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1. Introduction. For my topic today I have chosen a subject connecting 
mathematics and aeronautical engineering. The histories of these two subjects 
are close. It might however appear to the layman that, back in the time of the 
first powered flight in 1903, aeronautical engineering had little to do with 
mathematics. The Wright brothers, despite the fact that they had no university 
education were well read and learned their art using wind tunnels but it is 
unlikely that they knew that airfoil theory was connected to the Riemann 
conformai mapping theorem. But it was also the time of Joukowski and later 
Prandtl who developed and understood that connection and put mathematics 
solidly behind the new engineering. Since that time each new generation has 
discovered new problems that are at the forefront of both fields. One such 
problem is flight near the speed of sound. This one in fact has puzzled more 
than one generation. 

Everyone knows that in popular parlance an aircraft has "crashed the sonic 
*or sound barrier" if it flies faster than sound travels; that is, if the speed of the 
craft q exceeds the speed of sound c or the Mach number, M = q/c > 1. In 
simple, if perhaps too graphic, terms this means that if you are in the line of 
flight the plane hits you before you hear it. But it is not my purpose to talk 
about flight at the speed of sound. The mathematical and engineering prob­
lems today are centered around a different range called the transonic range 
where M is roughly between 0.6 and 0.9. We shall see that this is where the real 
sound barrier lies. But the main reason for working in this range is that we can 
expect, because of the energy shortage, to fly for a good many years at those 
speeds. We need to understand them and find the best way to do it. In the first 
part of my talk I want to explain where the energy benefits come from and 
something of the history of this type of flight. After that, I shall turn to the 
mathematics. 

People have always dreamed of flying. In ancient times—like the birds. In 
modern times like Buck Rogers. For a long time we have known that if you 
have a big enough engine, creating lots of thrust, you can fly anywhere and 
theoretically at any speed. Like Buck Rogers you do not need wings. It costs 
money but it can be done. But back in the Wright brothers' day there was no 
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way to use what energy there was, everything was too heavy, engines were 
weak and to fly at all one had to have a good pair of wings, i.e., a well made 
airfoil or wing cross-section. 
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o 

FIGURE 1. Airfoils of equal drag experimentally 

An illuminating comparison is to be found in R. T. Jones' book [22], see 
Figure 1. For incompressible flow, which for us means low speed with a given 
thrust, or drag, which is equivalent to energy, you can fly either the little wire 
cylinder or the big air foil obtained by E. Jacobs by a conformai map; 
obviously the big one is better. More room for the gas tanks, for cargo, etc. But 
more importantly the shape gives lift. What is at work? The principle of flying 
is the same as the principle of sailing into the wind. The high school physics 
explanation is that the plane is sucked upwards or the sail is sucked forward by 
a partial vacuum created by the very special shape of the airfoil of sail. That is 
basically right. Now sailing saves a lot of energy even if you include the energy 
of the wind. So it is not unreasonable to believe that we can save energy by 
flying in, what I like to call, the "sailing mode". That is, getting as much as 
possible of the free ride the sailor has by designing the wings to help in the 
motion. But how far can we push this idea? It turns out there are limitations. 
The faster we fly the more Buck Rogerish we become and trouble comes at 
Mach numbers less than 1. 

In Figure 2, we have a look at this with some airfoils in wind tunnels. These 
are Schlieren photos of an airfoil beginning in (a) at low speed. There is a wind 
blowing on a fixed airfoil so now the Mach number is that of the wind. In a 
Schlieren photograph gradients of pressure show up as shadows. So for 
example we see the trail of vortices that provides the lift that keeps the airfoil 
up as well as the drag which has to be compensated for by thrust. One also sees 
the viscous boundary layer, separating a little near the trailing edge. That must 
be controlled to avoid stalling and kept down and the trick is to have a sizable 
pressure gradient at the nose. 

We are going to have to distinguish between the overall Mach number, 
denoted by M^ which is the ratio of the wind speed to the speed of sound at oo 
and the local Mach number, M, the ratio of the two speeds at a particular 
point. As M^ increases the flow becomes locally supersonic, the local Mach 
number exceeds 1 in a bubble adjacent to the airfoil, a "supersonic bubble". 
This is when M^ enters the transonic range, as in (b). Two things are 
happening: noise is propagated locally so the flow is not very smooth and a 
shock, a discontinuity in pressure, appears. Figure 2c is of a different airfoil in 
the same stage as 2b; the single shock happens to be sharper. 



FIGURE 2. Wind tunnel experiments 
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As the speed is increased still further a second shock on the lower side 
develops, Figure 2d. Eventually the two shocks move backwards and sit off the 
trailing edge in what is called a fish tail configuration. And, finally, of course, 
M^ exceeds 1 and a shock appears ahead of the wing as with the Concorde 
plane and we enter another regime, from the point of view of energy consump­
tion. 

As we proceed through these stages what happens to the energy require­
ments? Energy behaves like thrust or drag. We normalize it and make it 
dimensionless essentially by the square of the speed. 

The drag, mainly due to viscous effects, is going up like the square of the 
velocity, see Figure 3, the heavy curve, and then it hits a dramatic rise which is 
due to the presence of shocks in the supersonic bubble. This then is the true 
sonic barrier. 

DRAG 
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FIGURE 3. Drag as a function of M^ 

The aerodynamical problem is to design an airfoil that will fit all 
aerodynamical requirements. It should be of good size, have no separation of 
the boundary layer and at the same time should minimize the drag. Since the 
shocks cause the drag why not look for an airfoil without shocks? This 
question was first raised about 1930 when G. I. Taylor and Busemann began 
exploring the problem, Taylor [42] developing some smooth locally transonic 
flows and Busemann [5] getting contradictory wind tunnel results. This was not 
actually the beginning. In one form or another the question goes back to 
Chaplygin [7], Lord Rayleigh [39] and in more detail to Th. Meyer [30] in 1908. 

In the following thirty to forty years there was time for a large measure of 
controversy followed by indifference. Nowadays we are back with a small 
measure of controversy. 

The ingredients for the controversy as it emerged were twofold. You could 
apparently construct a family of airfoils depending on the parameter Mw. To 
each MQO, over some range, there was one airfoil that had one smooth flow with 
a supersonic bubble. At any other value of M^ nothing could be said. 

Thus for one choice of M^ there was no extra drag. For any other—who 
knew? Still it was an indication that one might build airfoils with no shocks, no 
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gratuitous drag. But the available computers were not good enough to actually 
produce one of these airfoil designs. 

On the other side, wind tunnels reported shocks under all circumstances as 
soon as the supersonic bubble appeared. But the wind tunnel experiments were 
very difficult and perhaps they were not properly interpreted. 

The controversy boiled down to the question: how exceptional were the 
special airfoils? 

Eventually the matter was settled (there are still diehards on the other side) 
by a good dose of mathematics first proposed by engineers; the special airfoils 
can be found; they are exceptional. But what about the next question? What 
really happens to these airfoils at what we call off-design conditions? But by 
this time we were into the fifties. Sputnik had risen and the indifference to 
transonic flow set in. All hands turned to getting a man on the moon. That put 
the "sailing" flight program on the back burner. Buck Rogers was in. We were 
going to go everywhere by rocket. Limits were imposed on new wind tunnels. 
Old ones were dismantled. One cannot do everything. And the obvious spin-off 
was going to be very fast earth-to-earth flight. Who cares about a few meager 
points in the Mach number? Then came the seventies and the energy crunch. 
The indifference ended. Buck Rogers was out. "Sailing" flight was in. Those 
special airfoils could then be found with the new computers and tested in new 
wind tunnels. In our drag graph, Figure 3, they give a dip (.. .) at some M^. In 
actual practice one aims only close to one of these special designs; the drag 
curve is smeared out (—). The new airfoils have shocks but they are weak. 
Their drag is much lower than say that of a Joukowski airfoil. A few meager 
points of Mach number are very important. They are worth a lot of oil and a 
lot of dollars. So the upcoming generation of airplanes, the many small jets 
already in action are all flying transonically. In the future when you look out 
of the window of your jet plane you may even see little shock waves sitting on 
its surface but you will know that the wing has been designed to keep them 
harmless. 

2. The mathematical model. So what is the mathematics that does all this for 
us? 

First, the mathematical model. Of course, air is viscous as well as compressi­
ble but except for boundary layers it has proved up to now that a very 
satisfactory model for flight is given by treating the flow as compressible, 
irrotational and of constant entropy. 

The variables are then density p, velocity q\ pressure is a function of p. We 
consider the airfoil at rest so that the velocity at oo, qœ, is really the velocity of 
the plane. From irrotationality there exists a potential so that q= v<J> and 
from the conservation of momentum one finds Bernoulli's law (its incompressi­
ble form was used in those high school "vacuum" arguments) and yields a 
relation between/?, p, | V <j> \. We may take it in the form 

P = p(| V * | ) . 

As the remaining physical law we have, conservation of mass: 

div(pV<J>) - 0. 
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This nonlinear second order differential equation replaces the harmonic equa­
tion A</> = 0 of incompressible flow. 

These equations can be written in a particularly elegant form, if there are 
only two space variables, d<j> + p"1 d\p = wdz analogous to d<f> + idxp — wdz 
where q — (u,v) has been replaced by the complex velocity, w = u — iv and 
z = x + z>, and i//, the stream function, is defined through this form. 

The elegance however conceals the very special feature of the system which 
shows up if we rewrite the equation for <£, 

(1) (c2 - u2)*xx - 2uv<t>xy + (c2 - v2)<l>yy = 0 

where c = (dp/dp)l/2 — c{\ V<>|) *s t n e speed of sound, given through 
Bernoulli's law. For example, for air c2 — 2{q\ — q2) where q^ is a constant. 
If w, v are small we have A<f> = 0; the flow is essentially incompressible. 
Choosing coordinates locally so that D = 0we see that, for q < c the equation 
is elliptic and for q > c the equation is hyperbolic. So for q < c the flow is 
completely analogous to the incompressible case, its solutions are locally 
smooth, but for q > c, all the difficult features of nonlinear hyperbolic equa­
tions occur. 

Equation (1) is to hold outside the airfoil, in D̂; in addition, the normal 
component of velocity must be zero on the airfoil 

(2) 8<J>/9n = 0 ona^D 

or equivalently ip = constant and at oo, the flow attains a prescribed velocity 

(3) V<f>-* V ^ , | J C | - * O O . 

That turns out to be sufficient data provided we are thinking of wings with 
sharp trailing edges. In the incompressible case we force the solution to have 
finite velocity there (the Kutta-Joukowski condition). In the compressible case 
infinite velocities are impossible anyway. For air, c2 = 0 for q = q# and thus a 
vacuum occurs instead of infinite speed. In the compressible case what we 
want is the right pattern for the streamlines. Thus we require 

The Kutta-Joukowski condition: The streamlines (\p = const) 
(4) along the airfoil join at the trailing edge and exactly one 

streamline issues from the trailing edge. 

This form of the Kutta-Joukowski condition seems to hold even in the 
extreme case of the fishtail shock of Figure 2e. 

We are looking at the boundary value problem given by (l)-(4) but we must 
consider what class of functions should describe the solution. One's first hope 
is for C°° solutions if the airfoil is C°° except at the trailing edge. But the 
experiment has suggested that for transonic flows this will be impossible. So 
the problem of existence and uniqueness is first treated for values of M^ below 
Mcrit when the equations are elliptic. Of course one has to establish that there 
exists an Mcrit > 0. All the elegant methods of nonlinear elliptic equations can 
be used. In fact the elliptic theory and the subsonic flow theory came together. 
During the fifties, Schiffman [41], Bers [3] established the general existence and 
uniqueness (as subsonic flows) using a variety of methods, see also [17]. 
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Recently, Brezis, Stampacchia [4], Hummel [20] have considered the problem 
for convex bodies by a new variational approach. 

What about Mach numbers higher than Mcrit? No existence or uniqueness 
theorems exist. How can the problem be approached? Can we continue to 
work with smooth solutions? The wind tunnel experiments tell us certainly not 
always. 

3. Constructing a smooth transonic flow. Since we explicitly want the 
exceptional cases of smooth flow we begin by showing how to construct an 
airfoil numerically that does have a smooth flow and a supersonic bubble. 

We could begin in the following way. Suppose on a very large circle we 
prescribe Cauchy data (<J>, d<f>/dn) that is real analytic. This data can be 
extended analytically as a solution of our nonlinear equation by the Cauchy-
Kowalewski theorem. 

Most such solutions will develop a singularity. But some may produce a 
streamline (\p = constant) that divides and then closes and it does not matter if 
there are singularities only inside. If the speeds are high enough it might have a 
supersonic bubble. Thus we would have the desired flow past a profile. If we 
can push our circle "to oo" we would get a flow in the whole domain exterior 
to the profile. 

For an incompressible flow, the complex velocity w is analytic and, since it 
approaches a constant at oo, it has a power series expansion in z"1. Pushing 
our circle to oo means prescribing all of the terms of this expansion. There is a 
similar rather messy series for w as a function of x, y for the compressible case. 
It happens that the corresponding potential <j> has a unique continuation in the 
x, y plane. 

This idea of using such a series goes back to Chaplygin [7], Cherry [8] and 
Lighthill2 [28], who showed how to construct solutions for <J>, actually in the 
velocity plane (w, v) where the equations become linear and can be separated. 
Nieuwland [36] constructed the first effective computational examples in 1964. 
It is amazing, considering how slow machines were and how complicated the 
series were, that he could get enough significant figures to show he really had 
an airfoil (roughly elliptic in shape). 

Garabedian's approach to this problem [2], which produces useful airfoils 
extremely efficiently, has three main ingredients: 

(i) Extend the two-dimensional real space to complex space and then treat 
the equations hyperbolically, 

(ii) replace the analytic continuation process by a difference scheme, 
(iii) prescribe data so that an airfoil with a supersonic bubble is produced. 
For (i) the variables x, y9 <f>, w, v, become complex. The physical plane is 

Im x — Im y = 0. Treating the equations hyperbolically means using char­
acteristics. 

Let us look at the simple case of the Cauchy-Riemann equations, which 
govern the incompressible case, 

Ux + Vy = °> Uy - Vx = ° ' 

2 See the bibliography in the book by Bers for other approaches. 
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They can be rewritten, if we set x = X, u = U9 y = /Y, t> = -/K, as 

( 7 * - K y = 0 , K * - I / y = 0 , 

a familiar hyperbolic system. 
In characteristic form for the four variables X, Y, £ƒ, F, we have 

y{ + xi = o, 

n - *, = o, 
or 

^ + /,JC€ ~ ^> 

^ - '*„ = 0, 

If we do the same for the compressible 

>̂  + X+x€ = 0, 

^ + X_ *, = <), 
with 

uv ± 
A -H — 

C 

f« + ^ = °> 
% - v, = o, 

W| + /€>£ = 0 , 

Mi ~ ivv = °' 
case, we find 

U± — \_Vç = 0, 

uv-X+vv = 0 

c]jq2 — c2 

2 2 

Of course everything in sight is complex, much of it analytic. 
For (ii), schematically the method is simply to replace in the characteristic 

equations, differentiation by backward differencing in the complex variables £, 
Î). We set up a computational mesh in £, TJ space with A£ = ATJ, see Figure 4. 

FIGURE 4. The Goursat problem 

Suppose we want (w, v) at P (we are using the same letters for the difference 
scheme) in terms of values at P9 Q. Then, 

u(P) - u(Q) - X_(Q)(v(P) - v(Q)) = 0, 

u(P) - u(R) - X+ (R)(v(P) - v(R)) = 0. 

This can be solved for u(P\ v(P) as long as q2 ^ c2. In the complex case 
q2 — c2 is a two-dimensional surface in four-dimensional space which we can 
go around, because on homologous paths our solutions are independent of 
path. As long as we avoid the branch points of q2 — c2 everything else is 
holomorphic. 
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Exact analogues of these solutions give us x(P\ y(P) in terms of their 
values at Q, R. 

Of course this is a general method for continuing analytic first order systems 
numerically. It could be applied to a number of other inverse problems. In 
fluid dynamics it was used first for detached shocks corresponding to 
M^ > 1 and currently it is used for other transonic problems, see [2] and 
bibliography therein. 

We have a degree of arbitrariness in choosing the characteristic variables 
and it turns out that even in the elliptic region we need only three real 
variables instead of four. Also the numerical method is a stable marching 
scheme. There is no iteration. That means there are really only three computa­
tional independent real variables which makes the problem manageable on 
many modern computers. In addition its accuracy is easily improved. 

Finally in (iii) the obvious choice for data is to give it on TJ = const, 
£ = constant, making the problem a Goursat problem. But there are fancier 
ways of doing this. It will have to suffice to say that one can fix V «ft» and 
obtain all the aerodynamic features we want by arranging the rest of the data. 
An example of such an airfoil, the Korn airfoil at Mach 0.750, is given in 
Figure 5a; along with it is a plot of a normalized speed, as a function of arc 
length along the airfoil, on the upper (above) and lower (below) surface. Note 
the presence of the supersonic bubble. The first published experimental 
evidence of a smooth supersonic bubble is a very convincing demonstration by 
Koppe and Meier [25] that the special smooth solution of (1) due to Ringleb 
[40] can be produced experimentally. The very first supercritical airfoils tested 
in wind tunnels were designed using certain underlying engineering principles 
about the mechanisms that create shocks in supersonic flow, see Pearcey [38] 
and Whitcomb [44]. 

A quite different method of constructing supercritical airfoils is to be found 
in [14]. It uses the numerical methods developed for finding the flow with 
shocks with side conditions to eliminate them. 

So we have accomplished stage 1 ; we have our shock free airfoil at a specific 
M^. How dense are they? What happens at other speeds or for nearby airfoils? 
To answer the second question, we study the effect of small variations. 

4. Perturbation theory. 

THEOREM. The perturbation problem for the boundary value problem for <£, 
conditions (l)-(4), is improperly j^osed (overdetermined) for variations in dtf) 
under the condition V<J> C S in 6D. (There are some restrictions on the unper­
turbed airfoil and flow but they are satisfied by all constructed flows.) 

Note V <t> continuous means no shock. Why should we expect this theorem? 
It was Frankl [12], Busemann [5], Guderley [19] who saw the general connec­
tion to Tricomi's linear mixed equation, y$xx + $yy — 0, and his study of the 
first of its correctly posed boundary value problems [43]. Tricomi's studies 
were completely disconnected, as far as I can tell, from the fluid dynamics 
problem but they initiated, by a completed example, the study of singular 
integral equations. We shall look at the simpler Lavrent'ev-Bitsadze case [27], 
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**x + %y = 0, y> 0, 

-$** + %y = 0, y < 0, 
V $ continuous across, y = 0. 

We shall argue ill-posedness by "counting" on a typical problem. 

FIGURE 6. An overdetermined boundary value problem 

Suppose $ satisfies the Lavrent'ev-Bitsadze equations in a domain S. The 
domain S straddles y = 0 and is bounded by a convex curve, see Figure 6, that 
is nowhere tangent to the characteristic lines dx2 = dy2. We want to argue by 
counting that the Neumann problem is not well posed. From a point P, say 
x = 0, on the x-axis inside S draw the two lines, x — ±y so that S is divided 
into S' and S". On 3S n 85" let d<P/dn = 0. On dS D 9S", let 8 $ / 9 " = ƒ. 
Then it is plausible that the only solutions with continuous derivatives are 
$ = const, ƒ = 0. To fix the constant take 3>(P) = 0. We have 

(i) since <É> is harmonic in y > 0, there exists a linear homogeneous relation 
between $ on 3<J>/9}> on y = 0. 

(ii) Another linear relation comes from y < 0 where O satisfies the wave 
equation and a homogeneous boundary condition on dS 0 dS' D { j < 0}. 

(iii) From a "counting" point of view this implies $ = 0 in S' and hence 
$ = 0 on the two characteristics bounding S'. 

(iv) By a Goursat problem in S\ O = 0 there. 
Hence ƒ = 0 is the only admissible/. 
Thus the problem appears to be ill-posed. The counting argument is slightly 

fallacious; there is a finite dimensional space of admissible functions f(x) but 
that still leaves the problem ill-posed. 

Now transfer this idea to our airfoil boundary value problem. Let ô<J> be the 
perturbation potential; as C. Gardner (unpublished) pointed out, it satisfies a 
linear mixed boundary value problem. Draw a pair of characteristics from the 
sonic line to the boundary and perturb the airfoil in the gap, Figure 7. 

The counting argument works but we need a proof. 
One thing simplifies the problem enormously. The equation for 8<|> is very 

simple in suitable variables. 
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gap 

FIGURE 7. The overdetermined flow problem 

This comes about for an interesting general reason. Suppose U E R2, 
X G R2 and U satisfies a nonlinear system of the form G(U)UX = 0. If we 
interchange variables we find because of the two-dimensionality the linear 
system G(U)XU = 0 for X. On the other hand, if U - V <ƒ>(X) then there is a 
Legendre potential $(U) — U • X — <f>(X) and V v® = X so that $ satisfies a 
second order linear equation with given coefficients. The perturbation poten­
tial ÔO, on the other hand satisfies 8$ + v u® • 8U = 8U • X - 8<t> or 8$ = 
-ô<J>. It follows that ô<J> satisfies the same equation as $ in the original £/ 
variables. 

For the perturbation problem that we have at hand this equation can be 
brought to a form that is remarkably like Tricomi's equation. This is very 
helpful in proving the perturbation theorem and in other circumstances gives 
one a firm hold for estimating the linearization of a nonlinear problem. 

5. Linear methods. To actually prove the ill-posedness one needs somehow 
an estimate. One basic approach is based on Friedrichs' multiplier method, see 
[13] and [32]. 

I digress here to describe a little this method which gives the strongest 
known results on existence and uniqueness for linear equations of mixed type. 

Suppose U satisfies a first order system of partial differential equations 

with the boundary condition BU = 0, x E d6^. Suppose there exists a matrix P 
such that for smooth V, BV = 0 the scalar product (LV, PV) = QiY.V) 
where g is a definite quadratic form. We can obtain (i) uniqueness for smooth 
solutions, (ii) an existence theorem by the projection theorem for the "adjoint" 
problem in some Hubert space. 

Friedrichs' approach to mixed problems was: forget about type. Does the 
problem at hand have such an identity leading to existence and uniqueness, or, 
as it was later named, is it accretive? So a new way of looking at first order 
linear systems was born. We get away from the standard categories. One still 
has to work up the smoothness to get full well-posedness and finding P may be 
very difficult. 

Let us return to our perturbation theorem for the flow. We have smoothness. 
We want a uniqueness theorem for the region cut out by the characteristics and 
the gap in Figure 7. But it turns out that we cannot find the matrix P. It 
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suffices however to restrict the perturbations and only prove that the null-space 
is finite dimensional. This is all we need for ill-posedness. This is essentially my 
proof [33] for symmetric airfoils. The proof for nonsymmetric airfoils was 
given by Cooke [9]. This completes stage 2. 

6. General problem and numerical solutions. We have our airfoil, good at one 
Mach number; we know it produces shocks in general.3 We would like to 
formulate the general boundary value problem admitting shocks. 

As many know, shocks mean entropy change, loss of irrotationality and the 
failure of the simple form of Bernoulli's law. But all these changes are of third 
order in the shock strength. So we keep our potential <j>, and the Bernoulli law 
and look for a weak solution satisfying, since otherwise we cannot expect 
uniqueness, an "entropy" condition: 

(5) shocks are compressive. 

This natural entropy condition comes from the original gas dynamic shock 
conditions. 

CONJECTURE. 3\<j> satisfying the boundary value problem (1-4) and the 
entropy condition (5) weakly and with first derivatives of bounded variation on 
every streamline. 

There is no proof but, as usual, the problem of real interest to engineers is to 
solve the boundary value problem numerically (stage 3). 

The neighborhoods of most points in the field of flow will have either 
subsonic or supersonic flow and for local properties one can appeal to either 
elliptic or hyperbolic theory. The parabolic points are special but as a pre­
liminary, it is helpful to know that there exist special solutions that describe 
the flow just at the point where the shock with vanishing strength reaches the 
sonic line, see P. Germain [16]. 

There are currently several numerical approaches to shock problems but the 
only one applied successfully so far to the transonic wing is the method of 
artificial viscosity. A variant is the penalty method used by Glowinski [18], see 
also Ballhaus [1], Fix [11]. It is only possible here to give the briefest idea of the 
method and to display some of A. Jameson's computations. Let us consider the 
mixed nonlinear equation ((s ign^)^)^ + <j>yy = 0 with the entropy condition: 
<j>x increases with <£ at a jump. Then for the elliptic region A<{> = 0, one 
naturally uses centered difference operators to replace differential operators. If 
the equation is everywhere elliptic one then inverts for the approximate values 
by an iterative or relaxation method. So for the Laplacian one gets a five point 
scheme illustrated by the stencil 

and the result is accurate to second order in the mesh size. 

3 The perturbation problem corresponding to changing M^ has not been proved. Quite likely 
there are exceptional airfoils which are even more exceptional because this perturbation problem is 
also well-posed. 
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But that does not quite work in the hyperbolic case and it will not pick out 
the solution satisfying the entropy condition in the nonlinear case. But suppose 
we use a stencil like this 

in the hyperbolic region then we are only first order accurate in <j>xx but second 
order accurate for the operator 

~^xx~ ^ f e x + ^ r 

We have added an artificial viscosity which singles out the correct solution 
with some loss of accuracy. This was the very original idea of the Murman and 
Cole computation [35] for a similar model equation. 

So we might try for div(p V <J>) = 0 adding an artificial viscosity term, that is, 
develop a second order scheme to solve div(p v<£) + (ep<t>x)xx = 0 with e — 0 
where the equation is elliptic and e > 0 where the equation is hyperbolic. This 
does not quite work exactly like that except in the case studied in Cole-
Murman. To check the relation of e to the entropy condition, let us be still 
simpler and look at a one-dimensional model 

( ( s i g n ^ J ^ O with * , = £/„> Oat-oo. 

The solution is <j>x = U^ or 

Let us model the solution with u = <j>x and u — (eu)x = k where e > 0 for 
u > 0, e = 0 for u < 0. Then we get either 

M=t/oo or w= U^ + Aexp{(x~ x0)/e}. 

This solution holds until u = 0 and then u jumps to -U^. Take A = -U^ so 
that the shock is at x0. 

Thus for e > 0 the equation has a solution with a shock at an arbitrary point 
automatically satisfying the entropy condition. There is also the solution 
<j)x = U^. If U^ < 0 that is the only bounded solution that satisfies the entropy 
condition. Hence in the first case we can throw in another condition on <f>. That 
appears to be the freedom we need in the two-dimensional problem. 

Adding regularizing or viscous terms to the equation is used in practice for 
hyperbolic problems. Oleinik [37] and Kruskov [20] have shown that in the 
scalar first order case, and in some second order strictly hyperbolic cases, 
initial value problems can be solved by the viscosity method. But our problem 
has not lent itself to proof this way so far. 

Let us proceed to the numerical results: 
Figure 8 shows a Joukowski airfoil with two symmetric shocks, quite strong. 

Strong enough to see in the figure but not strong enough to really contradict 
our assumptions. 
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FIGURE 8. Joukowski airfoil 

Now we look at the good airfoil of Figure 5 again. The graph of the pressure 
distribution here is actually not computed by the design but by the Jameson 
code. But it is exactly the same to the eye. 

Next we shall check our theorem on ill-posedness; we just change the Mach 
number4 a little bit. We put it up 0.3% and obtain the distinct shock of Figure 
5b. We put it down the same amount and there is definitely again a shock but 
also much more distortion (Figure 5c). The computational results give very 
sharp shocks which match the wind tunnel results. There is much work on 
improving the difference schemes and on the iteration scheme used in inverting 
the matrix, see the work of Mock [31], and Engquist and Osher [10] who show 
this iteration converges. 

Notice, from Figure 5b, however, that there is very little change in the flow 
elsewhere if we raise the Mach number. This appears to be so in general. There 
ought to be a linear perturbation potential that holds away from the sonic 
boundary point P. 

So for increases in Mach number there should exist a perturbation potential 
with a singular point at P. There are in fact some model problems [34] of this 
kind (push the "gap" in Figure 6 over to the boundary). We could speculate 
even further. There ought to be an inner and outer expansion for the perturba­
tion potential. The inner should be a shock at Mach 1. 

But we must keep in mind that in general the computed flow patterns may 
give rise to many small shocks, even to shocks entirely embedded in the 
supersonic region, see Garabedian and McFadden [15]. 

4 These figures are obtained by using a very fine mesh. 
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This lecture began with the drag and now is the time to see what the 
computed drag and lift are. In incompressible flow one uses contour integrals 
to obtain the elegant formulas of Blasius for lift and drag in terms of the 
second coefficient in the power series that describes the complex velocity at oo. 
(The famous paradox of d'Alembert is that the drag is zero because there is no 
viscosity.) In our case, we can obtain the force on the wing as two line integrals 
—one along the shock, the other "at oo" by a clever integration by parts. The 
drag on a symmetric airfoil is given in this way in terms of the loss of 
momentum in the normal direction to the shock. This would have been con­
served if we had not thrown away that third order change in entropy. So the 
drag is of third order in the shock strength. That makes it small which is good 
but it also means that at this stage we must rely on the wind tunnel to measure 
the accuracy with which we are getting the drag. For this purpose a variety of 
numerical schemes, in conservation (i.e. divergence) form are available to 
choose from. Remarkably, the measured drag is very close to the computed 
drag but it would be better if there were a mathematical justification. 

7. Conclusion. We are left with the general weak existence theorem for the 
full nonlinear problem unsolved. There are lots of approaches to try: show the 
difference scheme converges. Extend the variational principles of elliptic 
theory. Perhaps something quite new. 

Numerically there have been many advances. There are now three-
dimensional computations and time dependent flow. Perhaps a whole airplane 
and its flow will some day be computed—the ultimate answer to the wind 
tunnel and much cheaper. From all these numerical experiments we are gaining 
understanding of all the possible phenomena. Perhaps that too will help with 
the theorems. 

Let me close now with two things. The first is to say that I have left a lot 
unsaid and a lot unquoted. But I would like to thank for their help my 
transonic colleagues, Kurt O. Friedrichs, Lipman Bers, Paul R. Garabedian 
and Antony Jameson. 

Finally, a story about Theodore v. Karman, who gave much to early 
transonic theory, see [23]. In his Gibbs Lecture of 1940 [24], he proposed, as 
one of many nonlinear problems of importance to engineers, the resolution of 
the paradox of wing theory that I have been describing. The story is told that 
someone once asked von Karman where he got his ideas. He replied, "physical 
intuition, physical intuition" patting at the same time, a very large pile of 
mathematical calculations. I think today he would have in that pile a very large 
amount of computer output. 

ACKNOWLEDGMENTS. Figure 1 is from Jones' book, [22]. The photographs in 
Figure 2 were made in a N.A.S.A. wind tunnel at Langley Field; (a), (b), (d) 
are of a supercritical wing section designed by Bauer and Korn using the 
method of Garabedian [2]. Figure 2c is of a wing section by Bauer and Korn 
that imitates a supercritical wing design of Whitcomb [44]. Figures 5 and 8 
were made by A. Jameson with his code. 
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