ever since that time, ^.d.o's have been helpful in all sorts of problems in 
partial differential equations: local solvability and hypoellipticity, Cauchy and 
boundary-value problems, the spectral theory of differential problems, com­
plex analysis [1]; the related field of hyperfunctions and analytic microlocal 
analysis, initiated by Sato, has grown and matured. The bibliographical notes 
in H. Kumano-go's book constitute a very helpful guide to the (quite formid­
able) literature up to 1980. More recent developments include J. M. Bony's 
calculus of paradifferential operators and applications to nonlinear partial 
differential equations. 

On the other hand, some essential ideas in ^.d.o. theory can be grasped best 
through its connection to other fields, in particular, quantum mechanics and 
noncommutative harmonic analysis. The discussion that follows is intended to 
show, at the same time, that t|/.d.o's may also have a more and more important 
role to play outside the field of partial differential equations. The "grand 
scheme" below has been phrased in many different versions and should be 
ascribed to the founding fathers of quantum mechanics. Let M be a smooth 
manifold, H a complex Hilbert space, T a connected Lie group of C00 

transformations of M, say acting transitively on M. Let L be a real vector 
space consisting of selfadjoint operators on H, and for every A e L let a(A) be 
a smooth real-valued function on M; call o (A) the symbol of A, and assume 
that a is linear and one-to-one. Finally, for every ^ e T let U* be a unitary 
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transformation of H : assume that U is a projective representation of T (i.e., 
UyUy, = XU^y, with X G C, |X| = 1) and the symbol map is covariant under 
that representation: this means that if A e L, SO does U^AU^1, and 
oiUyAU^1) = a(^4)o^ - 1 ; to close the list of demands, assume that if (^,) is 
a one-parameter subgroup of T, then, for some choice of the unit complex 
number Xr one has A,L^ = exp/L4, with A e L, so that one can define 
ƒ = a(v4). Now, denoting by Xf the vector field that is the generator of (%) 
and using the covariance property to compute the symbol of (d/dt)(eltABe~ltA) 
(t = 0) in two different ways, one gets, if a (A) = ƒ and o(B) = g, the relation 
o(i[A,B]) = -Xfg. 

The grand scheme belongs to more than one trade, depending on the fixtures 
and portable things among its ingredients. One may start with the manifold M 
that is the phase space of a certain classical system; as such, it has a symplectic 
structure, which allows one to define Poisson brackets. The founders of 
quantum mechanics, H. Weyl among them, had to face the quantization 
problem, which just means completing the picture in such a way that -Xfg = 
{/ ,g}: then, given the hamiltonian of the system (this is just a function ƒ on 
M ), the Hamilton-Jacobi equations that describe its classical evolution in time 
could be replaced by a Schrödinger equation. Of necessity, the transformations 
that belong to T must preserve the symplectic form on M\ such transforma­
tions are called canonical. It is well known (Van Hove's theorem) that for no 
fixed quantization rule a (or rather o~l) can all canonical transformations 
belong to T. On the other hand, it seems to be less known that quite 
miscellaneous groups T do fit in this scheme provided a is subject to choice. 
Consider the case when M = R" X R" with the symplectic form HdXj A di-y. 
then M acts on itself by translations, and (1) defines a projective representation 
of M in L2(Rn), the Heisenberg representation; one does get covariance with 
either of the quantization rules (2) and (3) (and many others too). With the 
Weyl rule (3), one gets as a bonus covariance under the action on M of 
Sp(w,R), the group of linear canonical transformations of M: the associated 
representation is the celebrated metaplectic representation. The reviewer has 
recently suggested a quantization rule meaningful in cases when M is a 
riemannian symmetric space and T is its isometry group; besides the possible 
applications of such calculi in partial differential equations, one gets a *//.d.o. 
interpretation of the Radon transformation as a connecting link between 
various calculi. 

In the theory of group representations, the grand scheme plays a role, 
explicit or not, in Kirillov's method of orbits and Kostant's and others' 
quantization and polarization theory. There, only the group T is given to start 
with, not M: the connection of all this with vp.d.o's has been noted by R. Howe. 
Another classical exercise in harmonic analysis which is obviously very much 
related to *//.d.o's is the problem of decomposing the tensor product of a 
representation by the adjoint representation. 

The next (and last) interpretation of the quantization scheme will again take 
us to matters that have been more central to the development of ^.d.o's and 
their use in partial differential equations. Fix M = R" X R" and the standard 
quantization rule (2) (Weyl's rule would work in the same way). Now, as 
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shown by (6), in general, one does not have o(i[A,B]) = {o(A),o(B)} in 
general. Recalling that 

dtjdxj dxjdtj)' 

one can see, on the other hand, that {o(A),o(B)} is just what one would get 
by retaining in the right-hand side of (6) only the terms with \a\ < 1. Choosing 
classes of symbols characterized by inequalities more or less in the shape of (4) 
(with p > 8) gives substance to this asymptotic point of view, though of course 
{ƒ, g } can be considered as the main term in /( ƒ ° g — g ° ƒ ) only under some 
nondegeneracy (principal type) assumptions. Physicists have another, more 
formal, point of view, as they would quantize ƒ as f(X, hD) rather than 
f(X9D), which makes powers of Planck's constant apparent in (6). Now that 
room has been made for error terms, the discussion of the grand scheme makes 
it plausible that one can define U^ (i.e. quantize ^ ) , in an approximate sense, 
for rather general canonical transformations SF. This was, indeed, done by 
Egorov in 1969 for canonical transformations that are homogeneous of degree 
one in the ^-variable; one gets operators U^ which are, if not unitary, at least 
nearly invertible, and complete asymptotic expansions make it possible to get 
error terms as small as one pleases. An elementary case occurs when ^ is the 
map induced on Rn X R", interpreted as the cotangent bundle of R", by a 
diffeomorphism \p of the base space. Connections between the symbolic 
calculus of operators and quantum mechanics seem to have been brought 
forward in a large part by the Russian school, especially Gelfand, Berezin, and 
Maslov; Leray did much, with his Lagrangian Analysis, to publicize and clarify 
this trend of ideas. In 1968-1970, Hörmander introduced and developed his 
calculus of Fourier integral operators; besides a symbol, the definition of such 
an operator requires the introduction of a "phase function" built from a 
canonical transformation. One of their most important properties is the 
following: just as, for a given i//.d.o. A, and every distribution u to which it can 
be applied, the wave front of Au is included in that of u (operators that satisfy 
this property are called pseudo-local), Fourier integral operators move the 
wave front set according to the canonical transformation built in their phase 
function. This is especially important when the need arises to construct 
operators which, by nature, propagate singularities, in particular those that 
describe the solution of an evolutionary problem of hyperbolic type. Indeed, 
the first example of a Fourier integral operator had been introduced by Lax in 
precisely such a problem. 

Besides being much more than just an introduction to the subject of ^.d.o's 
and Fourier integral operators, the book by Kumano-go is an exposition of 
what his views were on the subject; as such, it is now invaluable. There is 
considerable material in the book, much of it treated in an original way. To 
give an idea of the broad range of applications considered, let us mention: 
elliptic complexes and the Atiyah-Bott-Lefschetz theorem; Hörmander's theo­
rem on the hypoellipticity of "sums-of-squares" second-order operators, in 
Kohn's way of proof; general elliptic boundary-value-problems (Shapiro-
Lopatinski conditions); Calderón's uniqueness in the Cauchy problem; the 

{ƒ,*} = L 
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construction of fundamental solutions, with an original method, for initial-value 
problems of hyperbolic type. The material covered reflects in a way Kumano-
go's work; on the other hand, as I said earlier, the book contains a very useful 
guide to the literature, written in a systematic way, from which the reader 
could get a fair idea of what directions partial differential equations have taken 
in recent years. Care has been taken to adhere to fixed notations and to display 
a complete list of them as well as an index. However, even though preliminary 
material like tempered distributions and the Fourier transformation is covered 
(at a brisk pace) in the first chapter, I am afraid that newcomers to the field 
may find that the book, in general, makes hard reading. One of the drawbacks 
of the author's highly respectable constant emphasis on hard analysis is that 
essential ideas are sometimes concealed so as to appear as just technicalities. 
On the other hand, there are great ideas in the book. The one that makes it 
most original is the recurrent use of multiple symbols, a notion introduced by 
Kumano-go (though Friedrichs had introduced very early not-so-multiple 
symbols). The idea is to replace the phase space Rn X Rn by (Rn xRn)p for 
large P. Then, the quantization rule is chosen so that 

expiZ{(ak,x
k) + (bk,t

k)) 

give rise to the operator ei(ai>q)ei(b"p)el<a2'qy.. .ei(b»p)\ in particular, if fk is 
the standard symbol of Ak, a multiple symbol of the product Ax.. ,AV is the 
function 

f{x\e,x\...,v) = hh{xk,ik). 
k=i 

Any multiple symbol ƒ can be contracted to an ordinary symbol g that would 
yield the same operator; careful estimates of g, depending on v in as uniform a 
way as is possible, are given. The idea of multiple symbol is very reminiscent of 
the use of Trotter's formula 

e x p - / ( - A + V) = lim (*< ' / " )V«/"0" 
V-* 00 

to derive the Feynman-Kac formula from the expression of (e(t/v) e~it/v)Vy as 
the product of a great number of convolution and multiplication operators. 
Together with a similar construction relative to Fourier integral operators, it 
plays a crucial role in the author's study of hyperbolic systems. 

Kumano-go's book should not be compared to Treves' two volumes at 
Plenum, which appeared at the same time, and whose geometrical insight and 
enjoyable style could hardly be surpassed. Still, it is a book with a great wealth 
of material; also, it will be found helpful by people interested in knowing 
better Kumano-go's own contributions and insights in the field of pseudo-dif­
ferential operators. 
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