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Introduction. Among the most original and far-reaching of the contributions 
made by Henri Poincaré to mathematics was his introduction of the use of 
topological or "qualitative" methods in the study of nonlinear problems in 
analysis. His starting point was the study of the differential equations of celestial 
mechanics, and in particular of their periodic solutions. His work on this topic 
began with his thesis in 1879, and was developed in detail in his great three-volume 
work, Méthodes nouvelles de la mèchanique céleste, which appeared in the early 
1890s and summarized his many memoirs of the intervening period. It continued 
until his memoir shortly before his death in 1912 in which he put forward the 
unproved fixed point result usually referred to as "Poincaré's last geometric 
theorem". 

The ideas introduced by Poincaré include the use of fixed point theorems, the 
continuation method, and the general concept of global analysis. The writer's 
acquaintance with Poincaré's influence came through contact with Solomon 
Lefschetz and Marston Morse, both of whom were very explicit as to the role of 
Poincaré as an initiator in this direction of mathematical development. In 1934, in 
the Foreword to his Colloquium volume on The calculus of variations in the large. 
Morse had put this forward very forcefully in the first paragraph: 

"For several years the research of the writer has been oriented 
by a conception of what might be termed macro-analysis. It 
seems probable to the author that many of the objectively 
important problems in mathematical physics, geometry, and 
analysis cannot be solved without radical additions to the 
methods of what is now strictly regarded as pure analysis. 
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Any problem which is nonlinear in character, which involves 
more than one coordinate system or more than one variable, 
or whose structure is initially defined in the large, is likely to 
require considerations of topology and group theory in order 
to arrive at its meaning and its solution. In the solution of 
such problems classical analysis will frequently appear as an 
instrument in the small, integrated over the whole problem 
with the aid of group theory or topology. Such conceptions 
are not due to the author. It will be sufficient to say that 
Henri Poincaré was among the first to have a conscious 
theory of macro-analysis, and of all mathematicians was 
doubtless the one who most effectively put such a theory into 
practice." 

I know off-hand of no such written testimony by Lefschetz, though his advice 
in conversation included the recommendation that everyone strongly interested in 
nonlinear problems in analysis should read through the Collected Works of 
Poincaré. How seriously this advice was meant is relatively difficult to determine 
after all this time. It always seemed to me that this was advice meant to frighten, 
not to encourage effort in this area, somewhat like the recommendation of André 
Weil that every aspiring algebraic number theorist should read through Hubert's 
Zahl'Bericht once a year. However, we can associate Lefschetz with the analysis 
offered by Liapounoff in the classical memoir on stability theory of 1892 which 
Lefschetz caused to be republished in the Annals of Mathematics Studies in 1947. 
In this work, which was translated and pubHshed in French in 1907 under the title 
Problème général de la stabilité du mouvement, Liapounoff wrote 

"L'essai unique, autant que je sache, de solution rigoreuse de 
la question appartient à M. Poincaré, qui dans le Mémoire 
remarquable sous bien des rapports Sur les courbes définies 
par les equations différentielles et, en particulier, dans les deux 
dernières Parties, considère des questions de stabilité relatives 
au cas d'équations différentielles du second ordre et s'arrête 
aussi à quelques questions voisines, se rapportant à des 
systèmes du troisième ordre. 

Bien que M. Poincaré se borne a des cas très particuliers, 
les méthodes dont il se sert permettent des applications 
beaucoup plus générales et peuvent encore conduire à 
beaucoup de nouveaux résultats. C'est ce qu'on verra par ce 
qui va suivre, car, dans une grande partie des mes recherches, 
je me suis guidé par les idées développés dans le Mémoire 
cité." 
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Let me conclude this kind of textual testimony by one more quotation, this 
time from Jurgen Moser's Annals of Mathematics Study, Stable and random 
motions in dynamical systems, published in 1973. In the Introduction (page 4), he 
writes 

"However, the mathematical difficulties connected with 
this field, inspired more and more the study of basic theoreti­
cal problems leading to the development of new mathematical 
tools. The main influence in this direction came from Poin­
care who started a number of new lines of thought, like the 
qualitative theory of differential equations, the quest for the 
topology of the energy manifold, he formulated and proved 
fixed point theorems to establish the existence of periodic 
solutions. In this connection one may recall that the fixed 
point theorem by P. Bohl and Poincaré also had its origin in 
this field, to which Bohl devoted his entire mathematical life." 

The topic to which the present paper is devoted, degree theory for nonlinear 
mappings, is one to which Poincaré made an early and important contribution. 
His first results appear in a note in the Comptes Rendus [32] and a more detailed 
development [33] published in the Bulletin Astronomique, both in 1883 only four 
years after his Thesis. In this pair of papers, Poincaré announces the following 
result (in my translation): "Let £1? £2>-••>£,! t>e n continuous functions of n 
variables xx> x29... ,xn: the variable xt is subjected to vary between the limits +at 

and — at. Let us suppose that for xt — at, £, is constantly positive, and that for 
xt = — ai constantly negative; I say that there will exist a system of values of x 
for which all the £ 's vanish." 

For the proof, he refers to the celebrated paper by Kronecker in 1869 [25] 
which began the theory of the topological degree of a mapping. (For a detailed 
analysis of this paper and of the subsequent literature on the Kronecker index, see 
the recent historical paper by Siegberg [35]. The reference to the 1883 papers by 
Poincaré, I owe to Mahwin [27]. Most accounts of Poincaré's role begin with his 
paper [34] in 1886.) No account of the proof is given in the 1883 papers, but in 
1886, Poincaré [34] published the argument on the continuation invariance of the 
index which is the basis for the proof. This is the memoir cited by Liapounoff, 
and like the 1883 announcements, applies what amounts to a fixed point 
argument to prove the existence of periodic solutions of a system of ordinary 
differential equations. 

We can describe the basic idea in the following general terms: Suppose we are 
given a system of differential equations 

%(t) = Au(t)) 
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where the right-hand side is independent of time t. Suppose this system has the 
property that for each initial value w0, the system has one and only one solution 
defined over an interval [0, T]. Then the problem of finding a periodic solution 
u(t) of period T is equivalent to finding an initial value u0 such that the solution 
u{t) with that given initial value has u(T) = w0. If we set 

S(t)u0 = u(t), 

this means finding a fixed point of the mapping S(T). 
The continuation method, a favorite technique of Poincaré, consists of imbed­

ding the problem in a one-parameter family of problems depending upon an 
auxiliary parameter s and considering the solvability of the problem as s varies. 
The link between these two devices is the index or topological degree, which 
assures under appropriate hypotheses that the solvability of a family of problems 
is invariant under continuous perturbations. This continuity or homotopy invari­
ance is the decisive property of the topological degree of mapping. Thus, in the 
1880s, Poincaré was effectively using the basic properties of the topological 
degree, usually associated with L. E. J. Brouwer [7] in 1912. The result stated by 
Poincaré has come to be known as the theorem of Miranda because it was proved 
by C. Miranda [28] in 1940, who showed that it was equivalent to the Brouwer 
fixed point theorem. (It had earlier been applied by Michal Golomb [21] in 1935, 
who observed that its proof was implicit in another paper [6] by Brouwer in 
1911.) 

In the present paper, we give a simple exposition of the classical theory of the 
degree of a mapping as given by Kronecker and Brouwer, and of its extension by 
Leray and Schauder [26] in 1934 to mappings in infinite-dimensional Banach 
spaces of the form I — g, with g compact. We discuss in detail the existence and 
uniqueness of these degrees as defined by the additional properties of additivity, 
homotopy invariance, and normalization. We also present a self-contained exposi­
tion of the recent extension given by the writer [11-14] of these existence and 
uniqueness results for the degree functions for nonlinear mappings of monotone 
type from a reflexive Banach space X to its conjugate space X*. We show how 
such mappings arise from the combination of the ideas of fixed point theory and 
the somewhat different circle of ideas associated with the direct method of the 
calculus of variations. The concept of degree of mapping in all these forms is one 
of the most effective tools for studying the properties of existence and multiplicity 
of solutions of nonlinear equations. 

1. Degree theory in the finite-dimensional case. In the present section, we wish 
to develop as intuitively as possible, the fundamental properties of the classical 
topological degree as they were explicitly formulated by Brouwer in 1912 (and 
implicitly used by Poincaré, Bohl, and others (e.g. Picard [31]) on the basis of 
Kronecker's earlier results about the index). 

Let us begin with some conventions on notation. We shall consider mappings 
with domain in a topological space X and with values lying in a topological space 
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Y. If G is an open subset of X, we denote by cl(G) its closure in X, and by 9G, its 
boundary in X. Thus/: cl(G) -> Y will be the prototype of the maps for which a 
degree function is to be defined. If/: cl(G0) -> Y is such a map and G is an open 
subset of G0, then by /G we mean the restriction of the given map ƒ to cl(G). 

THEOREM 1. Let X= Rn = Y for a given positive integer n. For bounded open 
subsets G of X, consider continuous mappings f \ cl(G) -» Y9 and points y0 in Y such 
that y0 does not lie in /(3G). Then to each such triple ( ƒ, G, y0), there corresponds 
an integer d(f, G, y0) having the following properties: 

(a) If d( ƒ, G, y0) ¥= 0, then y0 E f (G). Iff0 is the identity map of X onto 7, then 
for every bounded open set G andy0 E G, we have 

d(f0,G,G,y0)=+\. 

(b) (Additivity). Iff: cl(G) -> Y is a continuous map with G a bounded open set 
in X, and Gx and G2 are a pair of disjoint open subsets of G such that 

y0$f{c\{G)\(G,UG2)) 

then 

d{f,G, y0) = d(fGt,Gx, y0) + d(fGi,G2, y0). 

(c) (Invariance under homotopy). Let G be a bounded open set in X, and consider 
a continuous homotopy {ft: 0 ^ t < 1} of maps ofc\(G) into Y. Let {yt: 0 < / < 1} 
be a continuous curve in Y such that yt &ft(dG)for any t in [0,1]. Then d(fn G, yt) 
is constant in t on [0,1]. 

THEOREM 2. The degree function d(f, G, y0) is uniquely determined by the three 
conditions of Theorem 1. 

Theorem 1 is an appropriately formalized version of the properties of the 
classical Brouwer degree. Theorem 2 contains an observation made independently 
in 1972 and 1973 by Fuhrer [20] and Amann and Weiss [2], respectively. 

What is this degree function which we describe in Theorems 1 and 2? Intui­
tively, it is intended to be an algebraic count of the number of solutions x in G for 
the equation f(x) = yQ. We speak of algebraic count because (as we specify more 
concretely in a moment) some solutions are counted positively, others negatively. 
The paradigmatic case is that of a mapping ƒ of class C1 with only regular points 
x as solutions of the equation/(x) = y0, i.e. at each solution ƒ'(x) is a nonsingu-
lar linear transformation of Rn. The number of such solutions is then finite, and 
we describe such solutions as positive if f\x) preserves orientation and negative if 
it reverses orientation. Then d( ƒ, G, >>0) equals the number of positive solutions 
minus the number of negative solutions. Thus defined, the degree function for 
such mappings is certainly at least an integer. It is also clearly additive and 
satisfies the normalization condition. The main problem is to show that is 
extendable to all mappings and is homotopy invariant. 

One way of establishing these facts is to identify d( ƒ, G, y0) for such maps with 
an integral of the type studied by Kronecker. To do this, let us assume first that G 



6 F. E. BROWDER 

has a C l boundary S — dG which we orient in an appropriate way so as to satisfy 
the conditions for Stokes theorem: 

I da — \ a 

for any C1 (n — l)-form a on cl(G). We shall describe an (n — l)-form co on 
i£M\{0} in terms of the fundamental solution en(r) of radial type for the 
Laplacian on Rn. Thus for n > 2, en(r) = cnr

2~n
9 while for n — 2, e2(r) = 

c2 ln( l / r) . Thus, setting A = 2n
j=l(d/dxj)2, we have 

where 8 is the Dirac delta function at 0. We set 

y=i j 

with r = (2J=1 x2)x/1 and t/Jc7 = rfx, • • • d/y • • dxn. Then 

r [ -hi ifO E G , 
4 / ° ~ \0 ifOgcl(G). 

Using the form f*(o)) on S induced by the map ƒ of S into Rn, we assert that for 
maps ƒ having only regular points in f~\0) 

d(f,G,0)=( ƒ . ( « ) . 
JdG 

We need only observe that on any domain G0 for which ƒ has no zeroes, 
# * ( « ) =ƒ*(*«) = 0. Hence 

ƒ / » = 0 
for such G0. We can take G0 to be the complement in G of the union of a family 
of small balls around the various points of the finite set {xu... ,xr} — f~ ^O). As 
the balls are taken smaller and smaller (if Bj is the ball around theyth point Xj) 

ƒ/»= £ ƒ / » 
while 

ƒ ƒ » - ƒ £,.(«)-0 

where Lj is the Hnear map ƒ'(*/)• Finally, 

ƒ L / . (o) = sgn(det(L /)). 

If we combine these facts, we identify d( ƒ, G, 0) with the corresponding integral. 
A similar representation holds for d( ƒ, G, j>0) if we note that d( ƒ, g, >>0) = 

</( ƒ ( 'o), G, 0), where ƒ <*»(*) = f(x) - y0 for all x in cl(G). 
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The point of identifying d( ƒ, G, y0) with an integral is that the integral makes 
sense for any C1 mapping/, not just for the ones with regular points in f^\y0), 
provided only that ƒ( S ) does not contain j>0. Moreover, it is continuous under C1 

deformations of the mapping ƒ, under the sole restriction that during the 
déformation^ never appears in/(9G). 

We now apply the theorem of Sard-Morse in the case of maps of Rn into Rn to 
approximate ƒ in the C1 topology by a map g having only regular points in its zero 
set with || ƒ — g || cl(c\(G)) < e-1* follows that for any ƒ and the corresponding g, the 
integrals for ƒ and g are very close. Since g is one of the paradigmatic maps we 
were treating earlier, d(g, G,0) is an integer. Hence, the integral for ƒ defining 
d( ƒ, G, 0) being arbitrarily close to an integer, must itself be an integer. However, 
an integer-valued function of a parameter which is continuous in that parameter 
must be constant. Hence d(fs,G,y0) is constant under any C1 deformation 
during which it remains defined. 

Thus, we have a degree function d( ƒ, G, y0) defined for ƒ of class C1 and G 
having a C1 boundary. We now proceed to remove these restrictions on the 
smoothness of ƒ and G. 

Let G be any bounded open subset of Rn and consider a continuous map ƒ: 
cl(G) -» Rn which is of class C2 in G and such that 0 £ /(8G). Then we can find 
y > 0 such that on the -/-neighborhood of 3G, 

1/00 l>Y. 
We consider a C1 function <p(r) which is 1 for r > y, 0 for r < y/2. Set 

co = <p(r)ù). 

For any open subset Gx of G which has a C1 boundary and contains the 
complement in G of the y-neighborhood of 8G, the boundary Gx is contained in 
the y-neighborhood of 9G. Hence 

d(fGl,Gl90)=f ƒ » = ƒ ƒ*(*). 

However, the form ƒ*(&) is of class C1 in c^G^. Hence 

ƒ /,(«) = ƒ 4r,(a) = ƒ ƒ»(<**) = ƒ ƒ,(</*> A w). 
^ G ! JGX

 JGX
 JGX 

Since 

ƒ*(<*<? A <o) = 0 

on the y-neighborhood of 9G, we see that the resulting integral is independent of 
the choice of Gx and can be expressed as an integral over G\Ny(dG), with 
Ny(dG) the y-neighborhood. 

Finally, suppose/: cl(G) -> Rn is merely continuous. Then we can approximate 
it arbitrarily closely in the C°-norm by C2 maps g. If h is another such 
approximation, then so is 

g, = (1 - t)g + th 
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for any t in [0,1], and for any t9 gt(x) =£ 0 for x in 9G. Hence 

</(g„G,0) 

is independent of t in [0,1] since {g,} is a C l homotopy of C1 maps. We define 

d(f9G90)=d(g9G90)9 

and more generally, d( ƒ, G, j>0) = d(g, G, j ^ ) for such approximations g. 
The degree function thus defined is immediately seen to satisfy the three 

conditions of Theorem 1. 
For the normalization conditions, this follows immediately for the maps with 

only regular solutions of f(x) = y0 by the definition of the degree function for 
such maps. (Moreover, the identity map is immediately seen to have the ap­
propriate value for its degree function.) For more general maps ƒ, our process of 
definition yields a map g with only regular solutions such that g is close to ƒ in the 
C°-norm and 

d(f9G9y0) = d(g9G9y0). 

Hence, if II ƒ — g II co < e, since d( ƒ, G, y0) ¥= 0, we see that g must have j0-points 
in G, so that there exist points in cl(G) such that || f(x) - y01| < e for any e > 0. 
Since/(cl(G)) is closed, it follows that y0 G /(cl(G)). Since y0 does not he in /(9G) 
by assumption,^ must belong to/(G). Additivity on domain follows immediately 
by the corresponding additivity for maps with regular j0-points. Finally, given a 
continuous homotopy {ƒ,} in the C° topology and a continuous curve {yt} in Rn

9 

we can consider { ft — yt}9 and show that d( ƒ„ G, 0) is constant after the modifica­
tion of the ƒ,. We can find y > 0 such that | ft{x) | > y for x on 3G. We now 
choose a sequence 0 = t0 < tx < • • • < tr = 1 such that II ft ~ ft +i II co < y/2. For 
eachy, choose a C^map gy. cl(G) -> Rn such that 

l l / 0 -^ l lc o (c i (G)) < y/ 2 -

Then for eachy, we have 

d(ftj9G,0)=d(gJ9G9Q)9 

and it suffices to show that for eachy', 

d(gj9G90) = d(gJ+l9G90). 

We consider the linear homotopy 

ht = (\-t)gj + tgj+l 

between gj and gJ+l. This homotopy is of class C1, so that to obtain the 
constancy of the degree under the homotopy, it suffices to show that for all x in 
3G and t in [0,1], ht(x) ¥= 0. Both points gy(x) and gJ+l(x) are contained in the 
open ball of radius y about the point ƒ,(*), and hence so is their convex linear 
combination ht{x). Since this ball does not contain 0, ht(x) ^ 0. 

REMARK. Analytical proofs for the existence and properties of the degree 
function have been given a number of times in the literature in the last forty 
years, for the first time explicitly by Nagumo in 1941. A recent version with 
bibliographical references is that of Fenske [19]. 
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We now observe that the argument given above, together with one further 
observation, yields the proof of Theorem 2. Suppose that we are given a degree 
function dx( ƒ, G, y0) which satisfies the three conditions of Theorem 1. We wish 
to identify it with the degree function d already constructed. We may approxi­
mate /as closely as we please in the C°-norm by a map g of class C1 which has 
only finitely many points {xX9... 9xr) in G at which f(x) = y09 and all of these 
points are regular points. Since ƒ and g are close, the linear homotopy 

ht=(\-t)f+tg 

is permissible in that it produces no points x on dG such that ht{x) = y0 for any / 
in [0,1]. By homotopy invariance of the degrees, 

dx(f> G, y0) = dx(g, G, y0)9 d(f9 G, y0) - d(g9 G, y0). 

Hence, we need only show the equality of the two degrees on such mappings g. 
Moreover, using the additivity on domain, we can replace G by the union of small 
balls Bj around the various points Xj. It thus suffices to take G = B where B is the 
ball of radius e about the point x0 which is the unique solution of g(x) = y0 in B. 
If e > 0 is sufficiently small and if L is the derivative of g at x0, the homotopy 
between g and g0 with g0(x) = y0 -f L(x — x0) given by 

*, = 0 - 0 * + '&> 
has the property that it produces no y0 points on 32?. Hence, we need only verify 
that 

d(go>B>yo) = ^(g09B9y0). 
Furthermore, if we deform L through the nonsingular linear mappings of Rn, 
both degrees remain constant. Since the nonsingular linear mappings of L have 
two path components, the maps with positive determinant and the maps with 
negative determinant, it suffices to consider a single map in each class. For the 
mappings with positive determinant (the orientation-preserving maps), we choose 
the identity map /, and the equality of the two degrees follows from the 
normalization condition. In the other case, we choose the Hnear mapping L given 
by 

Lxx — —xX9 Lxj = Xj for y > 2. 

To handle this last case, let us observe that it really amounts to considering the 
same problem in the one-dimensional case, n = 1. Indeed, let Bn_x be the unit 
ball in Rn~l and for any mapping/^ cl(Gj) -» Rl with Gx a bounded open subset 
in R\ let us define 

G2 = xQ+ Gx XBn_x, f2(x) =y0 + h(x), h(x) = ( fx(xx), x2 , . . . ,*„) . 

We define two degrees d and d2 on the one-dimensional maps by setting 

d(fl9Gl9 u) = d(f29G29 y0 + u)9 d2(fX9Gl9 u) = dx(f2>G29 y0 + u) 

where u is considered as a vector (w,0,...,0). The degree function d is the 
conventional one on Rx\ we must show it identical to the degree function d2 
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defined in terms of dx. For n = 1, the problem is best resolved by the following 
picture: 

- \ - . ' , 

v 
/ . . 

+1 

The function h whose graph is pictured on the interval [ —3, +1] has two zeros at 
0 and at ( — 2). Its total degree over G0 = ( — 3, +1) with respect to 0 must be 0, 
since it is linearly homotopic to the constant function h0(x) = 1 without zeroes 
on the boundary. Since 

d2(h9G090) = d2(h9Gl90) + d2(h9 G2,0) 

where Gx — ( — 3, —1) and G2 = (—1, +1) and since d2(h9 G2,0) = + 1 , 
</2(/*,G,0) = 0,wehave 

d2(h9Gl90) = - 1 

which verifies our assertion for L. 
This completes the proof of Theorem 2. 

2. General degree theories and their elementary properties. Using the result of 
§1 as a model, we may formulate the problem of constructing more general degree 
theories in the following terms: 

DEFINITION 1. We are given a domain space X and a range space Y9 both 
topological spaces. 

We are given a class O of open subsets G of X. 
For each G in 09 we consider a family of maps f : cl(G) -* Y\ the collection of all 

such maps for the various G of 09 we call F9 the family of maps over which the 
degree theory is to be defined. 

For each G in 09 we consider a family of homotopies {ft: 0 < t < 1} of maps in 
F9 all having the common domain cl(G); the total collection of all such homotopies 
for the various G in 09 we call H9 the class of permissible homotopies for the degree 
theory. 

Then by a degree theory over the class F which is invariant with respect to the 
homotopies of H and which is normalized by a given map f0 of X into Y9 we mean: 
For each y0 in Y and for each ƒ in F9 ƒ: cl(G) -> Y for which y0 &f(dG)9 an integer 
d(f9G9 y0) is to be prescribed and the prescription is to satisfy the following three 
conditions: 

(a) (Normalization) If d(f9 G9 y0) ¥" 0, then y0 Gf(G). For each G in 09 f0G lies 
in F9 and ify0 e /0(G), then d(f0fG9 G9 y0) = + 1 . 



FIXED POINT THEORY AND NONLINEAR PROBLEMS 11 

(b) (Additivity on domain) Suppose that f E F; f: cl(G) -> Y9 and that Gx and G2 

are a pair of disjoint subsets of O contained in G. Let y0 £ f(cl(G)\(G{ U G2)). 
Then 

d(f, G, y0) = d(fGl9 Gl9 y0) + d{fGi9 G29 y0). 

(c) (Invariance under homotopy) If { ƒ/. 0 < t < 1} is a homotopy in H with 
domain cl(G) for G in 09 and if {yt: 0 < t < 1} is a continuous curve in Y9 with 
yt 6 ft(dG)for all t in [0,1], then d(ft9 G, yt) is constant in t on [0,1]. 

The existence of a degree theory for a given class of mappings is not a trivial 
assertion. Let us verify this fact through several elementary observations. 

PROPOSITION 1. Let X and Y be equal to the same Hubert space H9 let O be a 
class of open subsets of H which includes open balls, and consider a class of 
mappings F and a class of homotopies H which includes the affine homotopies in F 
(i.e. homotopies of the form ft — (1 — t)f+ tfx for f and fx in F). Suppose a degree 
theory exists for F invariant with respect to H9 and normalized byf0 = /. Then 

For any ƒ in F with domain a closed ball B about the origin in H such that 
( ƒ(«), u) > 0 for all u in B9 ƒ must have a zero in B. 

PROOF OF PROPOSITION 1. Let G be the interior of B. G hes in O and by 

hypothesis, ƒ lies in the class F. If ƒ has a zero on dB9 the assertion follows. 
Otherwise, d( ƒ, G, 0) is well defined. Let fQ be the restriction of the identity map / 
to B. Then f0 Hes in F and d( /0, G, 0) = + 1 . Consider the affine homotopy, 

ƒ, = ( ! - O/o + tf (0<t< 1). 
By assumption, this homotopy Hes in the class H of permissible homotopies. 
Hence, if we can show that for all t in (0,1), ft(x) ^ 0 on dB, then d(fn G, 0) is 
constant in t and hence equals + 1 for all t in [0,1]. Suppose ft(x) = 0 for 
0 < t < 1, with x in dB. Then 

0 = (ƒ,(*), x) = (1 - t)( f0(x)9 x) + t(f(x), x). 

Since (f(x), x) > 0 for all x in 8G, it follows that 

0 > (1 - t)(f0(x)9 x) = (1 - 0H*H2 > 0, 

which is impossible. Hence d( ƒ, G,0) = + 1 , and by the normaHzation property 
of the degree function, 0 G f (G). Q.E.D. 

A corollary of Proposition 1 is the following: 

PROPOSITION 2. Suppose that a degree theory satisfying the hypotheses of Proposi­
tion 1 exists over a class of mappings F9 and that for a ball B about the origin, g: 
B -» B is a mapping such that I — g lies in F. Then g has a fixed point in B. 

PROOF OF PROPOSITION 2. Since g maps B into B9 it follows that for x on dB9 

II g(x)\\< Hxll. Hence for/ = I - g, 

(ƒ(*) , x) = Hxll2 - (g(x) , x) > Hxll2 - | |g(x)| | • Hxll > 0. 
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Applying Proposition 1, ƒ must have a zero in 2?, i.e. g must have a fixed point in 
B. Q.E.D. 

We draw two conclusions from Proposition 2. First, because we have a degree 
theory for all continuous mappings on the finite-dimensional space H = Rn, all 
continuous self-mappings of balls in that space have a fixed point, i.e. the 
Brouwer fixed point theorem. The second conclusion is that for an infinite-
dimensional Hubert space if, we cannot have a degree theory in the sense of 
Proposition 1 over all continuous mappings since the only case in which all 
continuous self-maps of the unit ball of a Banach space have a fixed point is that 
in which the space is finite dimensional. 

A variant of Proposition 1 gives us the Poincaré-Miranda theorem stated in the 
Introduction. 

PROPOSITION 3. Let X — Y be a Banach space, and suppose that for a class of 
mappings F and a class of homotopies H, we have a degree function defined on F, 
invariant under H, and normalized by the identity mapping, where H includes all 
affine homotopies in F. Let G be a set in 0 , with 0 E G, and suppose that ƒ: 
cl(G) -> X lies in F. Suppose that for each x in 3G, there exists a linear functional 
wx in X* such that <w, f(x))> 0, (w, x)> 0. 

Then f has a zero in cl(G). 

PROOF OF PROPOSITION 3. Again, we may assume that 0 £ /(9G). We construct 
the homotopy ft = (1 — / ) / + tf: cl(G) -> X. By our hypotheses, this homotopy 
lies in the class H. For t = 0, d( /0, G, 0) = +1 and hence to show that d( ƒ, G, 0) 
= d( fl9 G,0) = + 1 , it suffices to show that d( ƒ„ G,0) is constant in / on [0,1]. 
This will follow from the property of invariance under homotopy if we can verify 
that for each / in (0,1) and all x in 9G, ft(x) ¥= 0. 

Suppose, however, that for a given x in 9 G and some t in (0,1), we have 
ƒ ,0 ) = 0. Then 

0 = (wx, ƒ,(*)) = (1 - t)(wx9 x) + t(wx9 ƒ ( * ) ) > (1 - *)(*x> *>> 0, 

which is a contradiction. Q.E.D. 

COROLLARY TO PROPOSITION 3. Let G be the cube {x: —aj<Xj< +aj9 

j — 1,...,«} in Rn
9 and let f be a mapping of cl(G) into Rn such that on the face 

Cf = ixj = aj}> fj(x>> ^ °> and on the face CJ = (XJ = ~aj}> fj(x>> ^ °* Then f 
has a zero in cl(G). 

PROOF OF THE COROLLARY. The boundary of G consists of the union of the 
faces Cj+ and C~ for various j . We consider Rn as a Hilbert space, and on the 
faces Cj+ and C~ , we choose wx to be the element which is 0 except in theyth 
place, and Xj in the./th place. Then (wx9 f(x))= Xjfj(x) > 0, while (wx9 x)= xj 
= aj > 0. (On the intersections we use whichever of the vectors wx we please). 
Hence the hypotheses of Proposition 3 are satisfied, and ƒ has a zero. Q.E.D. 

The classical example of an extension of the degree theory for the finite-
dimensional case is the Leray-Schauder degree theory which is defined for the 
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case in which X = y is an arbitrary Banach space, 0 is the class of bounded open 
subsets of X9 F is the class of continuous maps ƒ: cl(G) -» X with (I — ƒ )(cl(G)) 
relatively compact in X. Here the class of homotopies {ft: 0 < / < 1} is restricted 
by the assumption that there exists a fixed compact set K in X such that 
( / - /,)(cl(G)) C K for all t in [0,1]. 

A possible natural extension of the finite-dimensional and the Leray-Schauder 
degree theories might be a degree theory for proper Fredholm mappings of index 
zero. Such a theory in the sense of Definition 1 cannot exist. 

PROPOSITION 4. There can be no degree theory in the sense of Definition 1 for 
proper Fredholm mappings of index zero of class C°° in any infinite-dimensional 
Hubert space. 

PROOF OF PROPOSITION 4. The problem, of course, is that all the nonsingular 
linear mappings of an infinite-dimensional Hubert space form a single path 
component (in fact are contractible to a point by a theorem of Kuiper). Suppose 
that we had a degree theory of the type described. Then given any finite-
dimensional subspace Rn of the Hubert space, we could suspend all the differen­
tiable maps on Rn to get Fredholm maps of index zero. The resulting degree 
theory for maps on Rn obtained by taking the degree of their suspension must be 
the same as the original degree in Rn, since the uniqueness argument actually 
works for differentiable mappings of any class. If L0 is a nonsingular linear 
mapping of Rn, we would then have 

d(L9 BH,0) = d(S(L0), B,0) = </(ƒ, B,Q) = + 1 , 

since there is a path of nonsingular linear maps leading from any given one to /. 
This contradicts the fact that for suitably chosen L0, d(L0, Bn, 0) = — 1. Q.E.D. 

The proof indicates clearly why the appropriate degree theory over the class of 
all proper Fredholm operators of index zero must have values in Z2. (For details 
of such theories, we refer to the article [18].) 

3. The Leray-Schauder theory. The most celebrated form of degree theory for 
application to nonlinear problems in partial differential equations has been that 
introduced by Leray and Schauder [26] in 1934 for mappings ƒ in infinite-
dimensional Banach spaces such that ƒ — ƒ is compact. We shall give a reasonably 
complete exposition of this theory based upon the results already derived for the 
finite-dimensional degree. 

The basic general result is the following: 

THEOREM 3. Let X be a Banach space, and consider the family F of continuous 
mappings f : cl(G) -> X, with G a bounded open subset of X, and with (I — ƒ )(cl(G)) 
relatively compact in X. Let H be the family of continuous homotopies of maps {ƒ,: 
0 < t < 1} in F with a common domain c\(G) such that there exists a compact 
subset K of X with (I — ft)(c\(G)) C K for all t in [0,1]. Then there exists one and 
only one degree function d(f9G, y0) in the sense of Definition 1 with the identity 
mapping I as normalizing mapping. 
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The uniqueness holds even if the homotopies are restricted to affine homo-
topies and the mappings to differentiable maps of the form I — f with ƒ having a 
finite-dimensional range. 

The proof of Theorem 3 uses several auxiliary devices which we introduce in 
the following proposition. 

PROPOSITION 5. Let X be a finite-dimensional Banach space, X0 a subspace of X, 
such that X is the direct sum of X0 and another subspace Xx. Let Bx be the unit ball 
about zero in Xx, and for each bounded open subset G0 of XQ9 let G = G0X Bx. Let f 
be a continuous map ofcl(G0) into X0. Then we define the suspension S(f) mapping 
cl(G) into X by setting 

S(f)(x0 + xx) =f(x0) + xl9 (x0 E cl(G0), xx E Bx). 

Lety0 be a point ofX0 such that y0 £ /(9G0). Then 
(l)y0 <£ S( ƒ )(9G). 
(2) d0( ƒ, G0, y0) — d(S( ƒ ), G, y0)9 where the first degree is calculated in X0 and 

the second in X. 

PROOF OF PROPOSITION 5. We set dx(/0, G0, y0) to be equal to d(S(f), G, y0). 
To do this, we first verify (1). Suppose that x = x0 + xx has the property that 
S(f)(x)= y0. This means that 

f(x0) + xx =y0 

or that xx = y0 — f(x0) lies in X0. Since xx also Hes in Xx and the two subspaces 
are complementary, xx = 0 and f(x0) = y0. Hence x lies in G0 which does not 
intersect G. Thus d(S(f), G, y0) is well defined. 

We now examine this new function fx on the class of mappings ƒ and note that 
it satisfies the three conditions for an index function. By Theorem 2, it therefore 
coincides with the degree function d( ƒ, G0, y0). Q.E.D. 

PROPOSITION 6. Let X be a finite-dimensional Banach space, X0 a subspace of X, 
G a bounded open set in X such that G0 = G D X0 is nonempty. Let f be a 
continuous mapping ofcl(G) into X, such that ƒ = I — g and g(cl(G)) C X0. Let y0 

be a point of X0 such that y0 £• /(3G), and let f0: cl(G0) -> X0 be the restriction off 
toc\(G0). 

Then d(f, G, .y0) = d(/0, G0, ^0) . 

PROOF OF PROPOSITION 6. Since 8G0 is a subset of 8G, both degrees are well 
defined sincey0 £ /(3G). 

Let Xx be a subspace of X complementary to X0, Bx the unit ball about 0 in Xl9 

G2 — GQX Bx. Let S( f0) be the suspension of f0 in the sense defined in Proposi­
tion 5, with S(f0) mapping cl(G2) into A"by the prescription 

S(f)(x0 + ^i) = Zo(*o) + x\-
We shall now consider explicitly for what points x in their respective domains 

f(x) = y0 and S( f0) = y0. In the first case, we have 

x-g(x) =y0 
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so that if x = x0 -f x1? xx = yQ — g(x) — x0 E XQ9 so that xx = 0, x Hes in G0, 
and/0(x) = y0. Similarly, if S( ƒ )(x) = >>0, then 

X! = 0, and x lies in G0 and is a solution of f0(x) = 0. Since G0 C G Pi G2, it 
follows that 

</(S( ƒ<,), G2, >b) = rf(S(/0), G n G2, Jo); </( ƒ, G, y0) = d(f, G n <?2, j 0 ) . 

We now set up the affine homotopy 

ht=(l-t)f+tS(f0) 

on cl(G n G2). If ht{x) = 0 for any /, then we have 

(1 - t)(x - g(x)) + t(xx +f0(x0)) = y09 

which may be rewritten as 

X i ^ o + O - ' ) { « ( * ) - * o } -tfoixo) eXo> 

Hence x, = 0, x = x0, ^ = Mx)- T n u s xo £ G0, x £ d(G\ H G2). Using the 
invariance of the degree function under homotopy, we see that 

d(f, G H G2, jo) = d(S(f0)9 G H G2, y0). 

Finally, we have 

d(fo> G0, Jo) = *(<S(Zo)> G2, y0) = d(S(f0)9 G n G2, j 0 ) 

= d(f9GnG29y0) = d(f,G9y0). Q.E.D. 

LEMMA. Le/ K be a compact subset of a Banach space. Then given any e > 0, 
f/iere existo a finite-dimensional subset Ke of X and a continuous mapping p ofK into 
Ke such that for every x of K9 II x — j?(x)|| < e. 

PROOF OF THE LEMMA. We may form the covering of K by open balls of radius 
e. We can find a finite subcovering by compactness and a partition of unity 
corresponding to this subcovering, i.e., a finite set of points (x 1 ? . . . 9xr) in K and 
a family of continuous functions ay. K -» [0,1] such that each a, has its support in 
the ball of radius e about xy and on K9 2J=i a,- = 1. We set p(x) = 2y=1 «y(x)xy. 
Then/>(x) lies in the simplex spanned by the xj9 and for each x, p(x) is a convex 
linear combination of those Xj lying in the open ball of radius e about x. Hence 
p(x) also hes in that ball. Q.E.D. 

PROOF OF THEOREM 3. Each ƒ is a proper map of cl(G) into X. Indeed, suppose 
A'is a compact subset of X9 and consider x in f~\K). Then x e g(cl(G)) + K C 
Kl9 where Kx is a compact subset of X. Hence j^\K) is closed in X and a subset 
of a compact subset of X, and therefore is compact itself. Thus ƒ is proper, and 
maps closed subsets of cl(G) into closed subsets of X0. In particular, /(3G) is 
closed in X and does not contain y0. Therefore there exists r > 0 such that /(3G) 
does not intersect the ball of radius r about y0. 

Using the preceding Lemma, for any e < r, if we take the compact set K which 
is the closure of g(cl(G)), we may find a continuous mapping p of K into a 
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finite-dimensional subset of X such that \\p(u) — u\\ < e for every u in K. We 
now define a new mapping 

f=I-g:d(G)-*X 

where g = p ° g. For every x in cl(G), II ƒ(*) — /(*)ll < e. In particular, yQ £ 

/(3G). 
Take any finite-dimensional subspace X0 of Z which contains g0 and g(cl(G)), 

and let G0 = G H X0. Then by Proposition 6, d(/Go, G0, y0) is independent of the 
choice of the subspace. We propose to show that it is also independent of the 
choice of the approximation. 

Take two such approximations fx — I — gx and f2 = / — g2 with llg^x) — 
g(x)\\ < r, || g2(x) — g(x)\\ < r for every x in cl(G) and with the values of gx and 
g2 lying in finite-dimensional subspaces of X. If we set gt = (1 — t)gx + fg2, then 
each gt is another such approximation with the values of all gt lying in a fixed 
finite-dimensional subspace X0. If we let X0 also contain^, then I ~ gt restricted 
to cl(G0) with G0 = G H A^, is a permissible homotopy, and d( J — g„ G0, j>0) is 
independent of / in [0,1]. It follows that d(fl9 G0, y0) = c/(/2, G, > 0̂). 

We define the degree function d( ƒ, G, >>0) as the common value of d{ ƒ, G0, ^0) 
for any of the approximating mappings and the corresponding finite-dimensional 
subspaces X0 containing y0 and g(cl(G)). The normalization condition and the 
additivity on domain follow easily by choosing the approximating mappings 
sufficiently close to / . For a permissible homotopy/ = I — gn with g,(cl(G)) C K 
for a fixed compact set K and all t in [0,1], we choose r > 0 such that the ball of 
radius r about yt does not meet /(9G) for any / in [0,1] and then apply the 
approximation operator p for K with e < r to all the gr Then (g, : 0 < / < 1} is a 
continuous homotopy of mappings with values in a finite-dimensional subspace 
X0 of X. If G0 = G H XQ, and we have absorbed j>, into the g,, we see that 
d ( / , Go,0) is independent of / in [0,1]. Thus all the conditions for the degree 
function have been satisfied. 

Suppose now that we have two degree functions d and dj. By the finite-dimen­
sional argument, d and dx must give the same values for suspensions of mappings 
of finite-dimensional subspace of X. Hence by the proof of Proposition 6, the two 
degree functions give the same result for mappings ƒ = / — g, with g(cl(G)) lying 
in a finite-dimensional subspace of X. Since every ƒ of the form ƒ — g can be 
uniformly approximated by mappings of this last type and is affinely homotopic 
to such nearby mappings with homotopy paths on the boundary that avoid y0, it 
follows that the two degree functions must coincide. Thus the proof of Theorem 3 
is complete. Q.E.D. 

4. The direct method of the calculus of variations and mappings of monotone 
type. Let X b e a Banach space, G an open subset of X. If (p is a real-valued 
differentiable function on G, then its derivative at any point x0 of G is given by 

to»(*o + «0-y(« , ) = M j C o ) t 0 ) 
e-»0 £ 
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which depends linearly and continuously upon the direction v in X and hence is 
an element of the conjugate space X* of X. 

We use here some of the standard notation of this kind of functional analysis. 
The duality between the real Banach spaces X* and Xis given by (w, x) for w in 
X* and x in X. We shall use the symbol -* for strong convergence, -* for weak 
convergence. 

The derivative <p' thus gives us a mapping from G, a subset of X, to X*, the 
conjugate space of X. Thus mappings from subsets of X to X* are a rather natural 
framework for any approach from functional analysis which attempts to encom­
pass the direct method of the calculus of variations. The latter term, which goes 
back to the Dirichlet principle of Riemann and its rigorization by Hubert in 1900, 
refers to the process of trying to get solutions of the equation <p'('x) = 0 by 
finding local maxima or minima of the functional <p(x). The basic assumption 
which is necessary for the case when the problem is imposed in an infinite-dimen­
sional context goes back in its origins to Hubert and involves using a convexity 
assumption (or some form of modified convexity) upon the functional <p. The 
argument appears almost truistic in its modern form because it has been essen­
tially absorbed into the structure of our basic functional analysis. 

DEFINITION 2. Let X be a Banach space, G a subset of X,f a mapping of G into 
X*. Then 

(a) ƒ is said to be monotone if for all u and v of G, 

( ƒ ( « ) - ƒ ( » ) , « - c > > 0 . 

(b) ƒ is said to be of class (S)+ if f or any sequence {Xj} in G which converges 
weakly to x in X and for which lim( f(xj), Xj• — x ) < 0, we have Xj -> x. 

(c)fis said to be pseudo-monotone, if for any sequence {Xj} in G for which Xj -» x 
for some x in X while lim( ƒ(*,), Xj, — x)< 0, we have lim( f(xj), Xj — x)= 0, 
and if x E G, then f(Xj)-*f(x). 

PROPOSITION 7. (a) If G is a convex open subset of X and <p is a C1 real-valued 
function on G, then <p is convex on G if and only iff — <p' is a monotone mapping of 
G into X. 

(b) Suppose that <p is a C1 functional on G, ƒ = <p'. If f is bounded and 
pseudo-monotone, then <p is weakly sequentially lower semicontinuous on G, i.e. if 
{Xj} is a sequence in G which converges weakly to x in G, then <p(x) <lim <p(Xj). 

PROOF OF PROPOSITION 7. Proof of (&). Suppose first that <p' is monotone. For u 
and v two points of G and s in [0,1], set 

q(s) = <p(su + (1 — s)v) — s<p(u) — (1 — s)cp(v). 

To show that <p is convex, we must show that for every u, v and s, q(s) < 0. We 
see that #(0) = 0 = #(1). On the other hand, q is continuously differentiable and 

q'{s) — (q>'(v + s(u — v)), u — v) + <p(t>) — <p(u). 
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Hence for 0 < s < t < 1, we have 

q'(t) - q'(s) = (<p'(vt) - <p(vs), u-v) 

where vt = v H- t(u — v), vs — v + s(u — Ü). Since vt — vs = (t — s)(u — t>), it 
follows from monotonicity that 

q'(t) - q'(s) = (t- s)-l(<p'(vt) ~ *'(*.). vt ~ *,) > °-
Suppose that max q(s) > 0. Then q has an interior maximum at s0 with q'(s0) = 0. 
Since q(s0) > 0, and q'(t)>0 for all t > s0, it is impossible that #(1) could be 
zero. Hence q(s) < 0 for all s in [0, 1] and q is a convex function. 

Suppose conversely that <p is convex. Then for u and v in G and 0 < s < 1, we 
would have 

<p(v + s(u - v)) - <p(v) , A < <p(w) - (p(v). 

Letting s -» 0 + , we obtain 

(<p'(v), u - v)^<p(u) - q>(v). 

Interchanging u and v, we also have 

(<p'(u),t>- w)<<p(t>) - <p(w). 

Adding we find that 

(<p'(w) - < p ( t ; ) , w - t ; ) ^ 0 , 

i.e. <p' is monotone. 
PROOF OF (b). For each t in [0,1], set v>jt — x + t(xj — x). Then vjtt-»x as 

7' -> -f oo for each fixed t, while vJt — x — t(xj — x). For t > 0, we have therefore 
by the pseudo-monotonicity of <p', 

lim (<p'(t)y>/), x, - * ) = lim (<p'(tf/,,), r l(t>;,, - x))> 0. 

For eachy, we have 

<P(*,) - < P ( * ) = ƒ (<P'(vj,t)>Xj~-x) dt>J {(<p'(vjtt),Xj~x)}~ dt9 

where the integrand in the last integral is uniformly bounded and converges to 0 
as y -> + oo for each t > 0. Hence lim <p(xy) — <p(x) > 0. Q.E.D. 

The primary interest of the definitions for the class (S)+ and for pseudo-
monotonicity arises from the fact that one can verify these properties under 
suitable concrete hypotheses for the maps of a Sobolev space W™*P{Ü) into its 
conjugate space W~m'p'(ti) obtained from an elliptic operator in generalized 
divergence form 

A")= 2 (-\)HD«Aa(x,u,...9D
mu). 

\a\<m 

Here B is an open subset of a Euclidean space Rn,n> 1, and p is an exponent in 
the reflexive range 1 < p < + oo. The Sobolev space Wm,p(Sl) is the space of u in 
Lp(Sl) (with respect to Lebesgue «-measure) with all the derivatives Dau also in 
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LP(Q) for all distribution derivatives of order < m. The norm of this space is 
obtained by injecting it into the product of L^-spaces, one for each derivative, by 
the jet-mapping 

u->{Dau: \a\<m). 

The closed subspace W0
m'p(2) is obtained by taking the closure in Wm'p(Q) of 

the testing functions with compact support in fl. 
The operator A given by the differential expression written above makes sense 

as a mapping of W0
m,p(Q) into its conjugate space W~m,p\ü\ with/?' = /?/(/? — 1) 

the conjugate exponent to /?, provided that if we replace u and its derivatives by 
the algebraic variable 

€ = { « « : \a\<m}, 

then Aa(x9 £) is measurable in x for fixed £ and continuous in £ for fixed x in £2, 
and satisfies an inequality of the form 

i4,(*,oi<c(i«r' + *<>(*)) 
with kQ a function in LP'(Q). Under these conditions, if we substitute for u and its 
derivatives in the formal expression, functions in LP(Q), Aa(x, w,... ,£>mw) yields 
an element of LP'(Q). Its distribution derivative D"Aa(x, £(w)) then becomes an 
element of the space of distributions W~m*p'($L). 

Further hypotheses of some sort of ellipticity and of weak semiboundedness 
must be imposed before this operator A from W = W0

m'p(Q) to X is either 
pseudo-monotone or of class (S)+ . Such conditions for example are 

2 Aa(x,r,J)-Aa(x,V,S#)(Sa-C)>0 

for f T^ f#, where £ is broken up into the mth order piece f and the lower order 
piece 7j. 

2 Aa(x, «)€. > c01É r - M * ) (*i e V(Q)). 
|a|<m 

Under these hypotheses, A is of class (S)+ . Under very much weaker conditions 
replacing the semiboundedness in the second hypothesis, A remains pseudo-
monotone. 

If X — X* is a Hubert space H, the mappings of type (S)+ contain as a special 
case the Leray-Schauder maps / — g, with g compact. This follows from the fact 
that each strongly monotone mapping ƒ is of type (S)+ and the fact that the class 
(S)+ is always invariant under compact perturbations. We say that ƒ is strongly 
monotone if there exists a continuous positive increasing function p(r) for r > 0 
such that 

(f{u)-f(v),u-v)>p(\\u-v\\). 

For the detailed development of the discussion of later sections, we need to 
develop the properties of our canonical monotone mapping, the duality mapping 
/ , which under suitable hypotheses is also a map of class (S)+ . In our further 
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discussion, we shall always assume that the Banach space X with which we are 
dealing is reflexive. This is certainly true for the Sobolev spaces X = W™*P(Q) 
which in fact are uniformly convex with duals which are also uniformly convex. It 
is not always true that every reflexive Banach space has an equivalent norm which 
is uniformly convex, and a fortiori that X is also uniformly convex. By results due 
to Lindenstrauss, Asplund, and Trojanski however, it is true that X can be 
renormed so that X and X* are both locally uniformly convex. We shall use only 
one consequence of this renorming: In the resulting norms on both X and X*, if a 
sequence {xj} converges weakly to x in X and \\xj\\ -> \\x\\9 then Xj converges 
strongly to x9 with a similar property for sequences {wj} in X*. 

PROPOSITION 8. Let Xbe a reflexive Banach space which is normed so that both X 
and X* are locally uniformly convex (and in particular are strictly convex). Then 
there exists a unique bicontinuous mapping J of X onto X* which is given by the 
conditions that for each x of X9 | | / (x) | | = ||x|| and (J(x)9x) = \\x\\2. This 
mapping J9 called the duality mapping corresponding to the given norm on X9 is both 
monotone and a mapping of class (S)+ . 

PROOF OF PROPOSITION 8. For each x in X, it follows from the Hahn-Banach 
theorem that there exists w in X such that \\w\\ = \\x\\ and (w9 x)= \\w\\ • \\x\\. 
Such elements w lie on the sphere ||w|| = ||x|| and are also characterized by the 
inequalities 

(w9x)=\\x\\2
9 IMKHJCII . 

Hence they form a convex subset of a sphere in X*. If X* is strictly convex, such 
an element w is unique, and this unique element is J(x) for the given x. 

For each x and u in X9 we may compute 

(J(x) - J(u)9 x - u)= \\x\\2 + \\u\\2 - (J(x)9u)~ (J(u)9 x) 

= (llxll - Nil)2 + {Hull • \\J(x)\\ - (J(x)9 u)} 

+ {ll/(w)H -llxll - < / ( « ) , jc>}. 

All the parentheses are nonnegative. Hence / is monotone. Moreover, if we 
replace u by xj9 we obtain 

( / ( x y ) - / ( x ) , x y . - x ) > ( | | x y . | | - | | x | | ) 2 

>\{j(xj),x)-\\J(xj)\\-\\x\\\ 

>\{j(x)9Xj)-\\J(x)\\-\\xj\\\. 

Suppose Xj -* x. Then ( / (x) , x, — x ) -* 0. Suppose moreover that 

lim ( / (xy) , Xj,— x ) < 0 . 

Then || Xj || -> x9 and it follows that Xj -> x. Hence / Hes in the class (S)+ . 
Suppose that Xj -* x. Then (J(xj) — J(x)9 Xj — x) -» 0. Hence (J(xj)9 x)-> 

Il x ||2. Choose any weakly convergent subsequence J(Xj) -- w. Then ( w9 x ) = Il x II2 
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and ||H>|| < x. Hence w = J(x). Moreover || w|| = lim||/(xy)|| and therefore J(Xj) 
-> w = J(x). Thus / is continuous from A" to A"*. If on the other hand, J(xj) -» 
J(x), it also follows that (J(Xj) — J(x\ Xj — x)-> 0, so that \\xj\\ -» ||x||, while 

( / ( * ) , X , . ) - * | | JC | | 2 . 

It follows by the same argument that Xj -* x. Hence J~l is continuous from X* to 
X Q.E.D. 

5. The degree of mapping for mappings of class (5) + . In the present section, we 
devote our efforts to the proof of the following theorem. 

THEOREM 4. Let X be a reflexive Banach space, and consider the family F of 
maps ƒ: cl(G) -» X*9 where G is a bounded open subset of X and f is a mapping of 
class (S)+ with ƒ demicontinuous (i.e. continuous from the strong topology of X to 
the weak topology of X*). Let H be the class of affine homotopies in F, and let J be 
the duality mapping from X to X* corresponding to an equivalent norm on X in 
which both X and X* are locally uniformly convex. 

Then there exists one and only one degree function on F which is invariant under 
H and normalized by the map J. 

The homotopies described in Theorem 4 are too weak for some important 
applications of this result. We therefore introduce the following broader class. 

DEFINITION 3. Let G be a bounded open subset of X, {ƒ,: 0 < / < 1} a 
one-parameter family of maps of cl(G) into X*. Then {ƒ,} is said to be a homotopy 
of class (S)+ if it satisfies the following condition: For any sequence {Xj} in cl(G) 
converging weakly to some x in X and for any sequence {tj} in [0,1] converging to t 
for which 

hm(ftj(xj),xj-x)<09 

we have Xj converging strongly to x andft(xf) -*ft(x). 

THEOREM 5. The degree function described in Theorem 4 is invariant under 
homotopies of class (S)+ . 

The construction of the degree function for maps of class (S)+ and the proofs 
of Theorems 4 and 5 rest upon the general technique of Galerkin approximation. 

DEFINITION 4. Let X be a Banach space, X0 a closed subspace of X9 G an open 
subset of X such that G D X0 = G0 is nonempty. Let f:cl(G)^>Xbea given 
mapping. Then the Galerkin approximant for the map f is the mapping f0: cl(G0) -* 
X0, where <p is the injection mapping of X0 into X, <p* the corresponding projection of 
X* onto X*9 andf0 is given by 

ƒ<>(*) = **(ƒ(*)) ( * e d ( G 0 ) ) . 

In a sort of inverse relationship to the concept of the Galerkin approximant is 
the following notion of a generalized suspension operator. 
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DEFINITION 5. Let X be a reflexive Banach space, J a duality mapping of X into 
X* of class (S)+ . Suppose that X0 is a closed subspace of X having a closed 
complement Xx in X, P the projection of X on X0 which corresponds to this splitting 
so that (I — P) is the projection on Xx. We consider P as an element of the space of 
bounded linear maps of X, with Px the same projection considered as a bounded 
linear map of X on X0. Then P* is a bounded linear map of X* into itself, P* the 
injection of X$ into X* whose image is the same as the range of the projection P*. 
Let Bx be the unit ball about 0 in Xx. 

Then 
(1) For each bounded open subset G0 of X0, we define its suspension S(G0) as the 

bounded open subset of X given by 

S(G0) = P-\G0) n (I - Py'iB,). 

Thus each element x ofS(G0) can be written uniquely in the form 

x = x0 + xx (JC0 E G0, xx E Bx) 

where x0 — Px, xx = (I — P)(x). 
(2) If g: cl(G0) -* X* is given, we define its suspension Sg as the map of 

cl(5(G0)) -> X* given by 

Sg(x) = P?gP(x) + ( / - P)*J(I - P)(x). 

PROPOSITION 9. Under the circumstances described in Definition 5: 
(a) If g is demicontinuous and of class (S)+ from cl(G0) to X$, then Sg is 

demicontinuous and of class (S)+ from cl(5(G0)) to X*. 
(b) If {gt} is an affine homotopy on cl(G0), then {Sg } is an affine homotopy on 

ol(S(G0)). 
(c) If the point y0 in X$ does not lie in g(3G0), then P*(y0) does not lie in 

Sg(dS(G0)). 

PROOF OF PROPOSITION 9. Proof of (SL). Let {uj} be a sequence in c l ^ G o ) ) such 
that uj-*u while Km(Sg(Uj), Uj - u)< 0. Let Vj = Puj, xj = (I - P)Uj. Then 
Vjr -* v = Pu, Xj-^x — (I — P)u, with v in X0, x in Xx. Using the definition of Sg, 
we see that 

(Sg(Uj),Uj-u)= (g(Vj),Vj-v)+ (J(XJ),XJ-X). 

Since lim( J(Xj), Xj — x)> 0, it follows that hm(g(vj), Vj — v)<0. Hence Vj -> v 
and g(vj) -*g(v), implying that (g(Vj), Vj, — v) -> 0. Hence 

lim (j(Xj), Xj• — x ) < 0. 

Since / is of class (S)+ , Xj, -> x. Therefore Uj = Xj + Vj-* x + v = u. Q.E.D. 
Proof of (b). This follows immediately from the linearity of P and P and the 

definition of the suspension of a map. 
Proof of (c). Suppose for x in cl(iS(G0)) that Sg(x) = P*(y0). We remark that 

P*(X*) = PX*(X$) is a closed complement to ( J - P )* (** ) . Thus if 

P?(g(Px) - ^0) + (I - P)*J(I - P)(x) = 0, 
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it follows that 

P?(g(Px) - y0) = 0, ( / - P)*J(l - P)(x) = 0. 

Hence, from the second equation, we find that 

0 = ( ( / - P)*J(I - P)(x), X)=(J(I- P)x9 (I -P)x)= ||(7 - P)xII2, 

so that x = Px. From the other equation, we see that since P? is injective, 
g(x) — y0 = g(Px) — y0 = 0. By the assumption that y0 £ g(9C/0), and since 
x = Px lies in cl(G0), we see that x lies in G0. In particular, P*(y0) does not lie in 
Sg(dS(G0)) since G0 C Sg(G0). Q.E.D. 

We can use Proposition 9 in the following way to obtain an important 
methodological conclusion about degree functions for maps of class (S)+ . 

PROPOSITION 10. Under the circumstances of Definition 5 and Proposition 9, 
suppose that for both of the spaces X and X09 we have degree functions d and d0 

defined on the demicontinuous mappings of class (S)+ and invariant with respect to 
affine homotopies in each case, with the degree functions normalized by J and /0 , 
respectively, where J andJ0 are the appropriate duality maps. Suppose moreover that 
the degree function d0 is uniquely characterized on the maps of class (S)+ by these 
properties. Then for each map g: cl(G0) -> X$ demicontinuous and of class (S)+ 

and for each y0 in X* such that y0 £ g(dG0), we have 

d0(g, Go. y0) = d{Sg, S(G0), /»,(.*,)). 

PROOF OF PROPOSITION 10. For each g and y0 as above, we define a new degree 
function using Proposition 9 by setting 

«*i(g,Go. *>) = d(Sg, S(G0), P?(y0)). 

This gives a degree function which is invariant under affine homotopies on the 
demicontinuous maps g of class (S)+ . We remark that the normalization 
condition is always equivalent to 

dx(Jo,BO90)= +1 

for the unit ball B0 with center 0 in X0. The map ƒ = SJQ satisfies the condition 
(ƒ(«), u)> 0 for u ^ 0. If G = S(B0l 0 G G and the affine homotopy {ƒ, = 
(1 — t)f + tJ} has no zeroes except at u = 0. Hence 

d(SJo, S(B0)90) = d(J, S(Bo)90) = + 1 . 

Since d0 is the unique degree function for maps of class (S)+ on X0, it follows 
th3Ltd0 = dl. Q.E.D. 

We apply this result to the case in which X0 is a finite-dimensional Banach 
space. Then X0 is equivalent to a Hubert space and X$ can be identified with X0. 
By the remark we just made, normalization by the identity mapping on a 
finite-dimensional space is equivalent to normalization by any mapping ƒ which is 
bicontinuous and such that (/(w), u)> 0 for u ¥= 0, and in particular by the 
duality map corresponding to the original norm on X0. Hence 
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COROLLARY TO PROPOSITION 10. Let X be a reflexive Banach space, X0 a 
finite-dimensional subspace ofX. Suppose that there exists a degree function d on the 
demicontinuous maps of class ( 5 ) + in the space X. Then for each continuous map g: 
cl(G0) -» X$ where G0 is a bounded open subset of X0 and for each y0 outside 
g(9G0), we have Sg demicontinuous and of class (S)+ mapping cl(S(G0)) into X* 
and 

d0(g, G0, y0) = d(sg, S(G0), Pf(y0)). 

PROOF OF THE COROLLARY. Since X0 is of finite dimension, it has a closed 
complement Xx in X, so that the suspension operator of Definition 5 is well 
defined for some projection map ? o f l o n l 0 . Moreover, for finite-dimensional 
spaces X0, each continuous map g is demicontinuous and of class (S)+ (indeed 
the two classes coincide). Moreover, as we already observed, we know the 
uniqueness of the degree function by the results of §1. Hence the desired 
conclusion follows from Proposition 10. Q.E.D. 

We use the Corollary to Proposition 10 as an essential tool in the proof of our 
basic auxiliary result, Proposition 11. 

PROPOSITION 11. Let X be a reflexive Banach space, X0 a finite-dimensional 
subspace of X, and suppose that a degree function d is given on the demicontinuous 
maps of class (S)+ defined on the closures of bounded open sets G in X with values 
in X*. Suppose that this degree is invariant under affine homotopies and is 
normalized by a duality map J of class (S)+ . 

Let ƒ: cl(G) -* X* be a map in the given class, with 0 G G and let f0 be the 
Galerkin approximant of ƒ with respect to X0, so that f0: cl(G0) -» Xft, with 
G0 = G H X0. Suppose either that d(f, G,0) is not defined, or d0(f0, G0,Q) is not 
defined, or (if both are well defined), then 

d(f,G,0)*do(fo,Go,0) 

where we use d0 to denote the finite-dimensional degree in X0. 
Then: There exists uindG such that 

(f(u),u)<09 

and for all v in X0, 

<ƒ(«) , t>>=0. 

PROOF OF PROPOSITION 11. Suppose first that for some u0 in 3G, f(u0) = 0. 
Then u0 satisfies our conclusion. Suppose next that for some u0 in dG0, f0(u0) = 0. 
Then again u0 satisfies the conclusion. Thus we may assume without loss of 
generality that both d(f,G,0) and d(f0,G0,0) are well defined (i.e. 0 &f(dG), 
0<2/o(a(7o)),and 

rf(/,G,0)^o(/o,Go,0). 

If we apply the Corollary of Proposition 10, we see that 

do(f0,Go,0) = d(sfo,S(Go),0). 
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We define an auxiliary mapping fx: cl(G) -* X* by setting 

ƒ,(*) = P*f(x) + ( I - P)*J(I - P ) (x ) . 

We have already noted in the proof of Proposition 9 that since 0 lies in X0, all the 
solutions x of the equation Sfo(x) — 0 must lie in G0 and hence in G O S(G0). 
Using the additivity property of the degree, we see that 

d(sfo, S(G0)9O) = d(sfo, S(G0) n G,O). 

Similarly, suppose for x in cl(G), we have fx(x) = 0. Then we have 

(l-P)*J(I-P)(x) = 09 

from which it follows that ( / — P)x = 0, x lies in cl(G0), and P*f(x) = 0. For 
each D in X0, it follows that 

(f(x),v)=(P*f(x),v)=0, 

so that /0(x) = 0. Thus x must lie in G0, since by our assumption 0 £ /0(9CJO)-

We note next that fx is a mapping of class (S)+ from cl(G) to X. The first 
summand is compact since P is of finite dimension, so that it suffices to show that 
( ƒ — P)*J(I — P) is of class (S)+ . Suppose that uj -* w, and that 

Hm ( ( / - P)J(I - P)uj9 Uj~u)<0. 

If Xj — (I — P)wy, then x_ŷ  ^ x = ( / — P)w by the fact that ( / — P) is a continu­
ous linear map. Moreover 

( ( / - P)*J(I - P)uj9 Uj -u)= (Jxj9 Xj-x). 

Thus 

lim ( JXj, Xj; — x ) < 0. 

Since / is of class (S)+ , it follows that xy -» x. Since P is compact, we know also 
that Püj -» Pw. Hence wy = xy + Pwy -» x + Pw = w, and we have shown that fx is 
of class (5)+ . Since/j is obviously also continuous, the degree function d applies 
to the mapping/j. Hence 

d(fuG9y0) = d(fl9GnG29y0). 

We now consider the affine homotopy ht — (1 — t)f{ + tSfo on G H G2. For 
any t in (0,1), suppose that for some x, /*,(*) = 0. This means that 

(1 - t)P*f(x) + tPx*f0(Px) + ( / - P ) * / ( / - P)x = 0. 

Again this means that both summands must equal 0, i.e. in particular that 
( / — P)*J(I — P)x = 0. This means once more that x = Px. Thus for every v in 

0 = ((1 - t)P*f(x) + tP*f0(x), o>= <ƒ„(*), t>). 

Thus x lies in cl(G0) and/0(x) = 0, so that by our initial assumption x lies in G0. 
In particular, h, has no zeroes for any t on the boundary of G n G2- Hence 

d{f„Gn G2,0) = </(S/o,G n G2,0). 
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Combining the various equalities we have proved, we obtain 

d(fo,GO90) = d(Sfo9G290)=d{Sfo9GnG290) 

= d(fl9GnG290) = d(fl9G90). 

If we combine this with our initial assumption that d{ f0, Go,0) ¥= d(f9 G,0), we 
find that 

d(f9G90)^d(fl9G90). 

Now form the affine homotopy kt = (1 — t)f + tfx. By the inequality of the 
degrees on G for ƒ and fx over 0, we see that there must exist u0 in dG and t in 
(0,1) such that kt(u0) = 0. 

For any v in X09 we see that 

0 = <*,(«o)> » > = 0 - 0 ( / ( » o ) . v)+t(f(u0), v)= <ƒ(«„), v). 

Hence, we obtain the desired equality 

<ƒ(«„), o) = 0 (vGXo). 

Now consider the equality 

0=(k,(u0),(I-P)u0) 

= (1 - t)(f(u0),(I - P)u0)+ t(j(l - P)u0,(I ~ P)u0) 

= (I - t)(f(u0),u0)+ t\\(l - P)u0\\
2. 

Hence 

(f(u0)9u0)=-t(l-t)-l\\(I-P)u0\\
2<0. Q.E.D. 

PROOF OF THEOREM 4. We carry through the proof both for the existence and 
for the uniqueness of the degree function for maps of class (S)+ by applying the 
Galerkin approximation method over the partially ordered set of finite-
dimensional subspaces of X. 

Let A be this partially ordered set of finite-dimensional subspaces Xx ordered 
by inclusion. For each A, let <px be the injection map of Xx into X and <p£ the 
corresponding projection map of X* onto X%. We consider only finite-
dimensional spaces such that Gx — G D Xx is nonempty. We assume that y0 = 0, 
which does not affect the generality of the argument since we can replace each 
map ƒ by ƒ — j>0. We now assert 

There exists X0 in A such that for all X > \ 0 , 0 &fx(dGx) and d(fx, GX90) is 
independent ofX. 

Suppose otherwise. Then for each XX9 there would exist X^ D Xx such that 

*U,G,,0)*rf(/x ,Gx ,0) 

(or one of the two degrees is not defined). In all these cases, we may apply 
Proposition 11 with X replaced by X^ and Xx considered as a subspace of X^. 
Then fx is obviously the Galerkin approximant of f^ with respect to Xx. Since both 
X^ and Xx have degree functions defined, and the uniqueness of degree holds for 
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XX9 we apply Proposition 11 and obtain a point u in dG^ such that 

( ƒ ( « ) , « > = ( ƒ » , « ) < 0 , 

while for all v in XX9 

<ƒ(«),»>=<ƒ,(«), t>) = 0. 

Let us now define a subset Vx of 3G by 

V= {u\uGdG9 ( / ( M ) , W > < 0 ; (ƒ («) , v) = 0 for all t; in Xx}. 

By our preceding paragraph, each Vx is nonempty. The family {Vx} is contained 
in a fixed bounded set 9 G and it has the finite intersection property. If we denote 
by w-cl(Fx) the closure of V in the weak topology of X, then w-cl(FA) is weakly 
compact, and 

H w - d ( K x ) * 0 . 
x 

Let x0 be an arbitrary point in this intersection. 
Let v be an arbitrary point in X, and choose a subspace Zx in the ordered set A 

such that Xx contains both x0 and v. Since x0 lies in w-cl(Fx) and the space X is 
reflexive, there exists a sequence {n •} in Fx which converges weakly to x0 in X. 
Such wy must he in dG by the definition of Vx. Moreover, for each^, 

{f(uj)9Uj)<Q, (f(uj),xo)=0, (f(uj)9v)=0. 

In particular, 

(f(uj)9uj-x0)<09 

and a fortiori, lim( f(uj)9 w7 — x0>< 0. Using the assumption that ƒ lies in the 
class (S)+ , we see that Uj converges strongly to x0 and hence JC0 Hes in dG. By the 
demicontinuity of ƒ, f(uj) ^f(x0). Hence 

(f(xo)9v)=tim(f(uj)9v) = 0. 

Since v was an arbitrary element of X9 it follows that f(x0) = 0. Thus we reach a 
contradiction with the assumption that 0 £ / ( 3 ( J ) . 

We define d{ ƒ, G, 0) as the common value of d( fX9 GX9 0) for Xx sufficiently large. 
The normalization properties and the additivity property of the degree function 

thus defined follow immediately from the definition. The invariance under 
homotopies which are affine as well as homotopies of class (S)+ asserted in 
Theorem 5 follows from the following two assertions: 

PROPOSITION 12. Each affine homotopy between two demicontinuous maps f and 
fx of class (S)+ is a homotopy of class (S)+ . 

PROPOSITION 13. If {ft} is a homotopy of class (S)+ on cl(G) and suppose that 
0 £ fti^G) for any t in [0,1]. Then there exists \ 0 in A such that f or any t in [0,1] 
and all \ in A9\>X09we have d(ftX9 Gx, 0) well defined and independent of both t 
andX. 
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PROOF OF PROPOSITION 12. Suppose that {w,} is a sequence in cl(G) with 
Uj -* u9 {tj) a sequence in [0,1] with tj -> f, and such that 

KnT {(1 - tj)(f(uj)9 Uj - u)+tj(fx(uj)9 Uj - ! « ) } < 0. 

Since ƒ and fx are demicontinuous maps of class (S)+ , we know that 

Km (ƒ(« , ) , w,- - « ) > 0, Hm ( / ; (« , ) , w,- - « ) > 0. 

Suppose without loss of generality that t > 0. Since 

H m ( l - / y ) ( / ( i i 7 ) , i i y - i i > > 0 

we see that 

t Urn ( ^(w;), i#y - w) = Hm [tj (^(w,) , Uj - u) } < 0. 

Since ƒ is of class (5)+ , it follows that wy converges strongly to u. Therefore 

(1 - tj)f{Uj) + tjfx(Uj)~(l - /)ƒ(«) + /ƒ,(«), 

and the proof of Proposition 12 is complete. Q.E.D. 
PROOF OF PROPOSITION 13. Suppose that the assertion of Proposition 13 were 

false. Then by Proposition 11, for each Xx in A, there would exist X^ D XX9 a 
point u'mdGp and a parameter value t in [0,1] such that 

<ƒ,(«),«><o, (/(«),o)=o (vexx). 
For each X in A we form a subset Wx of the Cartesian product of dG X [0,1], 
where 

W= {[u, t] | u E dG, t E [0,1]; ( / , ( I I ) , w)< 0; ( /,(w), v) = 0 (v E X x )} . 

By our preceding consideration, each Wx would be a nonempty subset of the 
bounded set dG X [0,1], and the family {Wx} has the finite intersection property. 
If we take the closure of Wx in the product of the weak topology on dG and the 
ordinary topology on [0,1] and denote this closure by w-cl(JTx), then this set is 
compact in its appropriate topology. Hence 

fï w-cl(*rx)^ 0. 
x 

Let [w0, t0] be a point of this intersection. 
For an arbitrary point v of X, choose Xx in A such that Xx contains both u0 

and v. Since Xis reflexive, we may choose a sequence [uJ9 tj] in the corresponding 
Wx such that Uj — w0, tj -> f. For each index y, we have 

{ftj(uj),uj)<0, (ftj(uj),uo)=0, (flj(uJ),v}=0. 

In particular it follows that 

Km(ft.(uj)9Uj-u0)^0. 

If we apply the assumption that {ƒ,} is a homotopy of class (S)+ , it follows that 
uj -* w0 and ftj(Uj)-*fto(u0). Hence w0 G 8G, and </,(w,), t>>-> </,0(w0)> t?>= 0. 
Since t> is arbitrary, fto(u0) — 0 which contradicts our assumption that 0 $ ft(dG) 
for all t. Q.E.D. 
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We have now completed the proof of the existence of the degree in Theorem 5. 
It remains to prove the uniqueness of the degree in Theorem 4. We shall prove 
this fact in the following proposition. 

PROPOSITION 14. Let X be a reflexive Banach space and let dx be a degree 
function on the class F of demicontinuous mappings of class (S)+ of the closures of 
bounded open sets G in X into X*. Suppose that dx is invariant under the class of 
affine homotopies in F. Then dx coincides with the degree d defined above in terms of 
Galerkin approximants. 

PROOF OF PROPOSITION 14. Suppose the assertion were false. Then there would 
exist a bounded open set G in AT, a demicontinuous map ƒ of cl(G) into X* of 
class (S)+ and a point y0 in X*, y0 & f(dG) such that 

d(f,G,y0)*dx(f,G9y0). 

We may assume without loss of generality that^0 = 0. 
By the definition of d in terms of Galerkin approximants, it follows from this 

assumption that for each X in A, there would exist X^ D Xx such that d0(f^ GM, 0) 
^ dx(f9G,0). We now apply the conclusion of Proposition 11 to the degree 
function dx on X and derive the existence of u in dG such that 

(ƒ (« ) , w><0; (ƒ(«) , t> )=0 for all ©in A;. 

We define the subset Vx of dG by 

V= ( w | w E 9 G ; ( / ( H ) , K ) < 0 ; ( f(u), v)= 0 for all* in * x } . 

By the last paragraph, each Vx is nonempty and the family {Vx} has the finite 
intersection property. By the weak compactness of w-cl(Kx)> it follows that 
f\GA w-cl(Fx) ¥= 0. Let u0 be a point of this intersection. 

Let Xx be an element of A which contains both u0 and a given arbitrary point v 
of X. By the reflexivity of X, there exists a sequence {« •} from the corresponding 
Vx with Uj -- w0. For each index j , 

( / ( u , ) , u , ) < 0 ; (ƒ(« , ) , a 0 ) = 0 ; (f(uj),v) = 0 

and Uj E dG. A fortiori lim( f(uj), Uj — u0)< 0, so that Uj -> uQ and ƒ(«,) -*/(w0). 
Thus u0 E 8Cr, and (/(w0)> v)= Hm( ƒ(«,), v)= 0. Since v was an arbitrary 
element of X, f(u0) — 0, with u0 E dG. This is a contradiction, and the proof of 
Proposition 14 is complete. 

Thus the proofs of Theorems 4 and 5 are complete. 
If we seek to extend the degree function we have constructed to the broader 

class of pseudo-monotone mappings, we encounter the significant difficulty that 
the pseudo-monotone maps are not proper in the general case, and for an 
arbitrary bounded open subset G, it is not true for a pseudo-monotone map /.of 
cl(G) into X*9 that f(dG) is closed nor that /(cl(G)) is closed. The latter will 
indeed be the case if G is convex, but is false in general otherwise. This 
necessitates a serious modification of the definition of a degree function if we are 
to obtain one for such mappings. We will not restate the formal definition of a 
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degree function in its complete form to show the salient features of the new 
definition, but merely the modifications that are necessary. 

DEFINITION 6. We shall speak of a degree function in the extended (or weak) 
sense if the following modifications are made in the characterizing properties of the 
degree in Definition 1. 

(1) The degree function d(f, G, y0) is to be defined only ify0 £ cl(/(9G)). 
(2) Ifd(f, G, y0) * 0, theny0 G cl(/(G)). 
(3) The normalizing map f0 is assumed to be proper on bounded sets. 
(4) In the definition of the additivity property on domains, we must assume that 

yo^d(f(d(G)\(GiUG2))). 

(5) In the property of homotopy invariance, we must assume that if Y is a metric 
space, then a fixed ball Br(yt) does not intersect ft(dG) for all t in [0,1]. 

THEOREM 6. There exists one and only one degree function in the extended sense 
on the class F of maps ƒ: cl(G) -» X*, where X is a reflexive Banach space and the 
maps ƒ are pseudo-monotone, with the degree invariant under affine homotopies and 
normalized by the duality mapping / . 

THEOREM 7. The degree function of Theorem 6 is actually invariant under 
pseudo-monotone homotopies, where a homotopy {ƒ,} is said to be pseudo-monotone 
if for a sequence {Uj} converging weakly to u in X and a sequence {tj} converging to 
t in [0,1] for which ]im( ft(Uj), Uj — u)< 0, we have lim( ft(uj), Uj — u)= 0, and 
if u lies in cl(G), then ft(Uj)^ft(u). 

We shall not give the detailed proofs of Theorems 6 and 7 here except to 
observe that in this case, the proof by Galerkin approximants does not suffice. 
We must instead approximate each pseudo-monotone mapping ƒ by approximat­
ing mappings fe, e > 0, in the class (S)+ where fe= f+ eJ and / is the duality 
mapping of class (S)+ which we have considered above. For each ƒ which is 
pseudo-monotone and demicontinuous, the approximating map fe is demicontinu-
ous and of class (S)+ . If y0 £ cl(/(9G)), then for e > 0 and sufficiently small, 
y0 £ /e(3G). On the other hand, on any compact subinterval of (0, £0), {/J is an 
affine homotopy of maps of class (S)+ . Therefore, by the invariance of the 
degree for maps of class (S)+ under affine homotopies, d(fe,G,y0) will be 
independent of £ for 0 < e < e0. This common value, we designate as d( ƒ, G, y0), 
and it will be our extended degree function for the class of pseudo-monotone 
mappings. The invariance under pseudo-monotone homotopies follows from the 
fact that for each e > 0, ft + e J yields a homotopy of class (S)+ . It does not 
follow in this case that each affine homotopy is pseudo-monotone (unless ƒ and fx 

are bounded), but it is still the case that for each e > 0, {ft + e J} is an affine 
homotopy of maps of class (S)+ and hence a homotopy of class (S)+ . 

Restricted to the class of maps of class (S)+ , any degree in the extended sense 
just becomes a degree in the original sense of Definition 1 since all the maps and 
homotopies involved are proper. Thus an extended degree is unique by Theorem 4 
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on the dense subclass of maps of class (S)+ . By continuity of the degree under 
the homotopy ƒ + e J as e ranges over [0, e0), we find the uniqueness of the 
extended degree on the class of pseudo-monotone mappings. 

6. The degree for more general mappings of monotone type. There are a number 
of classes of mappings of monotone type with domain in a reflexive Banach space 
X and with values in the conjugate space X* for which suitable extensions of the 
arguments which we developed above can be used to develop an existence and 
uniqueness theory for a suitably defined degree of mapping. To complete our 
presentation here, we consider the simplest and most generally useful of such 
classes, that of maps of the form T + ƒ with T maximal monotone and ƒ bounded 
and of class (S) + . 

Let X b e a reflexive Banach space. We consider maps T from X with values 
subsets of X*. With each such map, we associate its graph G(T) in X X X*9 i.e. 

G(T)= {[u9w] \uEX,wET(x)}. 

Then 
The mapping T is said to be monotone if for any pair of elements [w, w] and [x, y] 

in G(T), we have the inequality 

(w — yy u — x)> 0. 

T is said to be maximal monotone if it is monotone and maximal in the sense of 
graph inclusion among monotone maps (multivalued) from X to X*. An equivalent 
version of the last clause is that for any [u0,w0]in X X X* for which 

(w0-y,u0- x)>0 

for all [x, y] in G(T\ we have [w0, vv0] in G(T). If the Banach space X is reflexive, 
an equivalent statement is that the mapping T + J has all of X* as its range. (We 
assume as before that X has been given an equivalent norm in which the duality 
mapping J is bicontinuous and Hes in the class (S)+ .) 

Maximal monotone mappings occur in a number of useful and important 
contexts. First of all, all demicontinuous monotone maps of X into X* are 
maximal monotone. Second, for any maximal monotone map T of X into the 
subsets of X*, its inverse T~x is maximal monotone from X* to the subsets of X 
(this makes maximal monotonicity useful in the study of Hammerstein integral 
equations). Finally if <p : X -» R U { + oo} is a proper lower-semi-continuous 
convex function, its subgradient 8<p is maximal monotone, where 

(8<p)(w) = [w | w E X*; For all f in X, <p(v) — <p(u) > (w, v — u)}. 

This fact makes maximal monotone mappings a useful tool in the study of 
variational inequalities. 

THEOREM 8. Let X be a reflexive Banach space, T a maximal monotone mapping 
from X to 2X* with 0 E T(0). Let G be a bounded open subset of X, and let f be a 
bounded mapping of cl(G) into X* of class (S)+ . For each e > 0, consider the 
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generalized Yosida transformation Te corresponding to T [3] given by 

T£ = (Tl+eJ-l)~l-

(A) Suppose that for a given y0 in X*, y0 does not lie in (T + ƒ )(3G). Then there 
exists e0 > 0 such that for 0 < e < e0, y0 does not lie in (Te + ƒ )(3G). 

(B) For each e > 0, the mapping Te + ƒ of cl(G) into X* is of class (S)+ . Hence 
for 0 < e < e0, f/ie degree function d(Te + ƒ, G, ^0) is defined by the results of the 
preceding section. Moreover, for 0 < e < el9 the values of all these degrees coincide. 

DEFINITION 7. We set the degree function d(T + f,G, y0) to be the common 
value of d(Te + ƒ, G, y0) for e sufficiently small. 

PROPOSITION 15. Let X be a reflexive Banach space, {Tt: 0 < t < 1} a family of 
maximal monotone maps from X to 2X* with 0 E Tt(0) for all t. Let J be a duality 
mapping from X to X* which corresponds to a norm on X in which both X and X* 
are locally uniformly convex. Consider the following four conditions on the family 

{Tty. 
(1) (generalized pseudo-monotonicity) Suppose that for a sequence {tj} converging 

to t in [0,1], we have a sequence [uu9 Wj] in G(Tt) with Uj converging weakly to u in 
X, Wj converging weakly to w in X*. Suppose further lim(>v,, wy)< (w, u). Then 
w G Tt(u\and(Wj,Uj)-^ (w,u). 

(2) Consider the mapping <p of X* X [0,1] into X given by 

<p(w,t) = (Tt + J)-\w). 

Then <p is continuous from X* X[0,\] to X (with both X and X* given their strong 
topologies). 

(3) For each w in X*, the mapping q>w of[Q9 1] into X given by 

is continuous from [0,1] to the strong topology on X. 
(4) (Strong lower-semi-continuity of G(Tt) in t) Given [x, y] in G(Tt) and a 

sequence {tj} converging to t in [0,1], there exists a sequence [xjy Wj] with each 
[xj, Wj] in G(Tt) such that Xj converges strongly to x in X,yj converges strongly toy 
in X*. 

Then, conditions (1), (2), (3), and (4) are mutually equivalent. 

DEFINITION 8. A family {Tt} of maximal monotone mappings which satisfies the 
mutually equivalent conditions (l)-(4) is called a pseudo-monotone homotopy of 
maximal monotone maps. 

PROOF OF PROPOSITION 15. We shall prove that (4) => (1) => (2), (3) => (4). 
Obviously (2) => (3). 

PROOF THAT (4) IMPLIES (1). Let [x, y] be an element of G(Tt). For the 
sequence {tf) given in (1), choose a family [xj9 yj] as described in condition (4) 
with [xj9 yf] in G(Tt) and [xj9 yj] converging strongly to [x, y]. For each j , the 
monotonicity of Tt implies that 

(wj-yjyUj-Xj)>0. 
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Hence 

(w9 u)> lim (wj, Uj)>hm(wj9 Uj)>Um{(wJ9 Xj)+ (yj9 Uj - Xj)} 

= (w9x) + (y9u- x). 

Thus, (w — y9 u — x)>0. Since this inequality holds for all [x9 y] in G(Tt)9 the 
maximal monotonicity of Tt implies that [u9 w] Ues in G(Tt). On the other hand, 
setting [x9 y] = [u9 w] in the inequality above, we see that 

(w, u)> lim (wj9 Uj)> Hm (wj9 u-)> (w9 w). 

Hence (wj9 «,-)-> (w9u). Q.E.D. 
PROOF THAT (1) IMPLIES (2). Let Uj, = (Tt. + J)~\wj) with wy converging 

strongly to w in X* and tj converging to t in [0,1]. Then 

wj=yj + J(uj) 

for elements^ in G(Tt). Since [0,0] G G(Tt) for each7, we have 

(wj9uj)=(yj9uj)+\\uJ\\
2>\\uj\\

2. 

Hence the sequence {Uj} is bounded, as is the sequence J(uj). We wish to show 
that Uj converges strongly to u = (Tt + J)~lw. To do so, it suffices to assume that 
Uj converges weakly to u9 and show that u must be this given element and that the 
convergence is strong. We may also assume that /(wy) converges weakly to z in 
X*9 whileyj = Wj — /(«,) converges weakly to w — z = y. 

For eachy, we have 

(wj9Uj-u)= (yj9Uj-u)+ (j(Uj)9Uj-u). 

Since vvy converges strongly to w while Uj — u converges weakly to 0, it follows 
that (wj9Uj — u)-* 0. On the other hand, since/ is pseudo-monotone, 

\hn_(j(Uj)9Uj- u)>0. 

Hence 

Hm (yj9 Uj — u)< 0 

i.e. 

If we apply condition (1), we find that y E Tt(u)9 that (yj9 Uj)-* (y,u)9 i.e. 
( yj9 Uj — M) -> 0. Hence 

(j(Uj)9Uj-u)-*0. 

Since / is a map of class (S)+ by hypothesis, Uj must converge strongly to u and 
J(Uj) must converge strongly to / (M) . Hence y = w — J(u)9 i.e. w E. (Tt + / ) («) , 
o m = (7; + / r 1 ( w ) - Q.E.D. 

PROOF THAT (3) IMPLIES (4). Let [x9 y] G G{Tt). Then;; + J(x) G (r, + J)(x)9 

i.e. x = (Tt + / ) _ 1 ( ^ + /(x)). If {/y} is a sequence converging to t in [0,1], let 

Xj=(T +J)~\y + J(x)). 
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By condition (3), Xj converges strongly to x in X, so that J(Xj) converges strongly 
to J(x) in X*. On the other hand, there exists yj in T(xj) such that y + J(x) = yj 
+ J(xj). However, y}, = y + J(x) — J(Xj) converges strongly to y in X*. Q.E.D. 

THEOREM 9. Let X be a reflexive Banach space, G a bounded open subset of X, 
{ft\ 0 < / < 1} a homotopy of class (S)+ of maps ofcl(G) into a bounded subset of 
X*. Let {Tt: 0 < t < 1} be a family of maximal monotone mappings of X into 2X* 
with 0 G Tt(Q) for all t. Suppose {Tt} is a pseudo-monotone homotopy in the sense of 
Definition 1. Let {y(t): t G [0,1]} be a continuous path in X* such that y(t) & 
(Tt + ft)(dG)for all t in [0,1]. Then 

(a) For each e > 0, Tt e = (T~l + eJ~l)~~l is a bounded pseudo-monotone map­
ping of X into X*9 while the family {Tt e + ft: 0 < t < 1} is a homotopy of class 
(S)+fromcl(G)toX*. 

(b) There exists e0 > 0, such that for 0 < e < e0, 

y(t)$(Ttt.+f,)(dG), 

d{Tt e + ƒ„ G, y(t)) is well defined and independent of t and e. 

THEOREM 10. The degree function defined by Definition 1 on the class of maps of 
the form T + f with T maximal monotone and ƒ bounded and of class (S)+ is a 
classical degree function with respect to the class ofhomotopies described in Theorem 
2 with the canonical map f0 = / . 

PROOF OF THEOREMS 8 AND 9. As stated, Theorem 9 includes Theorem 8 as a 
special case since the constant homotopy lt— T for all t is indeed pseudo-
monotone in the sense of Definition 8. Hence it suffices to prove Theorem 9. The 
proof rests on the following auxiliary result. 

PROPOSITION 16. Let X be a reflexive Banach space, {Tt: t G [0,1]} a pseudo-
monotone homotopy of maximal monotone maps from X to 2X* with 0 G Tt(0) for all 
t. Let [Uj] be a sequence in X converging weakly to w, and for sequences {tj} in [0,1] 
converging tot,0< eJ9 0 < 8-, ey -* 0, 8j -» 0, let 

Suppose further that f or another sequence {Sj} in [0,1], and for 

we have Wj converging weakly to w in X*, while lim(w/, w7>^ (H>, y ). 
Then w G Tt(u), and (wy, wy-)-> (w, u). 

PROOF OF PROPOSITION 16. Since v{ = T p (uX it follows that 

Similarly, z, G Ttj(tij - 8,/"'(z,-)). Since 0 e 7^(0), and Tt is monotone, 

(vj, uj ~ ejJ~\vj)) > 0, (zj, uj - SjJ-l(zj)) > 0. 
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Hence 

If we multiply each of these inequalities by (1 — Sj) and sj9 respectively and add, 
we obtain 

(\ - S^SJWVJW2 + SJSJWZJW2 < (wj9uj)^ M. 

Hence (1 — Sj)ej II Vj II2 is bounded, as is sfy \\ zj II
2, so that 

(1-^)^.11^11-^0, ^ 1 1 2 , 1 1 - 0 . 

Let [x9 y] be any element of G(Tt). By the condition (4) for the pseudo-
monotone homotopy {Tt}9 for eachy, there exist elements [xj9 yj] of G(Tt ) with Xj 
converging strongly to x9 yj converging strongly to y. By the monotonicity of Tt, 

{vJ-yJ,uJ-ejJ-\vj)-xJ)>0, (z, - yp Uj - S , / - ( z , ) ~ * , ) > 0. 

Hence, 

(vj-yj, Uj - xj)>ej{vj-yj, J~\vj))> HI ƒ,11 e, Ik, II, 

and 

< ^ - ^ « , - ^ > > « , ( ^ - ^ / - , ( ^ ) > > - H ^ I I 8 , l l z , l l . 

If we multiply these inequalities by (1 — Sj) and sj9 respectively, and add, we get 

(wj-yj, uj - xj)> -M{(\ - ^6,11 t^ll + 5,8, Il z, II} - 0. 

Thus 

(w9 u)> ]im (wj9 Uj)>^(wj9 Uj)> ]^{(WJ -yj9 +Xj) + (yj9 +Uj)} 

= (w-y9x) + (y9u). 

Hence 

(w - y9 u - x)> 0 ([*, y] in G(Tt))9 

and by the maximal monotonicity of Tt9 w E Tt{u). Substituting [u9 w] for [x, 7] 
in the preceding chain of inequalities, we see that 

(w9 u)> lim (wj9 Uj)> lim (wj9 Uj)> (w9 u). 

Thus, finally, (wj9 Uj)-* (w9u). Q.E.D. 
PROOF OF THEOREM 9 COMPLETED. By Proposition 12, it follows that if {Tt} is a 

pseudo-monotone homotopy, then T~x is a pseudo-monotone homotopy. Simi­
larly, if {T~1} is a pseudo-monotone homotopy and if {g,} is a pseudo-monotone 
homotopy of bounded monotone maps, then {T~l + gt} is a pseudo-monotone 
homotopy. In particular, {T~x + e / - 1 } is a pseudo-monotone homotopy, and 
Tet — (T~x + eJ~l)~l is also a pseudo-monotone homotopy. Hence T t + ƒ, is a 
pseudo-monotone homotopy of class (S)+ for each e > 0. Thus part (a) holds. 

Suppose the conclusion of part (b) were false. Then there would exist a 
sequence {tj} in [0, 1] and two sequences of positive numbers ej9 8j -» 0 and points 
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Uj on 9G, such that for suitable Sj in [0,1] 

ytj = (1 " SJK^UJ) + 3jTljttj(uj) +ftj(uj). 

We may assume that tj converges to t9 and that yt. converges strongly to yr If we 
set Vj = Ttje(uj)9 Zj = Ttjtdj(uj), and w, = yt. -ƒ,.(*/,), we may assume that Uj 
converges weakly to u and that Wj converges weakly to w. Moreover, 

lim (WJ, Uj-u)= lim(ytj, uj -u)- lim( /,.(wy), uj - u) < 0 

since 

)im{ftj(uj)9uJ-u)>0 

by the pseudo-monotonicity of the homotopy {ƒ,}. If we apply Proposition 2, it 
follows that w E Tt(u% and that (wj9 Uj — u) -> 0. Hence 

and since the homotopy {ft} is of class (S)+ , Uj converges strongly to w, and 
f(uj) converges weakly to ft(u). Thus u Hes in 3G, yt — ft(u) = w G Tt{u\ i.e. 
yt E (Tt H- /r)(3G), which contradicts the hypothesis. Q.E.D. 

THEOREM 11. The degree function described by Theorem 3 can be extended to the 
class of mappings of the form T + ƒ, with f pseudo-monotone and bounded by letting 
d(Tt + ƒ, G, y0) = limfi^0 d(T + ƒ + § / , G, j>0), vv/iere the mapping f+8J is of 
class (S)+ . This extension has properties similar to the corresponding extension of 
the degree function to pseudo-monotone mappings in §5. 

We turn now to the uniqueness result for the degree function over the class 
T + ƒ, with T maximal monotone, ƒ of class (S)+ and bounded. 

THEOREM 12. Let X be a reflexive Banach space. Then there exists exactly one 
degree function on the class of maps T + ƒ, with T maximal monotone and f bounded 
and of class (S)+ , which is normalized by J and such that the degree is invariant 
under all affine homotopies of the form 

(l-t)(T + f) + tfl 

with T maximal monotone, ƒ and f \ of class (S)+ . 

PROOF OF THEOREM 12. Let dx be such a degree function. When restricted to 
the maps of class (S)+ , it coincides with the unique degree function on that class. 
Hence, we must show that this unique identification persists when we pass to the 
broader class (T + ƒ ). 

Suppose yQ £ (T + /)(9G). Consider the affine homotopy between ( r + ƒ) 
and the approximating map (Te + ƒ ) for small e > 0 which we employed above in 
proving the existence of the degree. If dx ¥* d, then for arbitrary small e > 0, we 
can find ue on 3G and te in [0,1] such that 
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We may choose a sequence Uj in 3G, u} -* u9 tj -* t9 ej -> 0, /(w, ) -* vQ. For each./', 
we have Wj G r(wy) such that 

(l-tj)wj + tjTgj(uj)+f(uj)=y0. 

We now apply a variant of the argument used in the proof of Proposition 16. If 
Vj = Te(ujl then 

Vj^Tiuj-BjJ-'ivj)). 

Similarly, vv, G T(uj). Hence 

ej\\vj\\2<(vj,uj), 0<(wj,uj). 

If we multiply these inequalities by ( / — f •) and tJ9 respectively, and add, we 
obtain 

tjej\\Vj\\2<(yo-f(uj)>«j)<M. 

Hence tjtjII t̂  Il2 is bounded, so that tjtj \\vj\\ -> 0. 
Let [x9 y] be any element of G(T). Then 

(vj - y9 Uj - BjJ~\Vj) - x) > 0, (wj -y,uj-x)>0. 

Thus, 

If we multiply the inequalities by tj and (1 — tj)9 respectively, and add, we obtain 

(yo-f(Uj)-y,Uj-x)>-ejtj\\Vj\\\\y\\9 

where the term on the right approaches zero as y -> + oo. Hence, if Zj — y0 — ƒ(«,), 
thenZj-»z = yQ — v9 and 

Hm ( Zj — y, Uj,— x ) > 0. 

On the other hand, since Zj + /(w7) = y0, we have 

<z,.,w,.-t/> + (f(uj),Uj-u)= (y09uj-u), 

i.e. 

l im(z ; ,M y - n ) + Hm(/(wy.),wy. - w ) < 0 . 

Since ƒ is of class (S)+ , lim(/(wy), w, - u)> 0. Hence 

l i m ( z y . , w y - w ) < 0 , lïm(z7.,w7.>< ( z ,w) . 

Thus 

(z,w)>lu^(z7 . ,wy . )>lim(zy . ,My>^(j; , w - x > + ( z , x ) . 

It follows that (z-y9 u - x)> 0 for all [x9 y] in G(r). By the maximal 
monotonicity of T9 z G T(w). Replacing [x, y] by [w, z], we find that (zj9 wy)^ 
(z, w). Hence 

]im(f(Uj)9Uj- u)<]im(zj9u- wy>=0. 
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Since ƒ is of class (S)+ , uj -> u so that u lies on 3G, and f(uj) -* /(w). Thus 
ƒ(«) = j 0 — z, or in other words, y0 E (T + ƒ )(w). This contradicts the assump­
tion that y0 £ ( J + ƒ )(9G). The contradiction is to the assumption that the two 
degrees are different for (T -f ƒ ). Hence the two degrees coincide. Q.E.D. 
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