
238 BOOK REVIEWS 

A major issue (2^ chapters worth) is the stability of factors Tx and T2 with 
respect to perturbations of T. Conversion to an invariant subspace problem 
yields satisfactory results on the issue of which T have stable factorizations. 

An intriguing observation is an explicit correspondence between factoriza­
tions of T and the solutions of an algebraic Ricatti equation. They use this to 
study stable solutions to the Ricatti equations. Related relationships I have 
seen (in the engineering literature) are in comparatively special circumstances. 

Most of the material in the book fits easily into infinite dimensional space 
and that is where it is done. The authors are consequently able to study certain 
integro-differential equations. In particular their methods apply to the trans­
port equation (of nuclear physics) and a chapter is devoted to this. This 
approach to the transport equation has proved to be valuable and the inter­
ested reader should see a forthcoming book on transport equations to appear 
in the same Birkhàuser series. 

There are many other nice ideas which cannot be mentioned in a brief 
review. In summary, the first third of the book sets out principles of model and 
system theory of such general interest that it could serve as an introduction to 
many readers. It does not give physical motivation or many references to the 
systems literature, so the beginner would want a more engineering oriented 
supplement (e.g. T. Kailath's book). Also to fill in more model theory, one 
could see either the definitive book of Nagy and Foia§ or the more informal 
account of the Nagy-Foia§ theory, by R. G. Douglas, which is contained in the 
volume of the MAA studies series which C. Pearcy edited. Also there is 
Brodskii's book. The remainder of the book is also accessible with little 
background and contains much fine mathematics. 
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A polynomial spline function results from splicing polynomial arcs in such a 
way that the resulting function is sufficiently smooth. In more precise lan­
guage, a polynomial spline function of degree k > 0 is a real function defined 
by piecewise polynomial components of degree < k whose derivatives through 
order k — 1 are continuous. The juncture points are commonly referred to as 
(simple) knots in the literature. Central to the study of these functions is the 
class of minimal support splines or B-splines. It is found that the smallest 
possible number of knots of a spline of degree k whose support is a compact 
interval in the interior of its domain is k + 2. Such splines are uniquely 
determined up to constant multiples. They are ideal basis functions and can be 
calculated recursively by formulas which express a 2?-spline of a given degree k 
as a convex linear combination of two i?-splines of degree k — 1. 
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Differentiation and integration satisfy similar recursions. The Z?-splines also 
have revealing geometric and probabilistic interpretations and may constitute 
the fundamental device for formulation of an adequate multi-dimensional 
theory of splines going beyond simple tensor products on rectangular parti­
tions or piecewise polynomials on simplicial decompositions. This has not 
taken place, however, beyond some important first steps. 

Applications to interpolation, quadrature, function approximation, and the 
numerical solution of differential equations very rapidly led to the extension of 
the notion of a spline from that given above. Thus, by the latter 1960's, when 
the reviewer began to work in this field, such terminology as generalized spline 
and deficient spline with multiple knots had already entered the literature, a 
reflection of the desire to relax derivative continuity requirements at the knots 
in the latter case, and to substitute for polynomial components, in the former 
case, general finite dimensional systems, such as Tchebycheff systems. By this 
time the subject was already in its third decade, having been formally initiated 
in a classic paper by I. Schoenberg [1946].1 The subject had developed 
surprisingly slowly in its early stages, and was largely ignored, except implicitly, 
in the surge of books dealing with approximation theory and appearing during 
the period 1962-1967 (cf. M. Golomb [1962], P. Davis [1963], A. Sard [1963], 
A. Timan [1963], J. Rice [1964], E. Cheney [1966], G. Lorentz [1966], P. Butzer 
and H. Berens [1967] and G. Meinardus [1967]). It was not until a stratum of 
optimality and stability results had accumulated, however, that unifying veins 
were perceived and tapped. Such a systematic development was occurring 
when the author of the book under review began his tenure at the Mathematics 
Research Center of the University of Wisconsin in 1966, having finished a 
dissertation under S. Karlin at Stanford, in which he satisfactorily resolved an 
open existence question related to a 1958 conjecture of Schoenberg on the 
validity of the fundamental theorem of algebra for monosplines; these appear, 
for example, as kernels in quadrature remainder formulas and are individually 
represented as a monomial of a given degree perturbed by a spline of degree 
one less. The author's result involved the delicate structure of total positivity, 
begun by G. Polya and carried on by I. Schoenberg, S. Karlin and others, and 
of Haar or Tchebycheff systems (cf. S. Karlin and W. Studden [1966] and S. 
Karlin [1968]). The reader may conveniently think of Tchebycheff systems of 
order n as characterized by the unique interpolation property of n arbitrary 
data at n arbitrary points. The spline systems themselves constitute what are 
termed weak Tchebycheff systems, necessitating a precise interlacing structure 
of knots and assigned interpolation points or nodes for the solution of the 
general interpolation problem. In terms of the Z?-splines, the criterion is simply 
expressed: a node in the (interior) support of each Z?-spline. This whole circle 
of ideas was to prove a decisive force in the subsequent development of the 
theory and included the powerful idea of variation diminishing approximations. 
The author gives a careful account here and, in fact, devotes an entire chapter 

1 This paper was not without precedents as Schoenberg [1973] himself observes. In particular, cf. 
T. Grevelle [1944] and W. Quade and L. Collatz [1938]. 
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to Tchebycheffian splines (cf. also the study by S. Karlin, C. Micchelli, A. 
Pinkus and I. Schoenberg [1976]) and many sections to related ideas. 

Part of the excitement felt by research workers at the time of the late 1960's, 
when a powerful synthesizing development was under way following the 
appearance of the book by J. Ahlberg, E. Nilson and J. Walsh [1967], was due 
to the happy coincidence of theory and application. It was known, for 
example, that bicubic, i.e., tensor product cubic, spline surfaces had been 
introduced for modelling automobile contours at the General Motors Research 
Laboratories in the early 1960's (cf. C. deBoor [1962] for a mathematical study 
of these surfaces), that actuaries had used splines to construct mortality tables 
long before 1946, and that naval architects routinely used mechanical splines, 
in conjunction with rotating sleeves, for curve fitting purposes. It was also 
known that, independently, the finite element method, introduced by 
R. Courant [1943] as a special Ritz variational projection method defined in 
terms of piecewise linear continuous trial functions on triangular finite ele­
ments, had undergone extensive development as a tool used for the solution of 
elliptic partial differential equations, particularly in the hands of structural 
engineers, who routinely used the local properties of the method as an effective 
computational device well suited to the local development of engineering 
models of structures. There were three principal explanations for the success of 
the finite element method, which had begun to complement spectral eigenfunc-
tion methods in much the same way as polynomials were being complemented 
by piecewise polynomials in approximation theory. These explanations, to be 
noted shortly, were in fact the identical ones for the success of splines, and this 
is not very surprising. In particular, the Ritz projection and the interpolating 
spline projection are concrete realizations of the same variational theory in 
Hubert space and, moreover, the finite element trial spaces are really various 
multi-dimensional realizations of the splines. (For elaboration, cf. M. Schultz 
[1973] and G. Strang and G. Fix [1973].) The reasons then are as follows. First, 
the matrix equation Ax = b, encountered either in the process of operator 
approximation, as in the finite element method, or in the process of curve and 
surface fitting, involves sparse matrices A, in fact, often banded matrices with 
repeating block structure, due to the use of local bases. Thus, both direct and 
iterative methods of numerical linear algebra (cf. R. Varga [1962]), coupled 
with efficient storage of the sparse structure, lead to efficient algorithms for 
solution. The second and third reasons are perhaps not as obvious as the first, 
but are still readily understandable. One has to do with the rate of approxima­
tion of smooth functions by functions defined piecewise, sometimes termed a 
consistency property by numerical analysts, and the other with the stability of 
computational processes applied to solve the matrix system above whose very 
formulation influences the stability. The convergence question is affected not 
only by the trial space but also by the projection and its associated norm; we 
shall have more to say about this later. The stability is affected, not only by the 
projection in function space, but also by the basis functions used to define the 
matrix A. Even the case when A is a positive definite, symmetric matrix can 
lead to a notoriously ill-conditioned system, and the truncations of the Hubert 
matrix exemplify this. The choice of a strongly independent basis for the trial 
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space, or the fitting space, is necessary here. The 2?-splines referred to above 
have this strong linear independence property, and it may be noted in passing 
that several delicate theoretical results associated with the estimation of best 
constants in norm estimation problems have been derived by use of it. A 
complete exposition of both the theory and computation of 2?-splines is given 
by the author. 

We now address the variational properties satisfied by the splines. Interest­
ingly, the earliest extremal properties of splines arose in supremum norm 
variational problems. Thus, J. Favard [1937] and N. Achieser and M. Krein 
[1937] simultaneously discovered that, among all 2«7r-periodic functions which 
are ra-fold integrals of functions in the unit ball of L°°(—77,7r), there is a 
function f0 in this class which is farthest in the norm of L°°(-7r, IT) from the 
trigonometric polynomials of degree «, and is characterized by 

= fsgn(cos(« + l)x) , m even, 
K) / o W [sgn(sim> + l)x) , m odd. 

A constant multiple of the periodic extension of f0 to the real line was 
discovered by A. Kolmogorov [1939] as an extremal solution of the apparently 
unrelated Landau problem, which was solved by Kolmogorov after partial 
results were obtained by others. f0 is, of course, a spline function with equally 
spaced simple knots. J. Favard [1940] gave an intrinsic characterization of a 
particular solution of the minimization problem, in the Sobolev space 
Wm,oo(0,1) consisting of functions with m essentially bounded derivatives: 

(2) llJ<")llt-(0.,) = in f{ l l / ( " ) l l £ - ( o , i ) : / (* i )=^ . ' = 0.1.---.*} 

where 0 = x0< x} < - - - <xk= \ and {y^o are arbitrary real numbers. The 
function s is a spline and it is now known (cf. C. Chui, P. Smith and J. Ward 
[1976]) that Favard's procedure yields the limit, as/? -* 00 (in L\0,1), say), of 
the corresponding sequence {sp}, where sp solves the associated minimization 
problem in Wm,p(0,1), 1 <p < 00, when the norm of f(m) is computed in 
Lp(0,1). The functions s are not splines except for the case p — 2. The 
extremals in each of these cases were apparently not recognized as prototypi­
cal. In any event, it was not until the 1970's that this part of the subject 
renewed itself. A further discussion here would be too lengthy; the reader is 
referred to the monograph of S. Fisher and the reviewer [1975] for further 
details. Incidentally, the function f0 has been termed an Euler spline by I. 
Schoenberg [1973] since its components are classical Euler polynomial arcs. It 
is part of a much larger circle of ideas in which splines of specified power 
growth interpolate data of the same power growth at the integers; in the case 
of f0 the data are elements of a bounded, indeed, binary set. 

It would be fair to say that the extensive variational properties developed for 
splines in Hilbert space in the I960's owed much to two major papers which 
appeared much earlier and which dealt with substantive characterizations 
which were not at first recognized as equivalent, although strong inter­
connections were evident. These were the papers of A. Sard [1949] and of M. 
Golomb and H. Weinberger [1959], We shall describe the major ideas without 
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technical subterfuge. Sard was attempting to construct explicit formulas ap­
proximating linear functional such as integration, differentiation, etc., defined 
on smooth function classes. These formulas involved function or derivative 
function evaluations taken at a fixed, finite set of points specified in advance. 
Sard decided to select the coefficients in a formula based on fixed (possibly 
multiple) points in such a way that the kernel, in the Peano representation of 
the remainder, was minimized in L2. As a reflection of this optimality, these 
formulas have been called best in the sense of Sard by other researchers. It was 
discovered more than a decade later that the formulas of Sard are identical to 
those obtained by applying the exact linear functional to the spline inter­
polants, a fact implicit in the paper of Golomb and Weinberger. This paper 
addressed a different type of optimality, viz., that of determining the centroid 
of a hyperellipse or hypercircle in function space. To describe this, consider an 
ellipsoid <3l = { ƒ G DR: (Rf, Rf) < c] in a function space such as L2(a, b), or, 
more generally, in any Hubert space H. The (unbounded) linear operator R 
may be taken, for example, as the differential operator Dm in L2(a, b). 
Suppose an undetermined element u is known to belong to <3l and, simulta­
neously, to a hyperplane Q C DR intersecting <3l. Thus, in concrete terms, Q 
might be specified as the set of functions ƒ' E DR satisfying f{xt) = yi9 i = 
0, . . . ,&, where the partition {xt} of [a, b] and the ordinates {y(} are specified. 
Intuitively, the best estimator of u E <3l D Q is the centroid s; it turns out that s 
is identical to the element defined directly by 

(3) | | / b | | = i n f { | | / y i | : / € e } -

When R = Z>m, H — L2(a, b) and Q is defined by interpolation, s is simply the 
natural interpolating spline in C2m~2[a, b] of degree 2m — 1. The useful 
characterization (3) of the hypercircle centroid was not emphasized directly by 
Golomb and Weinberger, though they computed the spline centroids for many 
examples, particularly by use of reproducing kernels. In fact, the various 
connections evolved gradually during the 1960's. By the end of the decade, the 
equivalence of Sard's optimality criterion with the hypercircle method and with 
(3) were well established in situations of considerable generality.2 The reader 
may consult the book of Sard and S. Weintraub [1971] for further details; also, 
the interesting paper of M. Golomb [1967]. It is noteworthy that the paper of 
Golomb and Weinberger [1959], which references the paper of Sard [1949], is 
physically contiguous to a subsequent paper of Sard [1959] on this subject. 

The study of the general problem (3) in Hubert space dated from the 
discovery by J. Holladay [1957] that the natural cubic interpolating spline 
function was an extremal of the functional f%(f")2dx, thus providing a 
smoothest interpolant if one thinks of D2 as providing a linear approximation 
of the curvature operator. It is reasonable to inquire what occurs if the genuine 
strain energy, ƒ K2 ds, of a thin elastic beam is considered as a substitute for the 
quadratic expression above, where K denotes curvature and s arc length. One 
might expect the critical points of this functional to replicate in a precise 

2 The hypercircle inequality is, however, superior to Sard's original estimate. 



BOOK REVIEWS 243 

manner the analog devices employed by draftsmen. Unfortunately, this prob­
lem is not amenable to the direct methods in the calculus of variations, since 
the infimum of the functional ƒ K2 ds is zero over admissible interpolants, and 
this extremal value is assumed only in the trivial case when the data to be 
interpolated lie on a straight line segment; there is clearly no maximum of 
ƒ K2 ds. As of this writing, the interesting mathematical problem of proving the 
existence of critical points in the general case remains an open question, 
although partial results have been obtained. In particular, an application of the 
implicit function theorem in an appropriate function space, in a neighborhood 
of the ray configuration interpolant, does demonstrate the existence of critical 
points when the data are distributed sufficiently closely to a ray configuration. 
Interestingly, the linearization condition permitting the application of the 
implicit function theorem here is precisely the condition that cubic spline 
interpolation of arbitrary data is uniquely possible (cf. M. Golomb and the 
reviewer [1979]). This lends support to Schoenberg's original contention that 
the cubic spline was a smoothest interpolant. We note in passing that other 
versions of planar spline fits have been conceived which are totally unrelated 
to variational problems. We mention specifically the novel design by D. Knuth 
[1979a, 1979b] of an automatic, computer-assisted type-setting process which 
has been adopted by the American Mathematical Society as of 1981. In private 
correspondence, Knuth has termed such splines, "circular cubics". 

We have made mention earlier of the rate of convergence properties of the 
splines. Much effort has been expended in classical approximation theory in 
deriving rates of convergence which are characterized by the order m of 
smoothness and the dimension n of the approximating subspace; such rates 
typically are expressed as order expressions such as n~m in R1 and n~m/N in 
R^, in various function space norms. Refined versions of these estimates 
replace the order expression n~m by the mth modulus of smoothness evaluated 
at \/n. Moreover, it is a well-known fact that such estimates actually 
characterize smooth function classes, thus leading to both the direct and 
inverse estimation problems relating the error to the modulus of smoothness 
and vice versa. These problems were studied extensively for polynomials earlier 
in the century, beginning with the fundamental work of D. Jackson and S. 
Bernstein. During the last fifteen years, the analogue problems for splines have 
been exhaustively studied by many authors, particularly R. DeVore. This work 
is reported in considerable detail in the book under review. In particular, the 
fixed and variable knot problem in one dimension as well as the tensor product 
fixed knot case are discussed. 

It was apparently the Aachen group in approximation theory, under the 
leadership of P. Butzer, which recognized the decisive role that the theory of 
intermediate spaces could play in the resolution of the direct and inverse 
problems of approximation theory in a very general setting. The recognition 
that the Peetre ^-functional is essentially a modulus of smoothness greatly 
facilitated the multi-dimensional theory by permitting the application of 
intermediate and interpolation space theory, particularly the characterization 
of the Lorentz spaces as Lebesgue interpolation spaces and the Besov spaces as 
Sobolev interpolation spaces. It is striking that the results presented in the 
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book of P. Butzer and H. Berens [1967] came so soon after the theory of 
intermediate spaces as introduced and developed just a few years earlier by 
A. Calderon, J. Lions, J. Peetre and others. We can only give the reader a 
morsel of this theory, sometimes termed a saturation theory, which attempts to 
straddle the direct and inverse problems by precisely identifying the compre­
hensive nontrivial class for which a given approximation order is exactly 
maximal. Thus, the modulus of smoothness may be defined in terms of iterated 
translation, the infinitesimal generator of such translation is differentiation, 
and saturation (best possible) phenomena may be expressed in terms of the 
domain of such an iterated generator, which domain may coincide with an 
interpolation space. 

A concept for characterizing the best approximation of compact or near 
compact classes by subspaces of dimension n was introduced by A. Kolmogorov 
[1936]. Given a compact set A in a normed linear space X and a subspace M of 
dimension «, we define the dispersion of A from M by 

(4i) E(A9M) = sup inf | | .y- jc | | , 

and the «-width of A in X by 

(4ii) d„(A9 X) = ini{E(A9 M): dim M ^ n). 

The reason for mentioning this important concept here is the interesting 
interface which it enjoys with splines. In the most obvious relation, we can 
ascribe optimal order approximation properties to splines defining subspaces 
Sn of dimension «, in an asymptotic sense, if 

(5) E(A9S„)/dn(A9X)<c9 / i-*oo. 

Typical choices of A and X might be the unit ball of Wm>p(ti) for A and L*(Q) 
for X, where the relation among m9 p9 and q is such that the embedding 
Wm,p -» Lq is compact; of course, the Euclidean dimension N of the bounded 
set £2 enters here through the Sobolev embedding theorem. The derivation of a 
formula such as (5) requires a knowledge of (upper and) lower asymptotic 
bounds for dn(A, X). For the special case cited above, these have been 
determined by S. Kasin [1977] and are displayed in the following tableau. In 
the determination of the lower bounds, splines play a decisive role via an 
application of the Borsuk antipodal theorem to the function/(w) = w G M if 
II u — w || = inf {|| u — v ||: v G M}9 u G dA9 in a finite dimensional spline sub-
space M of dimension n + 1. In certain cases degenerate splines provide upper 
bounds via a local application of Sobolev's integral representation formula, 
e.g., in the case 1 < p < q < 2. However, as the author notes in §6.6, this case 
and the case 1 < q < p < oo are the only cases in which (5) holds. A greater 
compatibility exists between the splines and the so-called linear «-widths, 
defined via linear operators. There also exist other sharply defined relation­
ships between splines and «-widths. Thus, for example, the ellipsoid $1 de­
scribed earlier has its finite widths equal to the reciprocal square root of the 
eigenvalues of R*R (cf. the reviewer [1967]); optimal spaces assuming the 
«-width consist not only of eigenfunctions but, in concrete cases, splines as well 
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(cf. A. Melkman and C. Micchelli [1976]). In L00, the splines also appear as 
extremals in the «-width characterization and, in addition, there is a remarka­
ble result of V. Tihomirov [1969] which relates the «-widths to the oscillations 
of a family of splines in a natural way. 

4 
(o, i) 

(Weak) 
Asymptotic 
Order for 
dn(SWm'p\Lq) 

m - N/p + N/q > 0, and 
m-N/2>0 if 2 <p<q, 
m~N/p>0 ifp<2<q. 

The reader will recall that the Fourier partial sum projections form an 
unbounded sequence of operators on the 2 77 periodic subspace of C[ —7r, 7T], 
which explains why there are continuous functions with nonuniformly 
convergent Fourier series. Similarly, one may inquire whether the least squares 
spline projections, defined in L2, constitute a bounded sequence on L°° for 
reasonable partition sequences. Here the answer is an affirmative one, and 
there are related results for finite elements (cf. C. deBoor [1976] and J. 
Douglas, T. Dupont and L. Wahlbin [1975]). This illustrates the flexibility of 
piecewise polynomials with respect to classes of analytic functions, which often 
behave inflexibly. This inflexibility accounts for several undesirable properties 
of polynomials. One of the most famous examples, given by the author, is the 
divergence, on (part of) the interval [-5,5], of the Lagrange interpolation 
polynomials defined on uniform partitions for the real analytic function 
/ (x) = (1 + x2)"1. Splines, of course, behave magnificently and the inter­
polants converge uniformly for any continuous function. There is a final 
comment worth making here. If one is willing to forsake the linear structure of 
fixed knots for the manifold structure of variable knot spline approximation, 
an even greater flexibility is obtained. This was first noticed for piecewise 
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constants by J. Kahane [1961] and subsequently investigated by many others. 
Of interest here is the fact that the Holder function xa, 0 < a < 1, can be 
approximated uniformly to order k~m by splines of degree m with k free knots 
on [0,1] while the optimal order for fixed knot approximation is k~°. The 
saturation theory here is not complete. 

We turn now to some final direct comments about the book. This concisely 
written 553-page book is multiple-tiered. The author has not attempted to 
write a textbook as such, though he notes that, "With a judicious choice of 
material, the book can be used for a one-semester introduction to splines". In 
this case, the prerequisites would be calculus and linear algebra. However, 
there is considerable material to challenge the sophisticated mathematician. 
The author apparently intends to follow this volume with others. In fact, his 
approach has been single-mindedly constructive and algorithmic, and many of 
the variational properties mentioned above will not be found here. For the 
novice, a useful companion volume would be C. deBoor's compact text [1978]. 
A complementary readable account is the book edited by T. Greville [1969]. 

The book is exceptionally well referenced and annotated. The visual displays 
are apt and helpful, and examples and remarks are generously provided. 
Complicated ideas are presented clearly. The reader should be warned, how­
ever, that there is a great deal here, and even this is far from the entire story. 
Cue, volume 2! 
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