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In differential geometry, as in many branches of mathematics, the practi­
tioners can be classified roughly into two groups, the structuralists and the 
problem solvers. Flourishing in the time of Hubert and reaching a peak 
sometime after the appearance of the Bourbaki series, the structuralists gained 
the upper hand. However, the titles of books recently published, such as 
Comparison theorems in Riemannian geometry by J. Cheeger and D. Ebin, 
North-Holland, 1975, and the book at hand seem to indicate that the rococo in 
mathematics, especially differential geometry, has come back in force. 

If we probe a little deeper, we find that the relation between the two schools 
is more cooperative than competitive. Some of the problems discussed in this 
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book, including the central one, Blaschke's problem of analyzing "Wiederse-
hensflâchen," were posed more than 50 years ago. In terms of the mathematics 
of that day there was little chance of framing a satisfactory solution. The 
intervening period of structural dominance has produced a broad base which 
makes it possible and natural to formulate the solve sweeping generalizations 
of the original problems. 

As soon as we get beyond the title page we find that the book is not so 
special after all. The idea of studying manifolds with many closed geodesies is 
only a guiding thread. Much space is devoted to tangential issues, such as a full 
chapter (out of 9) on harmonic manifolds. The author bears out the quip that 
differential geometry is the study of objects invariant under change of notation 
by starting with an unusual foundational chapter. The feature which makes it 
unusual is an emphasis on symplectic structures. Let us examine briefly the 
traditional description of Riemannian geometry and how it has evolved with 
our understanding of structure. It should become clear why the link with 
symplectic structures is apt for the kinds of problems Besse aims to study. 

The classical approach to basic Riemannian geometry is in terms of coordi­
nates. Geodesies were originally conceived as distance-minimizing curves and 
thus were realized as the solutions of a system of second-order differential 
equations. It was Levi-Civita's achievement to put these differential equations 
in a broader context, seeing them as the generalization of the fact that the 
tangent vectors to a straight Une are parallel. Thus, he was led to invent a 
notion of vectors in parallel motion along a curve; the rate of deviation from 
parallel translation is called the covariant derivative. At that time mathemati­
cians were largely content to be able to operate with objects in terms of 
coordinate-dependent indexed arrays. They knew what they were doing ap­
plied to many notable examples, and it was left to later generations to abstract 
and specify the context in which it all worked. Thus it was not until the 1930s 
that Whitney established that the extrinsic and intrinsic ideas of a manifold 
were both equivalent to his abstraction. E. Cartan seemed to think consistently 
in terms of prolongations of basic spaces to others which carry geometrical 
structure, but it was the later generation of Chern, Ehresman, and Steenrod (to 
mention a few) who felt the need to formulate the notion of fibre bundle and 
develop methods to distinguish between them [4]. Now this bundle-structure 
game has been stirring excitement among physicists because it gives an elegant 
setting for Yang-Mills gauge theory. A companion to Riemannian structures, 
linked by the calculus of variations, is the mathematics of mechanics [1, 2, 5,6, 
7]. The tie is preserved in their bundle-theoretic formulations. Thus in mecha­
nics we have a phase space, having as its global form the cotangent bundle, on 
which the canonical 2-form is defined and gives it a symplectic structure. A 
total-energy function on this space leads to the Hamilton-Jacobi equations, 
which are interpreted as a vector field. The transformation from the Lagrangian 
approach, and hence the link with calculus of variations, is accomplished by 
fiber derivatives. Riemannian geometry is the special case for which the total 
energy is the fundamental quadratic form, conceived of as a real-valued 
function on the tangent bundle by the "musical isomorphism". (This is Besse's 
name for it, with sharps and flats for notation. From [3, p. 197] we have "la 
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valse des indices co- et contravariants sous la baguette du tenseur métrique.") 
Via this isomorphism the Hamilton-Jacobi vector field is brought to the 
tangent bundle, where it becomes the geodesic vector field. To present-day 
mathematicians, trained to think operationally and chase diagrams, this proce­
dure gives a clear and satisfying big picture. 

The link between Riemannian and symplectic structures can be taken a step 
further, because locally the space of unit-speed geodesies is itself a symplectic 
manifold. The tangent vectors to that space are the vector fields along the 
geodesies induced by a variation which moves geodesies through geodesies 
without translating or stretching; that is, the normal Jacobi fields. It is well 
known that if X and Y are Jacobi fields on a geodesic, then g{X, Y) - g(7, X') 
is constant, where g is the metric tensor and prime indicates covariant 
derivative in the direction of the geodesic. We denote this constant by 
œ(X, Y). Obviously co is a 2-form on the tangent space to the space of 
geodesies. It is not hard to see that it is nondegenerate and closed. In fact it 
comes from the symplectic form on the tangent bundle by the processes of 
restricting to the unit tangent bundle and quotienting with respect to the 
geodesic flow. Now the notions of symplectic geometry gain a special signifi­
cance. Particularly, the Lagrangian submanifolds are the submanifolds which 
spray normally from a hypersurface N; the tangent space to such a Lagrangian 
submanifold is the space of N-Jacobi fields. The geodesies spraying normally 
from a lower-dimensional submanifold P also form a Lagrangian submanifold; 
in fact, we can take as hypersurface N a, tube about P. However, generally a 
Lagrangian submanifold does not focus on such a P; indeed, the singularities 
which arise are an interesting object of study. 

To obtain a suitable global theory for the space of geodesies requires 
additional properties. By way of noting how bad it can be, recall the Hada-
mard theorems on compact surfaces of negative curvature: given an ordered set 
of k geodesic segments and an e > 0, there is a single geodesic which sweeps by 
the k segments in turn e-close. The modern generalization is the Arnol'd 
theorem that the geodesic flow is ergodic. Obviously with such a hypothesis the 
set of geodesies is extremely unlike a manifold globally. On the other hand, a 
very powerful assumption is made by Besse in his discussion of the space of 
geodesies, namely, that all the geodesies are closed and of the same period. 
Then the space of geodesies is not only a manifold, but also compact. For this 
case the symplectic structure has been used by A. Weinstein [8] to prove that 
the volume of the original manifold is an integral multiple of the volume of a 
sphere having the same geodesic period. 

The description of the known examples of manifolds having all geodesies 
closed and of the same length involves a large variety of geometrical structures. 
The homogeneous ones are the compact rank-one symmetric spaces (CROSSes), 
which are, explicitly, spheres and various projective spaces. Besse gives a 
concise introduction to the several ways their study can be approached. There 
is the differential geometry approach, for which one can start with the basic 
assumption that the curvature tensor is parallel along all curves. Then the 
condition that it have rank one is given by the requirement that there be no 
totally geodesic flat submanifolds except geodesies. The same spaces can be 
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specified by giving the groups which act transitively and the isotropy sub­
groups. Their rich collection of totally geodesic submanifolds admits axiomatic 
characterization as special sorts of classical projective spaces. In particular, the 
intricate distinction between Arguesian geometries and Moufang planes il­
luminates the fact that over the reals, complexes, and quaternions we have 
spaces of all dimensions, but there is only a plane over the Cayley algebra. 
Their topological invariants can be understood either analytically via de 
Rham's Theorem or by cellular decompositions produced out of their projec-
tive-space structures. 

The nonhomogeneous surface examples were already studied by Darboux 
and his contemporaries, Tannery and Zoll. They are surfaces which admit a 
circle group of isometries, and so can be locally isometrically embedded as 
patches on surfaces of revolution. Some are globally surfaces of revolution. The 
theory of symplectic manifolds gives an explanation of why it is possible to 
calculate geodesies explicitly enough to sort out the ones with closed geodesies; 
namely, when there is a symmetry group there are associated first integrals of 
the potential system. This led A. Weinstein to try for and get higher dimen­
sional examples on Sn which have a symmetry group SO(«) acting on the 
equator and all parallel copies of S"'1. Finally, V. Guillemin used an impres­
sive amount of modern techniques (Radon transforms, the Nash-Moser im­
plicit-function theorem, and Fourier-integral operators) to resolve an old 
problem of Funk; in 1913, Funk showed there were formal series deformations 
of the canonical metric on S2 to metrics having all geodesies closed, but the 
convergence was not proved until 1976 by Guillemin. 

There are several other ways in which Besse exploits highly developed 
structures to study various aspects of manifolds with many closed geodesies. 
The geometry of conjugate and cut loci is examined to gain insight into 
Blaschke's conjecture and its generalization to higher dimensions. The conjec­
ture is: a Riemannian manifold for which the geodesies from each point come 
together again at distance 77 is a CROSS. For the case of a spherical manifold 
an affirmative answer was given just in time to be included in Besse's book, 
through the efforts of M. Berger and J. Kazdan. When such an assumption is 
made about just one point there are strong topological conclusions derived 
from Morse theory. The length-spectrum of a Riemannian manifold, that is, 
the set of lengths of closed geodesies, is closely tied to the spectrum of the 
Laplacian by use of the techniques of Fourier-integral operators. 

The interplay and quantity of good ideas from geometry, topology, analysis, 
and algebra which are found in Besse's book are astounding. One might guess 
that it would be impossibly difficult for the bulk of the potential readers, but 
the style may be justified by the emphasis which our current mathematical 
training gives to the understanding of structures. Besse has made his book a 
prototype of how all that structural theory can be specialized to solve prob­
lems. In addition, he softens the difficulty by taking pains to summarize the 
book as a whole and, again, each chapter. The mutual dependence of the 
chapters is reasonably limited, and the range of background needed varies 
considerably with the topics, so that there is something valuable and interest­
ing here for almost every mathematician. 
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Those who wonder why such a knowledgeable author has suddenly appeared 
with no previous record of publications will find that he is a relative of 
N. Bourbaki, if they inquire in the right circles. 
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Physicists have enthusiastically embraced percolation models, and a dramatic 
explosion of physics literature on percolation has occurrred in recent years. 
This literature is rich in simulations, conjectures, heuristic methods, and a wide 
variety of applications and variations of the basic models. Mathematicians who 
experience frustration in tracing the thread of fact through this tangle of 
conjecture and empirical evidence will appreciate the mathematical rigor in 
Percolation theory for mathematicians. 

Percolation models originated in discussions between Broadbent and Ham-
mersley (1957) on the excluded volume problem in polymer chemistry and the 
design of coal miners' masks. Such topics suggested a probabilistic model for 
fluid flow in a medium with randomness associated with the medium rather 
than the fluid. Hence, percolation theory arose as an alternative to the more 
familiar diffusion models, in which randomness is associated with the fluid. 

Models. In a percolation model, the medium is represented by a graph G, 
which is usually an infinite graph with some regularity of structure. FamiUar 
examples are the square, triangular, and hexagonal lattices in two dimensions, 
and the cubic lattice in three dimensions. The fluid flow is determined by a 
random network of vertices and edges in the graph. 

The random mechanism may be associated with either the vertices or the 
edges, so two standard models arise: In the bond percolation model, each edge 
is "occupied" by fluid with probabihty/? and " vacant" with probability 1 - /?, 


