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A SYMPLECTIC FIXED POINT THEOREM 
FOR COMPLEX PROJECTIVE SPACES 

BY BARRY FORTUNE AND ALAN WEINSTEIN1 

1. Arnold's conjecture. An automorphism ^ of a symplectic manifold 
(P,u;) is homologous to the identity if there is a smooth family tyt (* € [0,1]) 
of automorphisms such that the time-dependent vector field £t defined by 
di^t/dt = & ° ^t is globally hamiltonian; i.e. if there is a smooth family Ht 

of real-valued functions on P such that £*JCÜ = dHt. It was conjectured by 
Arnold [1], as an extension of the Poincaré-Birkhoff annulus theorem [3, 7], 
that every automorphism of a compact symplectic manifold P, homologous to 
the identity, has at least as many fixed points as a function on P has critical 
points. 

Arnold's conjecture was proven by Conley and Zehnder [4] for the torus 
T2n « R 2 n / Z 2 n with its usual symplectic structure. They show that every 
symplectic automorphism of T 2 n , homologous to the identity, has at least 
n + 1 fixed points, and at least 22 n if all are nondegenerate. Their method 
was extended in [8] to prove a version of Arnold's conjecture for arbitrary 
P under the additional assumption that the hamiltonian vector field £t is 
sufficiently C° small. 

In this note we announce a proof of Arnold's conjecture for the complex 
projective space C P n with its standard symplectic structure. We prove that 
a symplectic diffeomorphism of C P n , homologous to the identity, has at least 
n+\ distinct fixed points. (By the Lefschetz fixed point theorem, any continu­
ous map from C P n to itself, homotopic to the identity, has at least n + 1 fixed 
points counted with multiplicities.) For n = 1 (CP 1 « S2) the result was al­
ready known [1], but with a proof which worked only in this two-dimensional 
case. 

The proof for T 2 n in [4] made use of a variational principle in which the 
fixed points of the map were identified with periodic solutions of a time-
dependent hamiltonian system and then identified with critical points of a 
functional on the space of contractible loops on T2 n . The corresponding 
functional in the case of C P n is multiple valued, and there are other difficulties 
connected with the curved geometry of C P n , so we need a new approach. 
Our trick is to consider the hamiltonian system on C P n as the reduction, in 
the sense of [6], of a hamiltonian system on C n + 1 and then adapt recently 
developed methods [2] for finding periodic orbits in C n + 1 . This method 
is similar to that of Conley and Zehnder in that a problem on a compact 
manifold is lifted to a problem on euclidean space invariant under a group of 
transformations. 
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2. Lifting to C n + 1 . Consider C n + 1 with its usual symplectic structure 
Im ^dzl A dz%. The hamiltonian K{z) = Yl^i generates the periodic flow 
T^zi,..., zn+i) = (e2 l / x^i, . . . , e2l^zn) with period 7r, and hence an action 
of S1 = R/TTZ (the Hopf fibration). The reduced manifold K^W/S1 can 
be identified with C P n , and any S*-invariant hamiltonian system on C n + 1 

induces a system on C P n , called the reduced system. Our idea is to use this 
procedure in the opposite direction. 

Fixed points of \j) : CPn —> CPn are the same as solution curves o : [0,1] —» 
CPn with cr(0) = cr(l) for the time-dependent hamiltonian system which 
generates the family ipt connecting the identity to ijj. Let Ht be the hamil­
tonian family for this system; since each Ht contains an arbitrary constant, 
we may assume that Ht(x) > 0 for all t in [0,1] and all x in CPn. Now let 
Ht : C

n + 1 —> R be the unique function which is homogeneous of degree 2 and 
whose restriction to K~l{\) = 5 2 n + 1 is the pullback of Ht. Then Ht is S1-
invariant and defines a time-dependent hamiltonian system on C n + 1 whose 
reduced system is Ht. 

By the general theory of reduction, we know that S 2 n + 1 is an invariant 
manifold for Ht, and the orbits of Ht on CPn are the images of orbits of Ht 

on *S2n+1. Furthermore, if b is the image of <r, then a{\) ~ cr(0) if and only 
if er(l) = TM(j(0) for some // in R/7rZ. If we change the hamiltonian Ht to 
Ht + XK for some A e R, then the "flow" of Ht + XK will still project to 
that of Ht, but now by choosing À (mod7r) = /J, we can make cr(l) = <?(()). In 
other words, to each closed solution curve a for Ht and, hence, to each fixed 
point of ip there corresponds a collection of pairs (<7, À) where À G R and a 
is a closed solution curve for Ht + XK on 5 2 n + 1 . The set of all pairs (a, A) 
corresponding to a given fixed point is diffeomorphic to 5 1 x Z. 

By Hamilton's principle the closed solution curves for Ht + XK on C n + 1 

are exactly the critical points of the functional 

g(z)= f -i(z'{t),z(t))dt+ f Ht(z(t))dt + \ [ \z(t)\2dt 
Jo Jo Jo 

= A{z) + H{z) + XK{z). 

Since we are interested in critical points for all possible values of A, we may 
consider A as a Lagrange multiplier and look for critical points of f(z) = 
A(z) + H{z) constrained to the infinite-dimensional sphere K~1(l). 

We are thus faced with two problems. The first is to do the analysis which 
shows that f(z) has many critical points on i f _ 1 ( l ) , and the second is to 
show that all these critical points cannot belong to fewer than n + 1 families 
of type S1 x Z coming from distinct fixed points of ijj. 

3. Critical point analysis. The solution of the problems stated at the 
end of §2 forms the content of [5] and will only be summarized briefly here. 

It turns out that the critical point theory developed in [2], based on the 
notion of relative index, is applicable to our problem, with some modifications 
made to permit working on the sphere ÜT_1(1) within the space of loops of 
Sobolev class H1/2 in C n + 1 . The values of the Lagrange multiplier A are 
then found to be equal to the critical values of the functional ƒ on i f - 1 (1) . 
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The minimax nature of the critical point theory makes it possible to estimate 
these values by comparison with the action functional A. A combinatorial 
argument then shows that these critical values cannot lie in less than n -f 1 
cosets of R (mod 7rZ) unless some critical values merge, in which case ip would 
have uncountably many fixed points. 
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