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FINITENESS OF MORDELL-WEIL GROUPS 
OF GENERIC ABELIAN VARIETIES 

BY ALICE SILVERBERG 

In a series of papers in the 1960s Shimura studied analytic families of 
abelian varieties with fixed polarization, endomorphism, and level structure. 
The isomorphism classes of abelian varieties in such a family are in one-to-one 
correspondence with the points of D/Y, where D is a symmetric domain and 
T is a discontinuous group of transformations of D. Shimura constructed a 
fibre system (V, W) where the base V is analytically isomorphic to D/T, the 
fibres are the abelian varieties in the family, and V and W are quasi-projective 
varieties. The fibre A over the generic point of V is an abelian variety defined 
over the function field K of V. The main result of this announcement is that, 
under certain conditions on the endomorphism algebra structure, the group 
of points of A defined over K is finite. Using completely different techniques, 
Shioda [8] proved this result in the case in which D is the complex upper 
half-plane and T is a congruence subgroup of SL»2(Z). 

The results in this note are an extension of part of the author's Ph.D. thesis 
[9]. Details will appear elsewhere. I would like to express my sincere thanks 
to my thesis advisor, Professor Goro Shimura. 

1. Let F be an arbitrary totally real number field of degree g over the 
rational number field Q. Let L be either (a) the field F, (b) a totally indefinite 
quaternion algebra over F (and view L as embedded in M2(R)9), or (c) a 
totally imaginary quadratic extension K of F. Let $ be a representation of 
L by complex matrices of degree n so that $ + $ is equivalent to a rational 
representation of L, and $(1) = l n (writing l n for the identity matrix of 
size n). Assume that [L : Q] divides 2n, and let m = 2n/[L : Q]. In (c), if 
T\,..., Tg, T\,..., rg are the distinct embeddings of K in the complex number 
field C, write rv and 8U, respectively, for the multiplicities of rv and rv in 
# (then TV + Si, = ra). Suppose T G Mm(L) satisfies %TP = - T , where * is 
transpose on M^L), and p is complex conjugation on K and transpose on 
each factor of M2(R)9. In (c), suppose iTTu has the same signature as 

Co - l ) 
for every v. Let M be a lattice in Lm , and let t>i,..., vs be elements of Lm . 
Let Q denote the collection of data (L, $, p, T, M, i>i,..., vs). 

Suppose A is an abelian variety with a polarization C, 6 is an embedding 
of L into End(A) 0 Q, and t i , . . . , ts are elements of A of finite order. 
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DEFINITION. (A, C, 0, £1 , . . . , t3) is a polarized abelian variety of type Ü if 
(1) there is a holomorphic mapping £ of Cn onto A inducing an isomorphism 
of a complex torus C n /Y onto A satisfying £($(a)u) = 0(a)^(u) for every 
u G Cn and a G ö~1(End(A)); (2) if 7 is the involution of End(A) ® Q 
determined by C, then 0(a)1 = 0(ap) for every a G L; (3) there is an R-linear 
isomorphism 77 of (L ®Q R)m onto Cn such that rj(M) — Y, t% — £(r/(vz)) 
/or z = 1 , . . . , s, and r/(ax) = $(a)r)(x) /or even/ a G i and x G (L <S)Q R)m; 
and (4) C determines a Riemann form R on C n /Y swc/i that R(r)(x))rj(y)) — 
tx(xTtyp) /or every x and y in (L ®Q R)m . 

Write J/r for {Z G M r(C)| t Z = Z;lm(Z) is positive symmetric} and Hr,s 

for {Z| complex matrix with r rows and s columns; 1 — ZtZ is positive 
hermitian}. Let D be H^^ in (a), f̂̂  in (b), and Hri,Sl x • • • x HVg,Sg in (c). 
The isomorphism classes of polarized abelian varieties of type Q are in one-
to-one correspondence with the points of D/T, where T is a suitably defined 
group of transformations on D (see [3] and [4] ). In [5] Shimura showed that for 
each H, one can construct a fibre system 7 in which the base V is analytically 
isomorphic to D/T and the fibres are the polarized abelian varieties of type 
n. 

THEOREM 1. If dim(V) > 1 then the group of points of the generic fibre 
defined over the function field of V is finite. 

The remainder of this paper is a sketch of the proof of Theorem 1. 

2. The Mor dell-Weil group of Theorem 1 is isomorphic to the group of 
rationally defined algebraic sections from the base V to the fibre variety W. 
If V is one-dimensional, one sees easily that these sections extend to global 
holomorphic sections. For higher dimensions we have the following result, 
which is a consequence of a result of Igusa (Theorem 6 of [1]) when the base 
variety V is compact. 

PROPOSITION. Let f be a rational section from V to W. Then ƒ is defined 
at every point ofV so that ƒ gives a holomorphic section from V to W. 

When dim(F) = 1 and V is compact, the second derivative of a holomor­
phic section is an automorphic form of weight three with respect to T. The 
Eichler-Shimura cohomology isomorphism (Theorem 8.4 of [7]) can be used 
to show these automorphic forms are zero, and this then restricts the num­
ber of holomorphic sections. When D is HI or H\ x with r > 1, the use of 
the Eichler-Shimura cohomology isomorphism is replaced by the application 
of a theorem of Matsushima and Shimura (Theorem 3.1 of [2]), which says 
there are no automorphic forms of mixed weight with at least one nonpositive 
weight. 

3. The cases of Theorem 1 discussed in §2 can be used to prove the theorem 
in the remaining cases. We select a large collection of embeddings of base 
varieties V , for which the theorem is known, into a variety V for which we 
want to prove the theorem. A section ƒ over V may be pulled back to sections 
over the varieties V'. Since every section over every V' is of finite order, we 
can obtain a dense set of points of V which map via ƒ to points of finite order 
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in the fibres over V. To show ƒ is torsion, we must show these orders are 
bounded. We do this by proving a theorem giving a uniform bound for orders 
of torsion points on fibres with complex multiplication (Theorem 2 below). 
The finiteness of the Mordell-Weil group of the generic fibre then follows. 

For u in V, write Qu = {Au,Cu,0Uiti(u),... ,ts(u)) for the fibre over u. 
The fibre system 7 is defined over a number field kn of finite degree such that 
for every uGV, kn(u) is the field of moduli of Qu (see [5]). Call Qu a "CM-
fibre" if Au is isogenous to A\ x • • • x At, where A{ has complex multiplication 
by a CM-field of degree 2 • dim(A^), for i = 1 , . . . , t (thus, Au has CM in the 
sense of [6]). 

THEOREM 2. Let k be any sub field of C which is finitely generated over 
Q and contains /CQ. There is a constant B, depending only on the field k and 
the fibre system 7, and independent of the choice of CM-fibre Qu, so that 
\Au{k(u)) torsion] < &> 

The proof of Theorem 2 requires Shimura's Main Theorem of Complex 
Multiplication. 
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