FINITENESS OF MORDELL-WEIL GROUPS OF GENERIC ABELIAN VARIETIES

BY ALICE SILVERBERG

In a series of papers in the 1960s Shimura studied analytic families of abelian varieties with fixed polarization, endomorphism, and level structure. The isomorphism classes of abelian varieties in such a family are in one-to-one correspondence with the points of D/Γ , where D is a symmetric domain and Γ is a discontinuous group of transformations of D. Shimura constructed a fibre system (V,W) where the base V is analytically isomorphic to D/Γ , the fibres are the abelian varieties in the family, and V and W are quasi-projective varieties. The fibre A over the generic point of V is an abelian variety defined over the function field K of V. The main result of this announcement is that, under certain conditions on the endomorphism algebra structure, the group of points of A defined over K is finite. Using completely different techniques, Shioda [8] proved this result in the case in which D is the complex upper half-plane and Γ is a congruence subgroup of $\mathrm{SL}_2(\mathbf{Z})$.

The results in this note are an extension of part of the author's Ph.D. thesis [9]. Details will appear elsewhere. I would like to express my sincere thanks to my thesis advisor, Professor Goro Shimura.

1. Let F be an arbitrary totally real number field of degree g over the rational number field Q. Let L be either (a) the field F, (b) a totally indefinite quaternion algebra over F (and view L as embedded in $M_2(\mathbb{R})^g$), or (c) a totally imaginary quadratic extension K of F. Let Φ be a representation of L by complex matrices of degree n so that $\Phi + \overline{\Phi}$ is equivalent to a rational representation of L, and $\Phi(1) = 1_n$ (writing 1_n for the identity matrix of size n). Assume that [L:Q] divides 2n, and let m = 2n/[L:Q]. In (c), if $\tau_1, \ldots, \tau_g, \overline{\tau}_1, \ldots, \overline{\tau}_g$ are the distinct embeddings of K in the complex number field \mathbb{C} , write r_{ν} and s_{ν} , respectively, for the multiplicities of τ_{ν} and $\overline{\tau}_{\nu}$ in Φ (then $r_{\nu} + s_{\nu} = m$). Suppose $T \in M_m(L)$ satisfies ${}^tT^{\rho} = -T$, where t is transpose on $M_m(L)$, and ρ is complex conjugation on K and transpose on each factor of $M_2(\mathbb{R})^g$. In (c), suppose $iT^{\tau_{\nu}}$ has the same signature as

$$\begin{pmatrix} 1_{r_{\nu}} & 0 \\ 0 & -1_{s_{\nu}} \end{pmatrix}$$

for every ν . Let \mathcal{M} be a lattice in L^m , and let v_1, \ldots, v_s be elements of L^m . Let Ω denote the collection of data $(L, \Phi, \rho, T, \mathcal{M}, v_1, \ldots, v_s)$.

Suppose A is an abelian variety with a polarization C, θ is an embedding of L into $\operatorname{End}(A) \otimes \mathbb{Q}$, and t_1, \ldots, t_s are elements of A of finite order.

Received by the editors July 31, 1984.

1980 Mathematics Subject Classification. Primary 14K10, 14K22; Secondary 10D20.

DEFINITION. $(A, C, \theta, t_1, \ldots, t_s)$ is a polarized abelian variety of type Ω if (1) there is a holomorphic mapping ξ of \mathbb{C}^n onto A inducing an isomorphism of a complex torus \mathbb{C}^n/Y onto A satisfying $\xi(\Phi(a)u) = \theta(a)\xi(u)$ for every $u \in \mathbb{C}^n$ and $a \in \theta^{-1}(\operatorname{End}(A))$; (2) if γ is the involution of $\operatorname{End}(A) \otimes \mathbb{Q}$ determined by C, then $\theta(a)^{\gamma} = \theta(a^{\rho})$ for every $a \in L$; (3) there is an \mathbb{R} -linear isomorphism η of $(L \otimes_{\mathbb{Q}} \mathbb{R})^m$ onto \mathbb{C}^n such that $\eta(M) = Y$, $t_i = \xi(\eta(v_i))$ for $i = 1, \ldots, s$, and $\eta(ax) = \Phi(a)\eta(x)$ for every $a \in L$ and $x \in (L \otimes_{\mathbb{Q}} \mathbb{R})^m$; and (4) C determines a Riemann form R on \mathbb{C}^n/Y such that $R(\eta(x), \eta(y)) = \operatorname{tr}(xT^ty^{\rho})$ for every x and y in $(L \otimes_{\mathbb{Q}} \mathbb{R})^m$.

Write H_r for $\{Z \in M_r(\mathbb{C})|^{\mathsf{t}}Z = Z; \operatorname{Im}(Z) \text{ is positive symmetric} \}$ and $H_{r,s}$ for $\{Z \mid \operatorname{complex} \text{ matrix with } r \text{ rows and } s \text{ columns}; \ 1 - Z^{\mathsf{t}}\overline{Z} \text{ is positive hermitian} \}$. Let D be $H^g_{m/2}$ in (a), H^g_m in (b), and $H_{r_1,s_1} \times \cdots \times H_{r_g,s_g}$ in (c). The isomorphism classes of polarized abelian varieties of type Ω are in one-to-one correspondence with the points of D/Γ , where Γ is a suitably defined group of transformations on D (see [3] and [4]). In [5] Shimura showed that for each Ω , one can construct a fibre system \mathcal{F} in which the base V is analytically isomorphic to D/Γ and the fibres are the polarized abelian varieties of type Ω .

THEOREM 1. If $\dim(V) \geq 1$ then the group of points of the generic fibre defined over the function field of V is finite.

The remainder of this paper is a sketch of the proof of Theorem 1.

2. The Mordell-Weil group of Theorem 1 is isomorphic to the group of rationally defined algebraic sections from the base V to the fibre variety W. If V is one-dimensional, one sees easily that these sections extend to global holomorphic sections. For higher dimensions we have the following result, which is a consequence of a result of Igusa (Theorem 6 of [1]) when the base variety V is compact.

PROPOSITION. Let f be a rational section from V to W. Then f is defined at every point of V so that f gives a holomorphic section from V to W.

When $\dim(V) = 1$ and V is compact, the second derivative of a holomorphic section is an automorphic form of weight three with respect to Γ . The Eichler-Shimura cohomology isomorphism (Theorem 8.4 of [7]) can be used to show these automorphic forms are zero, and this then restricts the number of holomorphic sections. When D is H_1^r or $H_{1,1}^r$ with r > 1, the use of the Eichler-Shimura cohomology isomorphism is replaced by the application of a theorem of Matsushima and Shimura (Theorem 3.1 of [2]), which says there are no automorphic forms of mixed weight with at least one nonpositive weight.

3. The cases of Theorem 1 discussed in $\S 2$ can be used to prove the theorem in the remaining cases. We select a large collection of embeddings of base varieties V', for which the theorem is known, into a variety V for which we want to prove the theorem. A section f over V may be pulled back to sections over the varieties V'. Since every section over every V' is of finite order, we can obtain a dense set of points of V which map via f to points of finite order

in the fibres over V. To show f is torsion, we must show these orders are bounded. We do this by proving a theorem giving a uniform bound for orders of torsion points on fibres with complex multiplication (Theorem 2 below). The finiteness of the Mordell-Weil group of the generic fibre then follows.

For u in V, write $Q_u = (A_u, C_u, \theta_u, t_1(u), \dots, t_s(u))$ for the fibre over u. The fibre system \mathcal{F} is defined over a number field k_{Ω} of finite degree such that for every $u \in V$, $k_{\Omega}(u)$ is the field of moduli of Q_u (see [5]). Call Q_u a "CM-fibre" if A_u is isogenous to $A_1 \times \cdots \times A_t$, where A_i has complex multiplication by a CM-field of degree $2 \cdot \dim(A_i)$, for $i = 1, \ldots, t$ (thus, A_u has CM in the sense of [6]).

THEOREM 2. Let k be any subfield of \mathbb{C} which is finitely generated over Q and contains k_{Ω} . There is a constant B, depending only on the field k and the fibre system \mathcal{F} , and independent of the choice of CM-fibre Q_u , so that $|A_u(k(u))_{torsion}| \leq B$.

The proof of Theorem 2 requires Shimura's Main Theorem of Complex Multiplication.

REFERENCES

- 1. J.-I. Igusa, On the structure of a certain class of Kaehler varieties, Amer. J. Math. 76 (1954), 669-678.
- 2. Y. Matsushima and G. Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. of Math. (2) 78 (1963), 417-449.
- G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149–192.
- 4. ____, On the field of definition for a field of automorphic functions. II, Ann. of Math. (2) 81 (1965), 124-165.
 - 5. ____, Moduli and fibre systems of abelian varieties, Ann. of Math. (2) 83 (1966), 294-338.
- 6. _____, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144-222.
- 7. _____, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten, Tokyo and Princeton Univ. Press, Princeton, 1971.
 - 8. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59.
 - 9. A. Silverberg, Ph.D. thesis, Princeton Univ., 1984.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544

 ${\it Current \ address:} \quad {\it Department \ of \ Mathematics, \ Ohio \ State \ University, \ Columbus, \ Ohio \ 43210}$