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ON FIXED POINTS OF AUTOMORPHISMS 
OF FINITELY GENERATED FREE GROUPS 

BY S. M. GERSTEN 

ABSTRACT. If <f> is an automorphism of a finitely generated free group, 
then Fix(<£) is finitely generated. 

0. Introduction. A conjecture attributed to G. P. Scott [St2] states that 
the fixed points of an automorphism <j> of a finitely generated (fg) free group F 
is fg. It is known that this is the case if <t> is periodic [D-S] or geometric [J-S], 
where <\> is called geometric if it is the induced map on 7Ti of a homeomorphism 
of (M, x), where M is a compact bounded two-dimensional manifold and x € 
M. In a recent article [G2] we showed that Scott's conjecture is valid for 
automorphisms of 7Ti of a finite graph induced by change of maximal trees. 

In this article we announce the affirmative solution of Scott's conjecture. 
The methods involved are an extension of methods of [G2] and blend com­
binatorics, topology, and group theory. 

1. Graphs. We work with a combinatorial notion of a graph introduced 
in [Gl] (and based on an idea of Serre's [S]). A graph X is a nonempty set 
with involution x —• x (so f = x) and retraction i: X —• V(X), where V(X) 
is the fixed point set of x —• x. Thus i(i(x)) = i(x). One defines r(x) =: i(x). 
Intuitively, V(X) is the set of vertices, X — V(X) =: E(X) is the set of edges, 
i is the initial vertex and r is the terminal vertex. 

A morphism ƒ : X -» X' of graphs is a function such that f(x) = /(x), 
and i(f(x)) = f(i(x)), x G X. The category of graphs has a final object, fibre 
products and push outs. In addition, there is a geometrical realization functor 
BX which assigns to X a 1-dimensional CW complex. This permits us to use 
the geometrical language of maximal trees, fundamental group and homotopy 
equivalence, although the notions have purely combinatorial definitions in the 
category of graphs. 

A morphism ƒ : X -> Y is called an immersion [Stl] if fv: Starv(X) —• 
Star/(V)(Y) is injective for each v G V(X). Here Starv(X) = {e€ E(X) \ it = 
v}. Immersions preserve reduced paths and hence induce injective maps on 
7Ti [Stl]. Of crucial importance in our work is the degenerate set Df of a 
morphism ƒ : X -+ Y ; here D ƒ =: {x G X | ƒ (x) G VQT)}. 

If v G V(X) and ƒ : X —• Y is a morphism, denote by ƒ* the induced map 
T i C X » - * ! ^ , ƒ(«)). 
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1.1. THEOREM. If<\> G Aut(7Ti(y)) where Y is a finite graph with one vertex, 
there exists a finite graph X, v G V(X), and morphisms f, f: X -+Y s.t. 

(1) ƒ* and ƒ * are surjective with the same kernel, 
(2)f:of-i=4>,and 
(3) Df andDf' contain maximal trees ofX. 

The proof makes use of Whitehead's algorithm [L-S] for decomposing (p 
as a product of Whitehead automorphisms, and a theorem of ours, [G2, 
5.5], representing a Whitehead automorphism as a change-of-maximal-tree 
automorphism (blow-up followed by blow-down in the aeolean terminology of 
[Gl]). 

After modifying X, ƒ, ƒ' in 1.1 by edge collapses, edge folds [Stl] and by 
removing extraneous edges, one proves 

1.2. THEOREM. In the notation of 1.1, one may assume f, ƒ' satisfy 
Gl. Df, Df' are maximal trees ofX, 
G2. ƒ | (X—E(Df)) is an immersion and f' \ (X—E(Df)) is an immersion, 

and 
G3. ƒ* and f I are surjective with the same kernel. 
In addition, Gl, G2, and G3 imply 
G4 {"path surgerf). If x, y G E(X) - E(Df) are such that f(x) = f(y), 

then 
l{x • [ix, iy]Df • y) > 1{[TX, ry]Df)) 

and similarly for f' replacing ƒ. Here [v,w]of is the geodesic in the maximal 
tree Df from vertex v to vertex w, and 'T' denotes the length of a path. 

Let £v = {u G 7Ti(X,i;) | f*(u) = f*(u)}. It is easily seen that f*(£v) = 
Fix(</>) = {77 G 7Ti(Y) | <t>{v) = v}- With these preliminaries we can state our 
main result. 

1.3. T H E O R E M . Assume </> G Aut(7Ti(Y)); where Y is a finite graph with one 
vertex. Assume f,f':X—*Y,v€ V(X) satisfy G1-G4 in 1.2, with f'+of"1 = 
<j). Then f*(£v) = Fix(0) is finitely generated. 

We remark that in all examples we have studied, as well as in the results of 
[D-S], [J-S], and [G2], rank(Fix0) < hx{Y) (in the situation of [G2] X - Y). 
We do not know if this inequality holds in general. 

We shall outline the proof of 1.3 in the remainder of this article. Properties 
G1-G4 of ƒ, ƒ ' : X —• Y will be assumed throughout without further mention. 

2. Representation theorems. 
2.1. A reduced path (xi , . . . ,x n) in X [Stl] is called ƒ reduced if, after 

deleting all Xi G Df and applying ƒ to the remaining edges, the resulting path 
in Y is reduced. The path p in X is called ( ƒ, ƒ') reduced if it is both ƒ- and ƒ ' 
reduced. A path p in X is called invariant if f*p = ƒ ̂ p, where f*p denotes the 
reduced path in Y in the homotopy class of f(p). An (ƒ, ƒ ') reduced invariant 
path p in X is called minimal if no nontrivial initial segment of p is invariant. 
We denote by M the set of minimal (ƒ,ƒ') reduced invariant paths. 

2.2. T H E O R E M . If rj G f*{£v), then there are only finitely many (ƒ,ƒ') 
reduced paths w in X with f*w = f'^w = r?; and they are determined by a 
simple algorithm. 
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This algorithm is based on the algorithm of [G2, §4]. 

2.3. THEOREM. For each path w inX 3 an (ƒ, ƒ') reduced path W\ s.t 
(1) iw = iw±, rw = rw\, and 
{2)Uw = Uwlt ƒ > = ƒ>!. 
The proof is accomplished by doing path-surgeries. The process converges 

by G4. 

2.4. COROLLARY. Ifrje f*(£v), 3 an (ƒ,ƒ') reduced circuit w based at v 
s.t. w is invariant and f*w = rj. 

Writing w in 2.4 as a path product of paths in X, one deduces 

2.5. C O R O L L A R Y . f*(£v) = f*{(M)nm{X,v)). 

Here X is immersed in Z =: X/[V(X) = pt] and the intersection on the 
right-hand side takes place in TTI(Z). 

3. Uniqueness theorems. 
3.1. DEFINITION. If e G E(X), let Me denote the set of paths p e M with 

initial edge e. A path of minimal length in M e is called standard. If p and p' 
are paths in X with ip = ip', rp = rp', /*(p) = /*(p') and (of necessity, by G3) 
ƒi(p) = ƒ*(?')> we write p = p'. 

3.2. T H E O R E M . Ifp andp' are in Me o/nd ifp is standard, then /*(p) is an 
initial segment of f*(p'). 

The proof is accomplished by careful examination of an algorithm which 
constructs all elements of M. 

3.3. COROLLARY. Ifp andp' are in Me and are both standard, thenp = p'. 

4. Main result. 

4.1. LEMMA. Let w, w' be invariant paths in X such that i(w) = %{w') and 
f*{w) = f*{w'). Then r{w) = r(w'). 

We now reduce the (possibly infinite) set At. For each e G E{X) such that 
Me 7* 0 , pick one standard path we. Let M' be the set of we chosen. 

4.2. THEOREM. U(M')n7r1(X1v)) = U(M)n7T1{X,v)). 

One shows by induction on l{f*{w)) that if w G M, then w = w', where w' 
is a path product of paths in M'. 

PROOF O F T H E O R E M 1.3. By 2.5 and 4.2 it suffices to prove that (M')n 
7Ti(X,v) is finitely generated. But M' is a finite set, so the result follows from 
a theorem of Howson's [Stl, 5.6]. 

One can deduce from H. Neumann's inequality, [Gl, 4.1], the inequality 
rank (Fix(0)) - 1 < 2(#£(X) - 1 ) • (h^X) - 1), where hx(X) is the first betti 
number of X, provided Fix(</>) ̂  {1}-

5. Automorphisms with few fixed points. 

5.1. THEOREM. ("Antisymmetry principle"). Suppose w G M has initial 
edge in Df. Then w must have its terminal edge in Df'. 



454 S. M. GERSTEN 

5.2. PROPOSITION. Suppose e e E(Df) is s.t if f\e) = f(x) for any 
x € E(X), then [re,ix]p/ has initial edge ê. Then Me = 0 . 

From 5.1 and 5.2, together with 2.5, we can produce examples of automor­
phisms with no nontrivial fixed points. In particular all the examples of [Sq] 
can be treated by our methods. This is of interest in accumulating evidence 
for Stallings' conjecture [St2], that a PV automorphism <j> of a ƒ g free group 
of rank > 3 has Fix(0) = {1}. 

We should like to express our gratitude to John Stallings, who saw us 
through some very difficult years. We learned of the Scott conjecture from 
him. He offered us continual encouragement as we came to understand the 
problem. 
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